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ABSTRACT
The objective of this work was to evaluate the effects of breed and heterosis on the estimates
of genetic parameters of 305-day milk yield (305MY), by fitting milk yield data to the Wood,
Mixed Log, Morgan, and Wilmink non-linear models. A total of 258,891 test-day milk yield
records of 37,965 Holstein (H), Gyr (G), and Girolando (1/2H, 1/4H, 3/4H, 3/8H, 5/8H and 7/8H
genetic groups) cows from 1840 herds were collected in the state of Minas Gerais, Brazil, in the
period of 1998 to 2014. The pedigree file included 36,640 animals, 3677 bulls and 24,472 cows.
The genetic parameters were obtained by one-character analysis using the AIREMLF90 software.
The heritability estimates of 305MY, and of 305MY fitted to the different nonlinear models
ranged from 0.14 to 0.20. Most genetic groups had heterosis effect, with the greatest effects for
305MY on 1/2H (1/2 Holstein � 1/2 Gyr) cows, presenting a milk yield of 1112.73 kg higher
than the average of their parents. The results indicate that most genetic groups of Girolando
present heterosis effect for 305MY estimated through nonlinear models, and the possibility of
obtaining moderate genetic gains when these animals are subjected to selection procedures.

HIGHLIGHTS

� The use Girolando cows in production systems in Brazil has shown positive results
of production.

� This greater productive efficiency may be because of heterosis on the production and adap-
tation of these animals.

� The effect of breed and heterosis can be included in traditional models for the improvement
of selection.
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Introduction

Strategies for crossbreeding Bos taurus taurus with Bos
taurus indicus are important in Brazil to achieve the
balance between yield and adaptability of animals to
adverse conditions in the country (Santos et al. 2013)
and explore the benefits of heterosis and complemen-
tarity originated from the crossbreeding between dif-
ferent breeds (Canaza-Cayo et al. 2014).

The first crosses between Gyr and Holstein cattle
intending to form the Girolando breed started in the
1940s (Fac�o et al. 2002; Silva et al. 2015). The use of
this breed in production systems in Brazil has shown
positive results of production. Silva et al. (2016)
reported an increase of 41% in milk production of

Girolando cows between 2000 and 2014. Although
Girolando cows present lower milk production than
Holstein cows, they present greater resistance to ecto-
parasites and hot weather and greater productive effi-
ciency when farmed in medium to low technological
production systems (Fac�o et al. 2002; McManus et al.
2008). This greater productive efficiency may be
because of heterosis on the production and adapta-
tion of these animals. This shows the need for con-
ducting studies on the effect of heterosis in milk
production of Girolando cows.

The use of mathematical models to describe milk
production during lactation in genetic breeding
programmes (Hossein-Zedeh 2017) allows the
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establishment of strategies to optimising the selection,
and the search for efficient and profitable genotypes
(Oliveira et al. 2007). Moreover, these models allow the
evaluation of different components of the lactation
curve of the animals, such as milk yield peak, yield peak
time, and lactation persistency. Knowing the mathemat-
ical model that best fits the lactation curve enables the
estimation of genetic parameters and prediction of gen-
etic values. Moreover, the effect of breed and heterosis
can be included in traditional models for the improve-
ment of selection procedures for the traits of economic
importance that are affected by these variables.

In the literature, there are several models widely
used to describe lactation curves of different breeds.
There are also those models that have not yet been
used for this purpose, especially in the Girolando
breed. Therefore, several of those models were used
to study heterosis in this breed. Therefore, the object-
ive of this work was to evaluate the effects of breed
and heterosis on the estimates of genetic parameters
of 305-day milk yield (305MY), by fitting test day milk
yield records to the Wood, Mixed Log, Morgan, and
Wilmink non-linear models.

Material and methods

Data

Milk production data were obtained from the
Association of Holstein Breeders of Minas Gerais,
Brazilian Association of Dairy Gyr, and Brazilian
Association of Girolando. The dataset consisted of
258,891 test day milk yield records of 37,965 cows from
1840 herds, which were collected in the state of Minas
Gerais, Brazil, in the period of 1998 to 2014. These cows
were from the Holstein (H), Gyr (G), and Girolando
breeds. Six genetic crossbreedings of Holstein (H) � Gyr
(G) crossbreeds (1/4H, 3/4G (1/4H); 3/8H, 5/8G (3/8H);
1/2H, 1/2G (1/2H); 5/8H, 3/8G (5/8H); 3/4H, 1/4G (3/
4H); 7/8H, 1/8G (7/8H)) were used; animals from these
groups are officially called Girolando in Brazil.

The effect of breed and heterosis on the 305-day
milk yield (305MY) was evaluated by fitting the test
day milk yieldsrecords to the Wood (305MY-WD),
Mixed Log (305MY-ML), Morgan (305MY-MG), and
Wilmink (305MY-WL) models.

Only first lactation cows were maintained for the
analyses, considering complete lactations (305 days in
milk) when the cow had a minimum of 4 and max-
imum of 10 test days. The test-day milk yield, and
305-day milk yield records were not considered
when the daily milk yield was not between 3 kg
and 45 kg. The production data were edited and the

breed group, heterosis coefficient, genetic group of
the animal, genetic group of the sire, genetic group of
the dam, and number of cows were determined
(Table 1).

The contemporary groups (CG) were defined by
herd-year of calving in the 305MY analysis. Only CG
with at least three controls of cows from at least two
bulls were considered. Two calving periods were con-
sidered, October to March and April to September.
The pedigree file included 36,640 animals, 3677 bulls
and 24,472 cows. The birth period of animals in the
pedigree file was 1979 to 2009, and included the
Holstein, Gyr, and Girolando breeds.

Lactation curve models

The nonlinear models used to fit the test day milk
yield data along the lactation of the Holstein, Gyr, and
Girolando animals were:
1. Wood gamma model (WD) (Wood 1967):

Yt ¼ atbe�ct

2. Mixed Log (ML) (Guo and Swalve 1995):

Yt ¼ aþ bt0:5 þ clogt

3. Morgan model (MG) (Thornley and France 2007):

Yt ¼ abcc
tc�1

ðtc þ bcÞ2

4. Wilmink model (WL) (Wilmink 1987):

Yt ¼ aþ be�kt þ ct

wherein Yt is the average daily milk yield in the tth

test day of lactation, a is the initial milk yield just after
calving, and b and c are the parameters of the ascend-
ing phase to the production peak, and descending
phase after the production peak, respectively. The
constant k in the WL model was determined in a pre-
vious analysis as 0.05.

Statistical analyses

The normal distribution test of milk production levels
for different genetic groups was applied. Data were
tested for non-normality by the Shapiro–Wilk and
Kolmorgorov–Smirnov test. The non-linear models
were adjusted to the milk yield records as the iteration
method of Gauss–Newton.

The models were tested using root mean square
error (RMSE), Akaike’s information criterion (AIC), and
Bayesian information criterion (BIC).

ITALIAN JOURNAL OF ANIMAL SCIENCE 87



RMSE (generalised standard deviation) was calcu-
lated using the equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RSS
n� p� 1

s
,

wherein RSS is residual sum of squares, n is the num-
ber of observations (data points), and p is the number
of parameters of the equation.

AIC was calculated using the equation (Burnham
and Anderson 2002):

AIC ¼ n� ln RSSð Þ þ 2p:

BIC was calculated using the equation:

BIC ¼ n ln
RSS
n

� �
þ pln nð Þ:

The lowest numerical values of RMSE, AIC and BIC
indicated the better fit when comparing the differ-
ent models.

Breed and heterosis effects

The proportion of genes was calculated for each cow
using the equation:

api ¼
asi þ adi
� �

2
where api is the porportion of genes from breed i in
the progeny, asi is the proportion of breed i in the
sire, and adi is the proportion of breed i in the dam.

Coefficients of specific heterosis in a given cross
were calculated between any pair of the dairy breeds
using the following identity (Dickerson 1973):

dpij ¼ asia
d
j þ asja

d
i

where dpij is the coefficient of expected heterosis
between fractions of breeds i and j in the progeny, asi

and asj are proportions of breeds i and j in the sire, and
adi and asj are proportions of breed i and j in the dam.

These specific effects of heterosis were used for the
six genetic groups of Girolando, because the distribu-
tion of cows across coefficients of expected heterosis
was suitable for this purpose (Penasa et al. 2010). The
coefficient of general heterosis for each cow was
obtained by summing previously calculated coeffi-
cients of specific heterosis.

Genetic parameters

The 305MY was evaluated by fitting the test day milk
yields records to the 305MY-WD, 305MY-ML, 305MY-
MG, and 305MY-WL models, later they were analysed
by means of the animal model, in one-character ana-
lysis. The components of variance were estimated by
the maximum likelihood-restricted method, using a
derivative-free algorithm, using the software
AIREMLF90 (Misztal et al. 2014). The convergence cri-
terion was 1� 10�12.

Model and analysis

The model included the direct additive genetic effect
and the residual effect as random, the systematic
effects of GC, breed, heterosis, and the covariant cow
age (linear and quadratic effect). The model can be
represented in matrix form by the equation:

y ¼ Xbþ Zuþ e:

wherein y is the vector of records for 305MY; b is the
vector of the fixed effects, u is the vector of random
animal effects, including animals without records; e is
the vector of random residual effects, e�NID (0, r2

e );

Table 1. Number of cows per genetic group according to heterosis coefficient.

Breed group
Heterosis
coefficient

Genetic
group

Genetic
group (sire)

Genetic
group (dam)

Number
of cows

Number of sires per
cow genetic group

1 0 H H H 10704 545
G G G 622

2 0.250 7/8H H 3/4H 770 48
3/4H H

3 0.375 3/4H 3/4H 7/8H 357 202
4 0.406 3/4H 5/8H 7/8H 278
5 0.438 5/8H 5/8H 3/4H 616 140
6 0.469 5/8H 5/8H 5/8H 455
7 0.500 3/4H H 1/2H 3130 202

5/8H 3/4H 1/2H 140
1/4H 1/2H 1/2H 15

8 0.625 5/8H H 3/8H 385 140
1/2H 3/4H 1/4H 157

9 0.750 5/8H H 1/4H 1009 140
3/8H G 3/4H 14

10 1 1/2H G H 2484 157
H G

H: Holstein; G: Gyr.
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and X and Z are incidence matrices assigning observa-
tions to fixed and random animal effects, respectively.

Results

Considering all models, the lowest mean RMSE (Table 2)
was found for the G group, followed by the 7/8H, and
5/8H groups. The lowest mean AIC and BIC were found
in the 1/4H group.

The highest milk production was found for cows of
the H group (Table 3), followed by the 7/8H, 1/2 H,
and 3/4H groups, regardless of the 305MY fitting.
Contrastingly, cows in the G group had the lowest
performance for 305MY, 305MY-WD, 305MY-ML,
305MY-MG and 305MY-WL.

The genetic variance estimates for 305MY were
higher than those obtained by the 305MY-WD,
305MY-ML, and 305MY-WL (Table 4). Similar results
were found for estimates of residual variance.
Heritability estimates for 305MY (0.14 ± 0.01), and simi-
lar estimates were found for 305MY-WD (0.18 ± 0.02),
and 305MY-WL (0.17 ± 0.02). The highest estimates of
heritability were found for 305MY-MG (0.20 ± 0.02).

The effect of breed (Table 5) showed that only
cows of group 7/8H presented positive performance
(440.95 kg to 305MY). The effects of breed found in
the different genetic groups for 305MY-ML, 305MY-
MG, and 305MY-WL were similar to those found for
305MY. The 305MY-WD estimate was the one that
most differed from the 305MY.

The effect of heterosis (Figure 1) was higher for ani-
mals with heterosis coefficients of 1.0, represented by
the 1/2H group, with superior milk yields to their
parents 1112.73 kg, 875.09 kg, 1421, 46 kg, 1335.83 kg,
and 1433.35 kg for 305MY, 305MY-WD, 305MY-ML,
305MY-MG, and 305MY-WL, respectively. The

Table 2. Quality-of-fit of 305-day milk yield means to Wood
(WD), Mixed Log (ML), Morgan (MG) and Wilmink
(WL) models.
Genetic group Model RMSE AIC BIC

H 305MY-WD 5.90 774531 122726
305MY-ML 6.23 774628 195018
305MY-MG 6.47 778537 198927
305MY-WL 5.91 774700 195089

G 305MY-WD 5.72 477960 122734
305MY-ML 6.06 477952 122726
305MY-MG 6.12 478609 123382
305MY-WL 5.72 477953 122726

1/2H 305MY-WD 6.49 259045 72604
305MY-ML 6.79 259045 72604
305MY-MG 6.90 259605 73164
305MY-WL 6.49 259011 72570

1/4H 305MY-WD 6.41 18359 6260
305MY-ML 6.73 18359 6260
305MY-MG 6.82 18404 6305
305MY-WL 6.41 18357 6258

3/4H 305MY-WD 5.90 386369 101832
305MY-ML 6.24 386405 101869
305MY-MG 6.36 387516 102979
305MY-WL 5.91 386426 101889

3/8H 305MY-WD 6.55 18384 6310
305MY-ML 6.86 18385 6312
305MY-MG 6.93 18420 6346
305MY-WL 5.91 386426 101889

5/8H 305MY-WD 5.88 259710 70240
305MY-ML 6.21 25712 70242
305MY-MG 6.30 260227 70757
305MY-WL 5.88 259712 70604

7/8H 305MY-WD 5.74 80476 23478
305MY-ML 6.08 80484 23486
305MY-MG 6.23 80788 23790
305MY-WL 5.74 80484 23486

H: Holstein; G: Gyr; 305MY-WD: 305-day milk yield estimated by Wood
model; 305MY-ML: 305-day milk yield estimated by Mixed Log; 305MY-
MG: 305-day milk yield estimated by Morgan model; 305MY-WL: 305-day
milk yield estimated by Wilmink model.

Table 3. Least mean squares and standard errors for 305-day milk yield (kg) in different non-linear models for Holstein cows
(H), Gyr (G), and different genetic groups of the Girolando breed.
Genetic group1 305MY 305MY-WD 305MY-ML 305MY-MG 305MY-WL

H 6982.98a ± 22.21 6988.05a ± 22.24 6971.19a ± 22.15 7016.90a ± 22.92 6970.62a ± 22.22
G 4256.04d ± 26.11 4473.07f ± 26.15 4396.01f ± 26.04 4610.26f ± 26.94 4380.73f ± 26.12
1/2H 5118.23b ± 34.99 5631.76b ± 35.04 5592.60b ± 34.90 5727.87b ± 36.11 5593.45b ± 35.01
1/4H 4307.01c,d ± 118.30 4865.70d,e ± 118.69 4819.26d,e ± 117.99 4876.04d,e ± 122.06 4784.10d,e ± 118.36
3/4H 5076.57b ± 30.12 5414.94c ± 30.18 5388.22c ± 30.05 5509.51c ± 31.08 5392.67c ± 30.14
3/8H 4569.97c ± 120.52 4999.65d ± 120.65 4933.99d ± 120.20 5116.16d ± 124.35 4935.03d ± 120.58
5/8H 4388.13c ± 35.53 4721.97e ± 35.58 4683.66e ± 35.44 4771.54e ± 36.66 4684.29e ± 35.55
7/8H 5211.12b ± 63.08 5502.03b,c ± 63.19 5470.28b,c ± 62.92 5578.15c ± 65.09 5465.48b,c ± 63.12
a–fEstimates of least mean square with different letters in the columns are significantly different (p< 0.05).
305MY: 305-day milk yield; 305MY-WD: 305-day milk yield estimated by Wood model; 305MY-ML: 305-day milk yield estimated by Mixed Log; 305MY-
MG: 305-day milk yield estimated by Morgan model; 305MY-WL: 305-day milk yield estimated by Wilmink model.

Table 4. Estimates of variance components and heritability
(h2) of 305-day milk yield (kg) estimated by different nonlin-
ear models.

r2
a r2

e r2
total h2

305MY 264980 1654300 1919280 0.14 ± 0.01
305MY-WD 249620 1088300 1337920 0.18 ± 0.02
305MY-ML 241010 1097100 1097100 0.18 ± 0.02
305MY-MG 269590 1052300 1321890 0.20 ± 0.02
305MY-WL 237540 1103400 1340940 0.17 ± 0.02

305MY: 305-day milk yield; 305MY-WD: 305-day milk yield estimated by
Wood model; 305MY-ML: 305-day milk yield estimated by Mixed Log;
305MY-MG: 305-day milk yield estimated by Morgan model; 305MY-WL:
305-day milk yield estimated by Wilmink model; r2

a: animal additive
genetic variance; r2

e: residual error variance; r
2
total: sum of all variances.

ITALIAN JOURNAL OF ANIMAL SCIENCE 89



estimated heterosis decreased with decreasing the
heterosis coefficient, which was zero for the heterosis
coefficient of 0.250 (7/8 H). The animals with heterosis
coefficients of 0.375 and 0.406 were from the same
genetic group (3/4 H), but from different crosses
(Table 1) and did not present heterosis effect for
305MY, 305MY-WD, 305MY-ML, 305MY-MG, and
305MY-WL. However, the animals with heterosis coeffi-
cients of 0.438, 0.469, and 0.500 represented by the 5/
8H group had positive heterosis effect for 305MY,
305MY-ML, 305MY-MG, and 305MY-WL.

Different from other models, the 305MY-WD indi-
cated that only animals with heterosis coefficients of
0.625 (566.86 kg), 0.750 (404.49 kg), and 1.0 (875.09 kg)
were affected by positive heterosis.

The linear regression of the heterosis curves of the
animals with heterosis coefficients of 0.250 to 1.0 pre-
sented trends of 1837.70 kg, 1800.10 kg, 2173.3 kg,
2080.10 kg, and 2203.20 kg for 305MY, 305MY-WD,
305MY-ML, 305MY-MG, and 305MY-WL, respectively
(Table 6). The R2 values ranged from 0.64 to 0.81. The
WD model underestimated the effect of heterosis for
all animals, regardless of their heterosis coefficients
(Figure 1).

Discussion

The breed composition of cows affected the 305-day
milk yield (305MY) (Table 3); cows with higher propor-
tion of Holstein genes (H, 7/8 H, 3/4 H, and 1/2H) had
higher milk yield than cows with higher proportion
of Gyr genes (1/4 H and 3/8H). The mean 305MY of
Holstein cows was 2726.94 kg higher than that of
Gyr cows.

The effect of genetic groups on 305MY in
Girolando cows in Brazil was also observed by
McManus et al. (2008), and Balancin J�unior et al.
(2014). Balancin J�unior et al. (2014) identified the gen-
etic groups 7/8H, 3/4 H and 1/2H as the ones with
the highest milk production. McManus et al. (2008)
found higher mean 305MY for the 3/4H group, fol-
lowed by the 1/2H, 3/8 H and 1/4H.

When test day milk yield records were fitted to the
different nonlinear models (WD, ML, MG, and WL), the
highest averages were found for the H group, fol-
lowed by the 7/8H, 1/2 H, and 3/4H; and the lowest
were found for the G group. The different models
(WD, ML, MG, and WL) followed the same trend of the
305MY. However, when evaluating the quality-of-fit
criteria, larger differences for 305MY estimated by
nonlinear models were found, with differences
between fitting models varying according to the
genetic group.

Table 5. Breed effect with standard error estimated by the Wood (WD), Mixed Log (ML), Morgan (MG), and Wilmink
(WL) models.
Genetic group
(sire)

Genetic
group (dam)

Genetic
group 305MY 305MY-WD 305MY-ML 305MY-MG 305MY-WL

1/2H 1/2H 1/4H �1312.89 (140.81) 219.46 (1802.85) �1243.98 (137.04) �1250.43 (143.73) �1258.80 (138.13)
G 3/4H 3/8H �1595.99 (243.29) �28.13 (1813.64) �1462.73 (241.21) �1293.47 (253.22) �1427.64 (243.24)
H G 1/2H �974.95 (936.99) 150.68 (1890.29) �1342.91 (949.37) �1252.08 (997.43) �1352.99 (957.80)
5/8H 5/8H 5/8H �521.96 (224.89) 985.17 (1814.07) �479.14 (225.56) �550.86 (236.88) �489.85 (227.51)
3/4H 1/2H 5/8H �646.08 (185.47) 892.55 (1808.24) �488.35 (184.57) �485.94 (193.80) �477.04 (186.15)
H 1/4H 5/8H �476.25 (584.83) 803.98 (1702.79) �645.58 (582.92) �709.42 (612.12) �636.27 (587.93)
H 1/2H 3/4H 0 (0) 1447.84 (1799.05) 0 (0) 0 (0) 0 (0)
H 3/4H 7/8H 440.95 (129.17) 1292.57 (1702.19) 333.49 (121.67) 314.36 (127.49) 323.87 (122.57)

H: Holstein; G: Gyr; 305MY: 305-day milk yield; 305MY-WD: 305-day milk yield estimated by Wood model; 305MY-ML: 305-day milk yield estimated by
Mixed Log; 305MY-MG: 305-day milk yield estimated by Morgan model; 305MY-WL: 305-day milk yield estimated by Wilmink model.

y = 1837.7x - 508.18
R² = 0.8184
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Figure 1. Estimation of heterosis (kg) for 305-day milk yield
(305MY) according to the heterosis coefficient of the different
genetic groups of Girolando cows, obtained by the Wood’s
model (305MY-WD), Mixed Log function (305MY-ML), Morgan
model (305MY-MG) and Wilmink model (305MY-WL).

Table 6. Linear regression of the heterosis curve.
Model R2

305MY y¼ 1837.7x� 518.18 0.818
305MY-WD y¼ 1800.1x� 939.65 0.646
305MY-ML y¼ 2173.3x� 705.35 0.815
305MY-MG y¼ 2080.1x� 667.37 0.745
305MY-WL y¼ 2203.2x� 731.10 0.812

305MY: 305-day milk yield; 305MY-WD: 305-day milk yield estimated by
Wood model; 305MY-ML: 305-day milk yield estimated by Mixed Log;
305MY-MG: 305-day milk yield estimated by Morgan model; 305MY-WL:
305-day milk yield estimated by Wilmink model.
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The WD model presented the lowest differences
between mean 305MY estimates for the H and 7/8H
groups. This result agrees with the RMSE, AIC and BIC
found, which were lower in these groups (H and 7/
8H) through the WD model. Torshizi et al. (2011) eval-
uated different non-linear models in primiparous
Holstein cows in Ir~an and found a lower RMSE for the
WD model when compared to the WL model, showing
a better prediction of milk production. The Wood
model is one of the best and most popular mathemat-
ical models to describe lactation curves in dairy cattle
(Gradiz et al. 2009; Macciotta et al. 2011).

The WL model was the one that best described the
305MY for the G, 1/2H, and 1/4H groups; it presented
the lowest differences between the mean 305MY esti-
mates and lowest RMSE, AIC, and BIC. Contrastingly,
Bangar and Verma (2017) evaluated different non-
linear models for Gyr cows in India and found better
prediction using the WD model, in terms of RMSE and
AIC, when compared to the WL model. WD and WL
models have been successfully used for fitting individ-
ual lactation curves of dairy cattle (Macciotta et al.
2005; Torshizi et al. 2011).

The ML and WL models were the ones that best
described the milk production of cows of the 3/4H, 3/
8H, and 5/8H groups, regarding the difference
between the production estimated by the models and
the observed production (305MY). However, they pre-
sented a high quality-of-fit variation for these genetic
groups when tested by the RMSE, AIC and BIC criteria.
This variation in the quality-of-fit of the models for the
lactation curve depends not only on the mathematical
functions, but on the calving order of the cows (Şeahin
et al. 2015), and biological nature of the lactation itself,
which varies randomly between the cows (Gantner
et al. 2010). Despite only primiparous cows from the
same region were used, the analyses were performed
with different genetic groups and individual lactations;
this may have caused these quality-of-fit variations.

The 305MY and its variation was estimated by dif-
ferent mathematical models; thus, it probably affected
the variation of the heritability estimates, which were
moderated. These moderate and expected heritability
indicates that the additive genetic action had limited
effect, and genetic and environmental factors were
important in its expression (Dangar and Vataliya 2017).
Similarly, Kim et al. (2009) found heritability of 0.14 to
305MY in Holstein cows. Low heritability for 305MY
were also found by Singh et al. (2001) (0.11) and
Ulmek (1990) (0.12) for the Gyr breed. Higher heritabil-
ity for 305MY in Girolando cows were reported by
Canaza-Cayo et al. (2018) (0.27) and Fac�o et al. (2008)

(0.21). The differences in heritability estimates found
in these studies can be attributed to several factors,
such as production level, population size, analysis
model, variable assessed (fitted, or total milk produc-
tion), and environmental effects (Canaza-Cayo et al.
2018). Regardless of the variations between heritability
estimates by the mathematical models for 305MY, all
estimates showed moderate heritability, that is, these
mathematical models can be used to estimate genetic
parameters of milk production at 305 days. Therefore,
effects of heterosis on other characteristics can be
studied, such as the peak and persistence of lactation,
in further genetic evaluations fitted to nonlin-
ear models.

The effect of heterosis is important in different
Girolando genetic groups in Brazil, when evaluating
305-day milk yield (Fac�o et al. 2002, 2008). Animals
with heterosis coefficient of 1.0 (1/2 H) presented a
greater heterosis effect to 305MY, as well as when fit-
ted to the different nonlinear models (305MY-WD,
305MY-ML, 305MY-MG and 305MY -WL) (Figure 1).
This result was expected because heterosis is more
intense in this group because the parental breeds
were more genetically distant (Wentworth 1927).
When parental breeds have different alleles, or fre-
quency of different alleles, offspring will show greater
heterogeneity and heterosis compared to crosses
between parental breeds with similar allele frequen-
cies (Sorensen et al. 2008). This is fully expressed in
animals 1/2H, in which all pairs of genes have one
gene from each breed.

Heterosis effects for 305MY, 305MY-ML, 305MY-MG
and 305MY-WL were observed in all heterosis coeffi-
cients, except for animals with coefficients of 0.250,
0.375 and 0.406 (Figure 1). This indicates that most
genetic groups had higher average milk production at
305 days than their parents. These results demonstrate
the importance of heterosis in the expression of milk
production of cows in populations composed of ani-
mals of different genetic groups, such as the
Girolando breed in Brazil. Thus, it is noteworthy that
the inclusion of the heterosis effect in the models
used in the genetic evaluation of the breed to predict
the genetic values of bulls is of fundamental import-
ance, possibly increasing the prediction accuracy.

In practical terms, such results reveal to breeders
and industry that it is possible to increase perform-
ance gains through simple processes of exploiting the
effect of heterosis among zebu. If this effect can be
obtained by careful combination of genetic material
(animals of different breed proportions), this gain can
be achieved without raising production costs.
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According to McManus et al. (2008), animals that
showed heterosis effects may have better adaptation
to the environment to which they were subjected. The
term adaptation in this case should be understood in
a broad sense. It means that the types of genes acting
on the genotypes of Girolando animals make them to
have better performances.

Contrastingly, animals from the 3/4H group from
different crosses (Table 1) with heterosis coefficients of
0.375 and 0.406 did not show positive heterosis effect
for 305MY, or for the 305MY fitted to the different
non-linear models. This may have occurred due to the
loss of positive epistatic effects resulting from the
gene recombination that occurs by crossings (Fac�o
et al. 2008). Breakdown of favourable epistatic interac-
tions may occur in the recombination process during
meiosis when the breeds involved in the crossing are
selected in different directions for a long time
(Dickerson 1973). According to Fac�o et al. (2008), the
genetic recombination observed in some types of mat-
ing produces detrimental effects to milk production.

Canaza-Cayo et al. (2018) found better productive
performance for the 3/4H and 7/8H groups and
attributed this result to the improved environment of
these herds, which favoured the performance of ani-
mals with higher proportion of Holstein genes.
However, animals with heterosis coefficients of 0.438
and 0.469 (5/8 H group) from different crosses showed
a positive heterosis effect (Table 1). The 5/8H group is
composed of pure animals of the Girolando breed and
come from different parents. Thus, heterosis does not
guarantee that crosses can bring favourable epistatic
interactions. In this case, a subsequent selection pro-
gramme is important because the large genetic com-
positions of the Girolando breed can guarantee
moderate genetic gains for milk production and con-
tribute to the improvement of the productive effi-
ciency of the herd when properly used in breeding
programmes (Canaza-Cayo et al. 2018).

The evaluation of the heterosis effect showed that
only the Wood model differed from the other nonlin-
ear models (ML, MG, and WL) when estimating milk
production at 305 days (Figure 1). This denotes that
the estimates obtained by the other models (ML, MG
and WL) were more similar to 305MY than that
obtained by the WD model. The quality-of-fit of the
models is shown by several factors, such as the differ-
ences between races (Khan et al. 2012), and individual
production, which varies between lactations of the
same animal (Gantner et al. 2010). Therefore, not all
cows in the same herd have the same lactation curves,
especially when there is a genetic distance such as

that between the H (Bos taurus taurus) and G (Bos tau-
rus indicus) groups.

The lactation curve found for Holstein cows can be
divided into three phases: ascending, peak, and
descending (Cruz et al. 2009). However, it is different
in zebu breeds and their crosses, the lactation curve is
generally composed of two segments, the initial pro-
duction, and the rate of decline (Cobuci et al. 2001).
Thus, WD model presented the best fit for milk pro-
duction records on the day of the control of animals
of the H and 7/8H group, that is, for the animals with
a higher proportion of Holstein genes. This may have
caused the WD model to have a poor estimating of
the heterosis effect of the different genetic groups
that make up the Girolando breed when compared to
the other models studied.

Conclusions

The estimated lactation curve for cows of different
Girolando genetic groups is dependent on the math-
ematical model chosen. It is utopian to expect a single
model to properly adjust the lactation curves of vari-
ous genetic groups. The effect of heterosis on milk
yield was important for most of the breed genetic
groups, and 1/2H 1/2G animals presented higher het-
erosis among the groups. A careful combination of
genetic material (animals of different racial propor-
tions) enables breeders and the dairy industry to
benefit from the performance gains generated by het-
erosis without rising production costs. Considering the
observed importance of heterosis it is essential that
the genetic evaluation processes of the breed consider
the heterosis effect to predict the genetic values of
bulls and cows in order to increase their predic-
tion accuracy.
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mento. Bol Ind Anim. 71:357–364.

Bangar YC, Verma MR. 2017. Non-linear modelling to
describe lactation curve in Gir crossbred cows. J Anim Sci
Technol. 59:1–7.

Canaza-Cayo AW, Lopes PS, Cobuci JA, Martins MF, Silva M.
2018. Genetic parameters of milk production and repro-
duction traits of Girolando cattle in Brazil. Ital J Anim Sci.
17:22–30.

Canaza-Cayo AW, Lopes PS, Silva M, Cobuci JA, Torres RA,
Martins MF, Arbex WA. 2014. Estrutura populacional da
raça Girolando. Cienc Rural. 44:2072–2077.

Cobuci JA, Euclydes RF, Teodoro RL, Verneque RS, Lopes PS,
Silva MA. 2001. Aspectos gen�eticos e ambientais da curva
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