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Abstract
Climate warming may be exacerbated if rising temperatures stimulate losses of soil 
carbon to the atmosphere. The direction and magnitude of this carbon-climate feed-
back are uncertain, largely due to lack of knowledge of the thermal adaptation of 
the physiology and composition of soil microbial communities. Here, we applied the 
macromolecular rate theory (MMRT) to describe the temperature response of the 
microbial decomposition of soil organic matter (SOM) in a natural long-term warming 
experiment in a geothermally active area in New Zealand. Our objective was to test 
whether microbial communities adapt to long-term warming with a shift in their com-
position and their temperature response that are consistent with evolutionary theory 
of trade-offs between enzyme structure and function. We characterized the micro-
bial community composition (using metabarcoding) and the temperature response of 
microbial decomposition of SOM (using MMRT) of soils sampled along transects of in-
creasing distance from a geothermally active zone comprising two biomes (a shrubland 
and a grassland) and sampled at two depths (0–50 and 50–100 mm), such that ambient 
soil temperature and soil carbon concentration varied widely and independently. We 
found that the different environments were hosting microbial communities with dis-
tinct compositions, with thermophile and thermotolerant genera increasing in relative 
abundance with increasing ambient temperature. However, the ambient temperature 
had no detectable influence on the MMRT parameters or the relative temperature 
sensitivity of decomposition (Q10). MMRT parameters were, however, strongly corre-
lated with soil carbon concentration and carbon:nitrogen ratio. Our findings suggest 
that, while long-term warming selects for warm-adapted taxa, substrate quality and 
quantity exert a stronger influence than temperature in selecting for distinct ther-
mal traits. The results have major implications for our understanding of the role of 
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1  |  INTRODUC TION

Microbial decomposition of soil organic matter (SOM) results in 
emissions of up to 60  Pg (1015  g) of carbon (C) per year as CO2 
from soils to the atmosphere (Cavicchioli et al., 2019; Reay, 
2007)—approximately six times the current annual rate of an-
thropogenic emissions—making it a key component in the global 
C cycle. Yet, large knowledge gaps remain that feed uncertainties 
around the temperature sensitivity of soil microbial processes, 
thereby limiting the confidence in Earth System Models projec-
tions (Bradford et al., 2016). Indeed, despite hundreds of studies 
on the topic, it remains unknown whether increasing temperatures 
will result in global soil C stocks losses and enhance the rate of 
global warming via a self-reinforcing positive feedback loop, or on 
the contrary, whether it will result in global soil C increases leading 
to self-attenuating negative feedback loop (Bradford et al., 2016; 
van Gestel et al., 2018).

Evidence from short-term studies of the exponential increase of 
microbial decomposition of SOM with temperature is used in models 
that predict the rate of increase in atmospheric CO2 concentration 
and the consequent effects on climate change (Friedlingstein et al., 
2006; Kirschbaum, 2006). However, this increase can be short-lived, 
with decomposition rates often, but not always (Carey et al., 2016; 
Hartley et al., 2008) returning to pre-warming levels when warming 
is sustained for several years (Luo et al., 2001; Melillo et al., 2002, 
2017). Understanding the mechanisms underlying the temporal dy-
namics of the temperature response of SOM decomposition is crit-
ical for improving predictions of future climate, but they remain the 
subject of scientific debate.

Two non-mutually exclusive mechanisms have been proposed to 
explain shifts in microbial decomposition of SOM rates over time 
during sustained warming: (1) microbial thermal adaptation (there-
after simply referred to as thermal adaptation; Bradford, 2013), that 
is, a shift in the physiology of microbial decomposers observable at 
the community scale leading to a decrease in the relative tempera-
ture sensitivity of decomposition (the proportional change in de-
composition rate per unit temperature) and (2) substrate depletion 
(Kirschbaum, 2004). It is well established that substrate depletion 
can attenuate the response of microbial decomposition to tempera-
ture by increasing constraints on microbial access to substrates 
(Davidson & Janssens, 2006; Kirschbaum, 2013; Moinet et al., 2018, 
2020). In contrast, the role of thermal adaptation in explaining tem-
poral dynamics of SOM decomposition undergoing long-term warm-
ing remains unknown. Thermal adaptation is supported theoretically 

by the evolutionary trade-offs between enzyme structure and 
function such that enzymes benefit from a rigid structure (inflex-
ible) at higher temperature to increase substrate–enzyme affinity 
(Bradford, 2013). Therefore, warming should select for microbial 
communities with relatively high proportions of microbial taxa that 
produce warm-adapted, rigid enzymes, counteracting the positive 
effect of increasing temperature on reaction rates (Bradford, 2013; 
Hochachka & Somero, 2002). This has recently been identified as 
the ‘enzyme rigidity hypothesis’ (Alster et al., 2020). However, em-
pirical evidence does not point to a consistent conclusion. Indeed, 
recent observations supporting thermal adaptation in conditions of 
unlimited substrate supply (Bradford et al., 2019; Dacal et al., 2019) 
contrast with earlier observations of increased sensitivity (Auffret 
et al., 2016; Karhu et al., 2014) or no change in sensitivity (Walker 
et al., 2018) during long-term warming.

Most studies that have attempted to describe the temperature 
response of soil microbial decomposition have used the Arrhenius 
model, or empirical modifications of it that improve the fit to SOM 
decomposition data (Alster et al., 2020). It is increasingly clear that 
these models are not well-suited to describe the microbial decom-
position of SOM (and other biological processes), for several well-
documented reasons (Davidson & Janssens, 2006; Schipper et al., 
2014; Tang & Riley, 2015). For example, a major constraint of these 
models is that they do not include a maximum or inflection point be-
yond which respiration rates decline. More recently, the macromo-
lecular rate theory (MMRT) has been successfully applied to a range 
of soil microbial processes (Alster et al., 2018; Numa et al., 2021; 
Robinson et al., 2020; Schipper et al., 2014, 2019) and is known to 
account for the limitations of the Arrhenius-derived models by in-
corporating enzymatic behaviour using thermodynamics (Hobbs 
et al., 2013; Prentice et al., 2020). Parameters derived from MMRT 
at the microbial community scale reflect the sum of activities of in-
dividual microbes and enzymes and can be considered as traits of 
microbial communities (Alster et al., 2016, 2018). MMRT, therefore, 
offers a unique opportunity to address hypotheses related to ther-
mal adaptation using intrinsic characteristics of the microbial com-
munity (Alster et al., 2020). In particular, shifts in Topt, the optimum 
temperature at which decomposition rates are highest and ΔC‡

P
, the 

change in heat capacity that regulates the steepness of the tem-
perature response, were recently hypothesized to explain long-term 
trends in the temperature response in line with enzymatic theory 
(Alster et al., 2020).

In this study, we apply MMRT to describe the temperature re-
sponse of microbial decomposition in a natural long-term warming 

soil microbial processes in the long-term effects of climate warming on soil carbon 
dynamics and will help increase confidence in carbon-climate feedback projections.
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experiment using measurements along a gradient in a geothermally 
active area of the Taupō Volcanic Zone, New Zealand. Our objec-
tive was to test whether microbial communities adapt to long-term 
warming with a shift in their temperature response consistent with 
the ‘enzyme rigidity hypothesis’. The choice of natural geothermal 
gradients as an experimental setup allowed us to study the effect 
of long-term warming, in the field, with a minimum of confounding 
factors (O'Gorman et al., 2014).

We sampled soils along transects in three locations of increasing 
distance from a geothermally active area defining a thermal envi-
ronment treatment. We established the transects in two biomes (a 
shrubland and a grassland) and soils were sampled at two depths to 
ensure the temperature varied independently of soil C concentra-
tion. The sampling strategy resulted in a full factorial design (3 ther-
mal environments × 2 biomes × 2 depths), replicated three times, 
allowing us to disentangle the effects of substrate supply (as approx-
imated from C concentration) from those of long-term warming on 
the temperature response of microbial decomposition of SOM. For 
all treatment, metabarcoding was used to characterize the composi-
tion of microbial communities. Our specific objectives were to test 
the following hypotheses: (i) warming selects for microbial commu-
nities with distinct composition characterized by increasing relative 
abundance of thermophile and thermotolerant organisms and (ii) 
these communities have adapted to their environmental tempera-
ture in such a way that they have a higher Topt and a flatter tempera-
ture response (less negative ΔC‡

P
), in accordance with the ‘enzyme 

rigidity hypothesis’ (Alster et al., 2020; Arcus et al., 2016), leading to 
a lower relative temperature sensitivity.

2  |  MATERIAL S AND METHODS

2.1  |  Site description

The study site was located east of the town of Taupō (38°41.340ʹS, 
176°7.151ʹE, 475  m  a.s.l.), within the Wairakei-Tauhara geother-
mal field, which is part of the geothermally active Taupō Volcanic 
Zone, North Island, New Zealand. The local geothermal surface 
features consist of a discontinuous ring of steam-heated ground, 
with steam vents and fumaroles in bare soil depressions, each 
about 10 m wide, 2 m deep and 80–200 m long, enclosing an area 
of about 80 ha. Hereafter, these geothermal features are referred 
to as heated depressions. These features are at least 1820 years 
old (Cody, 2007).

The immature orthic pumice sandy-loam soil (Typic Udivitrand) 
is deep and well drained with a very shallow A horizon. The main 
vegetation is grazed grassland dominated by grasses of the genus 
Paspalum (Poaceae). However, the edges of the steam-heated de-
pressions are often dominated by prostate kānuka, Kunzea tenui-
caulis de Lange (Myrtaceae), an endemic shrub up to 2 m tall, with 
a natural range restricted to the geothermally active areas in the 
Central Volcanic Field (North Island) and it forms a well-constrained, 
microhabitat zone of 5–25 m wide (Nishar et al., 2017).

2.2  |  Experimental design

In early August 2018, transects were established at six thermal gradi-
ents perpendicular to the steam-heated depressions. Three transects 
were dominated by kānuka and three by grassland ecosystems. Three 
distances along each thermal gradient, near the heat source (ca. 2 m 
from the heated depression), at an intermediate distance (ca. 10 m) and 
in an area assumed to be unaffected by ground heating (ca. 30 m) de-
fined three thermal environment treatments, hereafter referred to by 
their distance to the heated depressions (2, 10 and 30 m). At each sam-
ple point, two temperature sensors with dataloggers were installed into 
the soil, one at a depth of 50 mm and measuring at 2 hourly intervals 
(Hobo MX2201; Onset Computer Corp.) and one at a depth of 100 mm 
and measuring at 6 hourly intervals (Thermochron iButton DS1921G; 
Maxim Integrated). This setup defined 36 sampling points following a 
full factorial design across three replicates (transects) with three dis-
tances from the heated depression (defining different thermal environ-
ments; 2, 10 and 30 m), two biomes and two depths (Figure S1).

All dataloggers were collected 4 months after installation follow-
ing soil sampling, and the data were used to characterize the thermal 
environment at each sampling point. The average soil temperature 
over the 4 months of measurements at each sampling point is re-
ferred to as mean environmental temperature (MET).

2.3  |  Soil sampling

In November 2018 (early spring), approximately 500  g of bulk soil 
was collected from each of the 36 sampling points for soil respira-
tion measurements, placed in a sealed bag and stored in an insulated 
container until it was placed in a refrigerator at 4°C at the end of each 
sampling day. Three additional cores were sampled at each sampling 
point to characterize microbial (bacterial and fungal) communities. 
These samples were collected using sterilized PVC cylinder cores 
(50 mm diameter, 150 mm height) hammered into the soil to a depth 
of 120 mm. After collection, the cylinder was cut open length-wise in 
the field using a fine Dremel® saw and surface soil was removed using 
a sterile spatula. Soil was sampled at 0–50 and 50–100 mm depths, 
representing two distinct horizons comprising the dark coloured 
humus-rich top soil and the subsurface mineral-rich fraction. Then, 
0.5 g of each sample was transferred to sterile tubes (MN Bead Tubes 
Type A from the MN Nucleospin 96 soil kit [MN740787.4; Machery 
Nagel GmbH & Co.]) and kept on ice in the field, followed by storage 
at −20°C until DNA extraction was undertaken.

Soil volumetric water content (Ws) was measured at each loca-
tion using a portable sensor (ML3; Delta-T Devices Ltd.) on each day 
of sampling.

2.4  |  Laboratory measurements of soil respiration

All soils were taken to the laboratory and the fresh samples 
were sieved at 2  mm and stored at 4°C for 10  days, after which 
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measurements of soil respiration rates (Rs; a proxy for microbial 
decomposition of SOM) were made. A subsample was taken for 
measurement of carbon (C) and nitrogen (N) concentration using a 
CN analyser (Model TruMAc; LECO Corporation). pH was measured 
after the soil samples were shaken in distilled water (2 soil:5 water 
mass/volume).

Each soil sample was subdivided into 22 subsamples placed in 
separate septum-sealed 12  ml Exetainer® vials (Labco) for mea-
surements of Rs at 22 different incubation temperatures (approx-
imately 4–48°C with 2°C increments). The exetainers containing 
the soil samples were placed in temperature-controlled polystyrene 
boxes (36 vials per box). Two fine thermocouples (Type T; Omega 
Engineering Ltd.) were installed in each box, one in a mock vial with 
spare soil from the field sampling site, and one attached to a heating 
pad placed at the bottom of the box. The control of the box tem-
perature (±0.5°C) to a predetermined setpoint was carried out using 
a datalogger (CR1000; Campbell Scientific). The datalogger also re-
corded the average temperature of the soil samples at 15  min in-
tervals. Boxes with target incubation temperatures lower than 25°C 
were placed in a growth chamber with an ambient temperature ad-
justed to within 1°C of the box target temperature. Boxes with target 
temperatures higher than 25°C were kept in the laboratory, except 
for the boxes with target temperatures of 46 and 48°C, which were 
placed in an oven with temperature set at 40°C.

For measurements of Rs, all samples were placed in their respec-
tive temperature-controlled boxes for approximately 2 h, until soil 
temperatures reached their target values. Measurements of Rs were 
then made sequentially for each box (all samples in each box at the 
same time) by removing the exetainers, sealing the vial by closing 
the rubber septum and then measuring the CO2 concentration in the 
headspace at time 0. The exetainers were then replaced in the box 
at the target temperature, and the soils incubated for a sufficient 
time to produce a measurable change in headspace CO2. Finally, 
headspace CO2 concentrations were measured again. The CO2 con-
centration was determined by injection of 0.5 ml of headspace gas 
into a continuous flow of CO2-free air passing through a calibrated 
infra-red gas analyser (LI-7500; LI-COR).

Samples held at lower temperatures needed longer incubation 
times than those at warmer temperatures to produce a similar suffi-
cient increase in CO2 concentration. To minimize differences in the 
incubation times, we varied the mass of the soil subsample such that 
4 g (equivalent dry mass) was used for target incubation tempera-
tures lower than 20°C, 3 g for target temperatures of 20–30°C, 2 g 
for target temperatures of 30–38°C and 1 g for target temperatures 
higher than 38°C. Robinson et al. (2017) observed linear increase in 
CO2 concentrations for soil incubations up to 6  h. The incubation 
times in our study varied between 52 and 169 min and we assumed 
linearity for all measurements. All 1584 measurements of CO2 con-
centrations were made within 1 day. Values of Rs were calculated by 
subtracting the initial CO2 concentration in the tube from the con-
centration at the end of the incubation, using the vial gas volume 
to convert from measured CO2 concentration to moles of CO2 and 
dividing by the mass of oven-dried soil and the incubation time.

2.5  |  DNA extraction, PCR amplification and 
amplicon sequencing

Total genomic DNA was extracted from soil samples using the MN 
kit nucleospin soil 96 kit as per the manufacturer's instructions with 
the following modifications. Soil was mixed with the SL1 buffer and 
SX enhancer and incubated in an orbital mixer incubator (Ratek) at 
+65°C, 4 g for 20 min. Samples were homogenized for 2 × 10 min 
at 30 Hz in a TissueLyser II Beadmill (Qiagen). The remaining DNA 
extraction steps were performed on a Janus® G3 MDT (PerkinElmer) 
robotic workstation, with the resulting DNA suspended in 100 µl of 
SE buffer and then stored at −20°C. DNA quality and quantity were 
assessed with a spectrometer (NanoDrop 2000; Thermo Fisher 
Scientific) to ensure successful extraction.

To assess microbial community identity and structure, we am-
plified the hyper-variable V4 region of the bacterial 16S rRNA gene 
(515f/806r primer pair; Caporaso et al., 2011) and the fungal ITS1 
gene (ITS1-KYOF/ITS2-KYO2 primer pair; Toju et al., 2012), as de-
scribed in Toju et al. (2018). We coamplified both 16S and ITS1 re-
gions in a duplex polymerase chain reaction (PCR) (Tanneal = 50°C), 
using 400 nM of each primer pair in a Kapa3G Plant PCR kit that 
contains High-Fidelity Taq polymerase (Kapa Biosystems). For each 
amplification, we employed the Nex-F fusion primer strategy, which 
included 3–6 mer N-spacers to increase base-diversity (Lundberg 
et al., 2013), linker sequences to attach forward and reverse 8-mer 
dual index tags and illumina sequencing adaptor addition in a sec-
ond amplification step. In addition to soil samples, extraction and 
PCR negative controls, and synthetic Synmock communities (Palmer 
et al., 2018) were included as controls in library formation. All am-
plified products were normalized, purified and size-selected using 
Sera-Mag speed beads (Sigma-Aldrich) as described in Dhami et al. 
(2018), quantified using Qubit (dsDNA HS Assay Kit; Invitrogen) and 
pooled equimolar to form amplicon libraries. The libraries were as-
sessed for amplicon size distribution and quantified using a LabChip® 
GX TouchTM Nucleic Acid Analyzer (PerkinElmer) and Qubit® 2.0 
Fluorometer (Invitrogen), diluted to 4  nM, and sequenced using a 
10% PhiX spike-in and the Illumina dye sequencing technique on 
a MiSeq 3000 system (Illumnia Inc.) at the University of Auckland 
Genomics Facility (2 × 250 cycle sequencing kit).

2.6  |  Soil respiration responses to temperature

Soil respiration at the different temperatures was fitted using MMRT 
(Equation 1) for each of 35 sampling points (one of the soil samples 
from the kānuka biome did not release any CO2 from any of the incu-
bation temperatures and was discarded from the analysis):

where R is the universal gas constant, T is the measurement tempera-
ture in K and T0 is a reference temperature (25°C, 298 K), h is Planck's 

(1)

ln(Rs) = ln

[
kBT

h

]
−

ΔH
‡

T0
+ ΔC

‡

P
(T − T0)

RT
+

ΔS
‡

T0
+ ΔC

‡

P

(
ln(T) − ln(T)

)

R
,
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constant, and kB is Boltzmann's constant. The three parameters are 
ΔC

‡

P
, the change in heat capacity between the enzyme–substrate com-

plex and the enzyme transition state complex; ΔH‡

T0
, the change in en-

thalpy; and ΔS‡
T0

 the change in entropy between the enzyme–substrate 
complex and the enzyme transition state complex at T0.

From these parameters, we calculated the temperature optimum 
(Topt; Equation 2) and the temperature at which the sensitivity of soil 
respiration was greatest (Tinf, the inflection point; Equation 3). In 
addition, we estimated the rate of soil respiration at the reference 
temperature 25°C (R25) following Liáng et al. (2018) (Equation 4).

where ΔG‡

T0
= ΔH

‡

T0
− T0ΔS

‡

T0
.

We also fitted the temperature response of R using the Lloyd and 
Taylor (1994) equation.

where R10 is a basal respiration rate at 10°C, and E0 is related to the 
temperature sensitivity of the decomposition of SOM.

The temperature sensitivity can be calculated in absolute terms 
(the absolute amount of change in the decomposition rate per unit 
change in temperature) as the first derivative of the model describ-
ing Rs relative to temperature (dRs/dT). Alternatively, the sensitivity 
can be calculated in relative terms (the proportional change in de-
composition rate per unit temperature) as the first derivative relative 
to temperature divided by the reaction rate (dRs/Rs dT; Sierra, 2012). 
The relative sensitivity is therefore relative to the decomposition 
rate itself and is not influenced by the size of the substrate pool (the 
total amount of carbon) while the absolute temperature sensitivity 
does depend on the substrate pool size (Sierra, 2012). It is important 
to emphasize that only measures of the relative temperature sensi-
tivity can be used to interpret changes specific to the physiology of 
the microbial community.

To compare estimates of relative temperature sensitivities from 
both models, we derived values of Q10 for each of the 35 curves from 
both MMRT following Schipper et al. (2014) (Equation 6) and Lloyd 
& Taylor following Moinet & Millard (2020); Equation 7). Q10 is by far 
the most common estimator of relative temperature sensitivity, and 
we preferred this to the estimator used by Sierra (2012) (dRs/Rs dT) 
for comparison with other studies.

where ΔH‡ = ΔH
‡

T0
+ ΔC

‡

P
(T − T0).

2.7  |  Statistical analysis

All analyses were conducted in R version 3.4.2 (R Core Team, 2017).
We assessed and compared performances of the MMRT and 

Lloyd & Taylor models to describe the data by calculating and com-
paring their respective corrected Akaike's information criterion 
(AICc), the model with lower AICc value being a better fit. Since 
MMRT provided a better fit in all cases, further analyses were per-
formed mainly on MMRT parameters.

We then conducted two further sets of analyses. The first set 
aimed at describing the differences in environmental variables (MET, 
Ws, C concentration, N concentration, C:N ratio, and pH), estimated 
MMRT parameters (ΔH‡

T0
, ΔC‡

P
, Topt, Tinf and R25) and microbial com-

munity composition across the combination of the three treatments 
depth, biome and distance from the heated depression. We assessed 
the effects of the different treatments on environmental variables 
and MMRT parameters using three-way ANOVA. The statistical 
analyses used to assess differences in microbial community compo-
sition between the treatments are described in the following section.

The second set of analyses aimed at describing the influence 
of environmental variables on the MMRT parameters across treat-
ments. The treatments resulted in a set of environmental conditions 
in which environmental temperature (MET), Ws and C concentration 
varied independently, but in which C:N ratio, N concentration and 
C concentration were strongly positively correlated between them, 
and pH was strongly negatively correlated with MET. We assessed 
the effects of environmental variables on the estimated MMRT pa-
rameters, as well as Lloyd & Taylor's parameter E0, using a backwards 
stepwise regression approach (Zuur et al., 2009). For each parameter 
separately, the estimate from the fits for each of the 35 curves was 
treated as a sample. Due to the correlations between variables de-
scribed above, pH, N concentration and C:N were excluded from the 
full model. The full linear models included only the triple-way inter-
action between MET, Ws and C concentration. Non-significant inter-
actions and variables were dropped sequentially based on ANOVA 
conducted on the fitted models. We tested for the significance of 
including the transects as random effects using linear mixed effect 
modelling (with the ‘nlme’ package, Pinheiro et al., 2017) to account 
for potential autocorrelation due to the spatial structure of the de-
sign. To do so, we fitted the full models with and without random 
effect and compared the fit using AICc. Including random effects did 
not improve the fit, and so the backwards stepwise regressions were 
conducted on the simple linear models.

(2)Topt =
ΔH

‡

T0
− ΔC

‡

P
T0
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‡

P
− R

,

(3)Tinf =
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‡

P
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‡

P
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√
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P
R

,
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�
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h

�
−
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,
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(
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(
1
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1

T − 227.1
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,
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⎛
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P

�
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(
10E0

(T−227.1)2

)
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2.8  |  Statistical analyses of microbial community 
composition and structure

The Illumina sequenced data (GenBank BioProject Accession num-
ber: PRJNA762549) were processed through a bespoke metabar-
coding bioinformatics pipeline developed for demultiplexing and 
analysing environmental microbial communities (Toju et al., 2018). 
Details are provided in the Methods S1.

The resulting sample × OTU (operational taxonomic unit) matrix 
was populated with sample metadata and OTU taxonomic classi-
fication and processed through statistical analyses of community 
composition using the R package ‘phyloseq’ (McMurdie & Holmes, 
2013) as follows. Rarefied bacterial and fungal data (n = 100 and 
50, respectively) were used to calculate OTU alpha diversity and 
richness metrics. To analyse the differences in community com-
position with treatments, we performed ordination analyses using 
the Bray–Curtis distance matrix and a non-metric multidimen-
sional scaling method across three dimensions (method = ‘NMDS’, 
trymax  =  100, k  =  3). We used PERMANOVA using the ‘adonis’ 
function of the vegan package (Oksanen et al., 2013) to determine 
the differences in microbial community composition due to biome, 
depth and thermal environment treatments. We tested the satis-
faction of PERMANOVA assumptions using Levene's permutation 
test for homogeneity of multivariate dispersions (Anderson et al., 
2006) and found that within-group variation was non-significant 
in each pairwise comparison among all communities (except fungi 
in kānuka, where small sample numbers led to significant skew in 
within-group dispersion).

To assess variance in the taxonomic composition of bacterial and 
fungal communities across the different thermal environments (dis-
tance from geothermal depression, Di) in each biome, we converted 
OTU counts to relative abundances and summarized the shifts for 
dominant taxa (top 10 most prevalent genera in each biome). We 
scanned the literature for information on these taxa to identify ther-
mophilic and thermotolerant taxa (see Section 3).

3  |  RESULTS

3.1  |  Treatments and environmental variables

The changes in environmental variables for the different treatments 
(depth, biome and distance from the heated depression), and the re-
sults from ANOVA, are presented in Table 1. There were no statis-
tically significant differences in soil volumetric water content (Ws) 
among the treatments. MET decreased, as anticipated, with increas-
ing distance from the active heated depression at the site but also 
varied with biome and depth. MET was higher in the kānuka biome 
than in the grassland. The treatments resulted in a range of MET of 
more than 31°C, from 16.9 ± 0.8°C in grassland topsoils (0–50 mm) 
sampled at 30 m (furthest distance from the heated depression), to 
48.3 ± 5.1°C in kānuka soils sampled at the 50–100 mm depth at 2 m 
(closest distance from the heated depression).

pH was also significantly affected by all three treatments, but the 
differences were strongest between biomes (Table 1) with a lower 
pH in the kānuka biomes. C concentrations changed significantly 

TA B L E  1  Three-way ANOVAs on environmental variables measured at the different distances from the geothermally active depression 
(distance, Di) in kānuka and grassland biomes (B) and at the two sampling depths (0–50 and 50–100 mm, De). MET, mean environmental 
temperature, is the soil temperature at each sampling point for averaged over the 4 months prior to sampling; Ws, soil volumetric water 
content, was measured just prior to sampling. Values are mean ± SEs (n = 3)

Biome (B) Depth (De)
Distance 
(Di) MET (°C) Ws (m

3 m−3) pH C (%) N (%) C:N

Grassland 0–50 mm 2 m 24.2 ± 1.7 0.35 ± 0.09 4.1 ± 0.1 15.1 ± 4.8 0.89 ± 0.16 16.0 ± 2.5

10 m 20.9 ± 1.5 0.31 ± 0.09 4.5 ± 0.1 8.3 ± 1.6 0.64 ± 0.12 13.0 ± 0.0

30 m 16.9 ± 0.8 0.42 ± 0.08 4.8 ± 0.1 9.8 ± 2.5 0.78 ± 0.21 12.3 ± 0.3

50–100 mm 2 m 31.6 ± 2.8 0.35 ± 0.07 4.5 ± 0.1 5.0 ± 1.3 0.37 ± 0.09 13.0 ± 0.6

10 m 24.7 ± 2.4 0.30 ± 0.11 4.7 ± 0.1 3.8 ± 1.8 0.29 ± 0.12 12.7 ± 0.7

30 m 19.6 ± 0.8 0.20 ± 0.02 4.9 ± 0.1 4.1 ± 1.3 0.29 ± 0.10 15.0 ± 1.0

Kānuka 0–50 mm 2 m 35.8 ± 0.3 0.28 ± 0.05 3.1 ± 0.1 6.3 ± 1.3 0.26 ± 0.04 23.7 ± 1.8

10 m 30.8 ± 0.7 0.38 ± 0.07 3.1 ± 0.2 27.9 ± 8.7 0.98 ± 0.10 27.0 ± 5.5

30 m 21.8 ± 0.2 0.40 ± 0.03 3.5 ± 0.4 32.3 ± 5.6 1.45 ± 0.12 22.7 ± 5.2

50–100 mm 2 m 48.3 ± 5.1 0.29 ± 0.01 3.4 ± 0.1 1.2 ± 0.1 0.07 ± 0.01 18.5 ± 1.5

10 m 38.8 ± 1.3 0.34 ± 0.05 3.1 ± 0.2 8.4 ± 4.0 0.33 ± 0.1 23.0 ± 3.5

30 m 27.8 ± 0.5 0.21 ± 0.01 4.2 ± 0.4 6.6 ± 2.3 0.42 ± 0.13 14.7 ± 2.2

Significant terms B, De, Di None B, De, Di B, De De, Di B

Significant interactions B*Di None None B*De, B*Di B*Di None

p-value <.0001 n.s. <.0001 <.0001 <.0001 <.01

R2 .89 .1 .83 .67 .72 .49
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with sampling depth (with mean C of 16.6 ± 2.9% and 5.1 ± 0.9% 
for 0–50 and 50–100 mm depth, respectively) but also with biome 
(with mean C of 14.5 ± 3.4% and 7.7 ± 1.3% for kānuka and grass-
land, respectively). N concentrations also decreased with increasing 
depth (mean N of 0.83 ± 0.10% and 0.31 ± 0.04% for 0–50 and 50–
100 mm depth, respectively) and were affected by the interaction 
between Biome and Distance from heated depression treatments. 
The C:N ratio changed significantly only with biome, being much 
lower in grassland (13.7 ± 0.5) than for kānuka (21.8 ± 1.6).

Mean environmental temperature was correlated with both pH 
and C:N ratio, but not with the other variables. As a result, overall, 
the combination of treatments resulted in a range of environments 
characterized by differences not only in environmental tempera-
tures (MET) but also in pH and C:N ratio.

3.2  |  Treatments and microbial communities

The bacterial and fungal community compositions were different 
for the kānuka and grassland biomes (Figure S2; Bacteria: F = 6.885, 
R2 = .067, p = .001; Fungi: F = 7.1603, R2 = .123, p = .001). Moreover, 
within each biome, the microbial community composition differed 
significantly across distances from the heated depression (Figure 1; 
Bacteria: F = 2.604, R2 = .108, p = .001 for grassland and F = 5.569, 
R2 = .188, p = .001 for kānuka; Fungi: F = 2.793, R2 = .259, p = .001 
for grassland and F = 4.522, R2 = .226, p = .001 for kānuka).

The genera dominating the fungal and bacterial communities 
from grassland and kānuka biomes are presented in Figure S3. 
Grassland soil fungal communities were dominated by Penicillium 
sp., a versatile fungi regularly isolated from geothermally active sites 
(Redman et al., 1999). Kānuka soil fungal communities were dom-
inated by Pisolithus sp., a geothermal specialist and ectomychor-
rhizal associate of prostate kānuka (Moyersoen & Beever, 2004). 
For bacteria, grassland soils were dominated by mesophilic bacte-
ria such as Conexibacter, Gp1, Gp3, thermotolerant Rhodoplanes, 
thermophilic Ktedonobacter, lithotrophic WPS-2 bacteria as well as 
ammonia-oxidizing archaea Nitrosphaera (Hiraishi, 2017; Komaki 
et al., 2016; Sheremet et al., 2020; Tourna et al., 2011). In addition 
to some of the species dominating grassland soils, kānuka soils 
hosted acidophilic and psychrotolerant Acidisoma (Belova et al., 
2009) and, methanogenic archaea Methanomassilicoccus (Kröninger 
et al., 2017), as well as three unique thermophiles: Syntrophothermus, 
Thermogymnomonas and Thermosphaera.

Shifts in the relative proportions of the taxa with the differ-
ent distances from the heated depression (shown in Figure S4 for 
bacterial communities and Figure S5 for fungal communities) were 
observed, with some genera increasing and others decreasing, 
but overall showing an increasing relative abundance of thermo-
philes with decreasing distance (increasing MET) from the heated 
depression, particularly for kānuka. The relative abundances of 
the three kānuka bacterial thermophile species (Syntrophothermus, 
Thermogymnomonas and Thermosphaera) increased with decreasing 
distance from the heated depression (increasing MET). In grassland 

soils, Penicillium was dominant for the 2 and 30  m distances, but 
not the 10  m distance with intermediate MET, where psychrotol-
erant yeast Solicoccozyma (Stosiek et al., 2019), and moulds known 
for heat-resistant spores (Aspergillus and Talaromyces sp.; Sørhaug, 
2011) were found. In the fungal community of the kānuka biome, 
the dominant thermophilic Pisolithus sp. increased in relative abun-
dance with decreasing distance from the heated depression. At the 
30 m distance for the kānuka soils, Penicillium and other mesophilic 
species such as Mortierella, Descole and Leptodontidium were able to 
persist, but with their relative abundances lower than for the 2 m 
distance.

3.3  |  Treatments and fitted MMRT parameters

Macromolecular rate theory (Equation 1) provided a better fit to the 
data (lower AICc) than the Lloyd & Taylor model (Equation 5) with 
differences in AICc all larger than 49. The changes in the MMRT pa-
rameters ΔH‡

T0
, ΔC‡

P
, Topt, Tinf and R25 with the different treatments, 

as well as results from ANOVA, are presented in Table 2 and are 
described below. The changes in the Lloyd & Taylor parameters R10 
and E0 are presented in Table S1.

ΔC
‡

P
 varied significantly with biome (mean ± SE, n = 18, −2.5 ± 0.4 

and −1.6 ± 0.1 kJ mol−1 K−1 for grassland and kānuka, respectively) 
and depth (n = 18, −1.6 ± 0.2 and −2.5 ± 0.4 kJ mol−1 K−1 for 0–50 
and 50–100  mm depths, respectively) but not with distance from 
the heated depression, and with no significant interactions between 
treatments (Table 2). For all other parameters, significant interac-
tions were found between different combinations of biome, distance 
from the heated depression and depth treatments (Table 2). Despite 
a clear increase in MET with decreasing distance from the heated 
depression along each transect (Table 1), distance from the heated 
depression did not influence any of these variables (except R25) in a 
consistent manner, with mean values being sometimes higher, lower 
or intermediate for the warmer treatment depending on which 
combination of biome and depth treatments is considered. R25 in-
creased from 2 to 10 to 30 m from the heated for all cases except 
for the grassland biome at the 50–100 mm depth (Table 2). Overall, 
estimates for Topt ranged above the measurement temperatures, 
with a mean ± SE (n = 3) minimum of 49.8 ± 9.6°C in the grassland 
biome at 10 m from the heated depression and 50–100 mm depth 
and a maximum of 103.1 ± 12.1°C in the kānuka biome at 30 m and 
0–50 mm depth (Table 2). The depth treatment affected all param-
eters (Table 2).

As a result of the parameter variations, the temperature re-
sponses of Rs at the different distances from the heated depres-
sion appeared to be different for grassland and particularly kānuka 
(which also showed greater variation in MET; Figure 2a,b). This was 
the case mainly for the magnitude (regarding the absolute values of 
Rs at the measurement temperatures, informed by R25 and ΔH‡

T0
), but 

not for the relative temperature sensitivity (the relative change in 
Rs per unit increase in measurement temperature, informed by ΔC‡

P
 

and Q10) nor for the temperature optimum (Topt) and temperature 
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at the highest sensitivity (Tinf). Similarly to the Q10 calculated from 
MMRT (Figure 2c,d), the Q10 derived from the Lloyd & Taylor model 
(Equation 7) showed little differences in relation to the distances 
from the heated depression or between biomes, except for the kā-
nuka biome at 2 m which appeared lower than for the other treat-
ments (Figure S6).

3.4  |  Influence of environmental variables on 
MMRT parameters

Differences in all the MMRT parameters could be attributed to dif-
ferences in C concentration and this alone explained 28%, 10%, 
46%, 53% and 44% of the variability in ΔH‡

T0
, ΔC‡

P
, Topt, Tinf and R25, 

respectively.
ΔH

‡

T0
 increased significantly with C concentration (F1,31 = 12.1, 

p < .01) and decreased with MET (F1,31 = 6.0, p = .02). Only MET and 

C concentration influenced ΔH‡

T0
 significantly, with no interaction, 

and explained 35% of the variability. Topt was affected significantly 
only by C concentration (Figure 3a), showing a positive effect with a 
slope estimate of 1.3 ± 0.2°C %C−1 (F1,31 = 26.4, p < .0001) with no 
effect of MET (Figure 3b; with a slope estimate of −0.4 ± 0.4°C °C−1, 
F1,31 = 1.8, p =  .2). This was also the case for ΔC‡

P
 and Tinf, which 

both increased with C concentration (F1,31 = 4.6, p = .04 for ΔC‡

P
 and 

F1,31 = 34.4, p < .0001 for Tinf) and did not vary with MET (F1,31 = 0.4, 
p  =  .5 for ΔC‡

P
 and F1,31  =  3.9, p  =  .06 for Tinf). Similar to ΔC‡

P
, E0, 

the parameter in the Lloyd & Taylor model related to relative tem-
perature sensitivity, increased with C concentration (F1,31  =  19.5, 
p <  .0001) but was not significantly affected by MET (F1,31 = 3.4, 
p = .07).

R25 was significantly affected by a combination of C concentra-
tion (which explained most variation with a strong positive effect), 
Ws (positive effect) and MET (positive effect, despite lower mean 
values at 2 m than at 30 m from the heated depression) (Figure 4). 
The triple interaction was not significant, but two-way interactions 
were significant between C concentration and MET (F1,31  =  6.1, 
p = .02), C concentration and Ws (F1,31 = 5.3, p = .03) and MET and 
Ws (F1,31  =  5.0, p  <  .03). R25 was the only parameter significantly 
affected by Ws.

4  |  DISCUSSION

We characterized the temperature response of microbial decom-
position of SOM (using MMRT) and the composition of microbial 
communities (using metabarcoding) from soils sampled at increasing 
distances from a geothermally heated depression in two biomes and 
at two sampling depths. The sampling design resulted in a range of 
thermal environments varying widely in soil temperature and soil C 
concentration, but also in pH, N concentrations and soil C:N ratios. C 
concentration and MET varied independently across the treatments 
so that it was possible to assess the interacting effects of those two 
variables on the temperature response parameters. In support of our 
first hypothesis, we found that the different thermal environments 
were hosting microbial communities with distinct compositions, 
with thermophilic and thermotolerant genera decreasing in relative 
abundance with increasing distances from the heated depression 
(and increasing MET). However, MET had no detectable influence 
on the MMRT parameters influencing the relative temperature sen-
sitivity (ΔC‡

P
 and ΔH‡

T0
, Equation 6), leading to similar Q10 values along 

the transects of decreasing MET. Similarly, Topt was not influenced 
by MET. We must therefore reject our second hypothesis that the 
microbial communities would have adapted to their environmental 
temperature leading to a lower relative temperature sensitivity of 
SOM decomposition. Interestingly, C concentration was positively 
correlated with the rate of respiration at a standard temperature of 
25°C (R25) and ΔH‡

T0
, determining the magnitude of the change in Rs. 

This occurred concurrently, with C concentration being positively 
correlated with Topt and ΔC‡

P
, albeit only marginally for the latter 

(10% of the variance explained, against 46% for Topt).

F I G U R E  1  Microbial community composition shifts with 
temperature as a factor of distance from the geothermal-heated 
depression. Non-parametric multidimensional scaling (MDS) 
plots visualize the differences in bacterial (panels a and b) and 
fungal (panels c and d) community composition across the two 
biomes (grassland and kānuka) represented against the first two 
dimensions (MDS axes 1 and 2). The communities are strongly 
clustered within the 95% confidence ellipses across the distances 
(Di), with overlaps indicating compositional similarity and non-
overlaps indicating compositional dissimilarity. In each panel, 
the greatest dissimilarity is observed between the communities 
derived from the soils in the warmest (2 m distant from the heated 
depression) and coolest (30 m) locations [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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TA B L E  2  Three-way ANOVAs on fitted macromolecular rate theory parameters measured at the different distances from the 
geothermal-heated depression (distance, Di) in kānuka and grassland biomes (B) and at the two sampling depths (0–50 and 50–100 mm, De). 
Values are mean ± SEs (n = 3)

Biome (B) Depth (De)
Distance 
(Di)

𝚫H
‡

T0(kJ mol−1)
𝚫C

‡

P

(kJ mol−1 K−1) Tinf (°C) Topt (°C)
R25 
(µmol CO2 g soil−1 min−1)

Grassland 0–50 mm 2 m 73.4 ± 3.2 −1.4 ± 0.2 54.2 ± 3.9 82.4 ± 6.6 23.9 ± 6.4

10 m 65.8 ± 6.6 −2.6 ± 0.4 34.9 ± 4.6 54.0 ± 6.6 23.8 ± 7.2

30 m 68.5 ± 2.3 −1.3 ± 0.1 53.6 ± 6.3 82.5 ± 8.7 40.8 ± 8.9

50–100 mm 2 m 71.0 ± 4.1 −2.9 ± 0.3 33.7 ± 2.8 51.3 ± 3.8 12.8 ± 1.4

10 m 60.0 ± 3.9 −3.2 ± 0.9 31.6 ± 5.4 49.8 ± 9.6 9.4 ± 3.1

30 m 49.7 ± 9.8 −3.4 ± 1.7 32.2 ± 6.5 51.5 ± 10.9 8.3 ± 0.7

Kānuka 0–50 mm 2 m 65.8 ± 2.1 −1.9 ± 0.4 41.9 ± 6.4 65.4 ± 9.7 16.8 ± 4.7

10 m 75.1 ± 1.7 −1.3 ± 0.2 57.8 ± 6.3 60.1 ± 8.8 35.1 ± 6.4

30 m 77.7 ± 1.7 −1.1 ± 0.2 69.3 ± 8.1 103.1 ± 12.1 53.5 ± 9.1

50–100 mm 2 m 38.6 ± 4.5 −1.3 ± 0.4 34.2 ± 10.0 62.6 ± 16.3 4.3 ± 0.8

10 m 61.9 ± 2.4 −1.9 ± 0.2 37.7 ± 1.1 60.1 ± 2.1 11.9 ± 2.1

30 m 59.2 ± 0.7 −2.1 ± 0.2 34.4 ± 1.8 55.4 ± 3.3 15.8 ± 2.1

Significant terms De De, B De De, B, Di De, Di

Significant interactions B*Di None De*Di De*B*Di De*Di

p-value <.001 <.01 <.001 <.01 <.0001

R2 .61 .28 .60 .73 .76

F I G U R E  2  Temperature responses of microbial decomposition of SOM (Rs; panels a and b) and relative temperature sensitivity (Q10; 
panels c and d) to temperature (T) for the different thermal environments obtained at 2, 10 and 30 m from the heated depression in kānuka 
(panels a and c) and grassland (panels b and d) biomes. In the panels (a) and (b), the points are mean values of Rs with both depth treatments 
confounded and the whiskers represent the standard error (n = 6). The lines in the panels (a) and (b) represent the fit of the macromolecular 
rate theory (MMRT) model (Equation 1). The lines in the panels (c) and (d) were calculated with Equation (6) using the estimated MMRT 
parameters. The shaded areas represent the error associated with Q10 calculations obtained from the standard errors (n = 6) of parameter 
estimates [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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4.1  |  Experimental conditions at the geothermally 
active site

Geothermally heated ecosystems have been recognized recently as 
naturally occurring warming experiments that allow interpretation of 
the long-term adaptation of undisturbed biomes to temperature gra-
dients (O'Gorman et al., 2014). Our 31°C temperature range in MET 
is comparable with gradients of 20 or 30°C along distances of tens 
of metres at other geothermally heated sites (O’Gorman et al., 2014; 
Sigurdsson et al., 2016). While we did not measure soil temperature 
throughout the year, our 4 month average characterization of soil 
temperatures is comparable to mean annual temperatures ranging 
from 16.7 to 50.4°C reported earlier at the same site (Nishar et al., 
2017). pH was lower at our site compared to that at other geother-
mal sites used for climate warming experiments (O'Gorman et al., 
2014; Sigurdsson et al., 2016) but the negative relationship between 
pH and MET was observed previously (Nishar et al., 2017; O'Gorman 
et al., 2014). C concentration varied widely between measurement 

locations and was particularly high at some locations in the kānuka 
biome (>30%). This was probably due to the incorporation of nearly 
undecomposed leaf litter from recent leaf fall into the topsoil.

4.2  |  Thermal adaptation of microbial community 
composition

The species composition of microbial communities changed with dis-
tance from the heated geothermal depression for both the grassland 
and kānuka biomes. This contrasts with previous studies where no 
differences were found in microbial community composition sam-
pled from sites with a 9°C warming along geothermal spatial gra-
dients in Iceland (Radujković et al., 2018; Walker et al., 2018). Our 
findings are consistent with observations over large latitudinal gra-
dients showing temperature-driven changes in microbial community 
composition (Deslippe et al., 2012; Nottingham et al., 2018; Zhou 
et al., 2016). Despite being spatially co-located (<50 m distant), the 
microbial communities within our two biomes were distinct, with 
the differences probably driven by the differences in vegetation 
characteristics and C inputs. Specifically, the kānuka biome hosted 
geothermal specialist ectomycorrhizal fungi (Pisolithus), which were 
rare in grassland soils, suggesting a strong symbiotic relationship 
with prostate kānuka. Fungal spores disperse readily, but in the ab-
sence of its symbiotic partner, mycorrhizal fungi cannot often persist 
(Moyersoen et al., 2003).

The kānuka biome also experienced a greater range in MET 
across the sampled locations. This further influenced the structure 
and functional profile of both the bacterial and fungal communi-
ties. Not only were more thermophilic and thermotolerant bacteria 
and fungi dominant in the kānuka biome, but they also decreased 
in relative abundance with environmental temperature (increasing 
distance from the heated depression). This suggests specialization of 
species composition to the thermal environment (Jacob et al., 2018). 
Microbial dispersal and evolutionary dynamics explain this as recruit-
ment of thermally adapted species to geothermally active local sites 
or the emergence of hotspots for local thermal-adaptation, despite 
the prevalence of mesophilic species in the regional pool (Norris 
et al., 2002). While these trends are expected (Deslippe et al., 2012; 
Rinnan et al., 2007), they represent long-term adaptive processes 
that may partially apply to mesophilic soil communities experiencing 

F I G U R E  3  T opt (optimum temperature 
calculated from macromolecular rate 
theory fit) as a function of mean 
environmental temperature (MET, a) and 
soil carbon (C) concentration (b). The line 
indicates a significant linear regression fit 
between C concentration and Topt

F I G U R E  4  R 25 (respiration rate at 25°C calculated from 
macromolecular rate theory, Equation 4) in relation to soil carbon 
(C) concentration. The colours represent the mean environmental 
temperatures (MET) and the sizes indicate the soil volumetric water 
content (Ws) at the time of the measurements [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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short- or medium-term warming (Radujković et al., 2018; Romero-
Olivares et al., 2017). However, over the longer term, our findings 
indicate that, with increasing temperatures associated with climate 
warming, thermally adapted communities may feature more signifi-
cantly in future soil communities.

4.3  |  MMRT parameters as microbial thermal traits

The parameter Topt defines the temperature at which Rs reaches 
its maximum. The value of Topt can reach well above 50°C, beyond 
biologically relevant temperatures for most natural ecosystems 
(Robinson et al., 2017; 2020; Schipper et al., 2019). However, Topt 
constrains the curvature of the temperature response (positive cor-
relation with ΔC‡

P
) and has therefore direct relevance for microbial 

thermal adaptation (Alster et al., 2020). Tinf, the temperature at 
which the relative (and absolute) temperature sensitivity is high-
est, also influences the curvature of the temperature response and 
has been hypothesized to be under strong selective pressure with 
shifting temperatures (Prentice et al., 2020), and is therefore also 
relevant in the context of microbial thermal adaptation. Our esti-
mates of Topt ranged from 49.8 to 103°C, the high end being well 
above the range observed previously for soil respiration (Robinson 
et al., 2017; Schipper et al., 2014, 2019). Tinf was strongly correlated 
with Topt and was similarly influenced by environmental variations, 
therefore pointing to the same overall interpretation. Our estimates 
of ΔC‡

P
 (ranging from −3.4 to −1.1 J mol−1 K−1) were similar to those 

from previous studies, with a range of −3.1 to −1.6 J mol−1 K−1 for 
two comparable studies (Robinson et al., 2017; Schipper et al., 2019). 
It has been shown that fitting MMRT to data where the range of 
measurement temperatures does not reach Topt may lead to over-
estimation of Topt and ΔC‡

P
 (Alster et al., 2018). This was the case of 

the majority for our 35 response curves and may explain the high 
estimates of Topt and ΔC‡

P
 observed for some of the curves. For this 

reason, as a comparison, we conducted an analysis of the param-
eter from the Lloyd & Taylor model most related to the temperature 
sensitivity, E0, and compared Q10 values estimated from the MMRT 
and Lloyd & Taylor models. Results from this analysis led to identi-
cal conclusions as those made from MMRT observations. Therefore, 
although absolute values of MMRT parameters may have been over-
estimated, we argue that our analysis provided reliable estimates for 
comparisons between our treatments and across the environmental 
variation at our site.

4.4  |  MMRT, warming, substrate 
quality and quantity

Alster et al. (2020) proposed that ΔC‡

P
 and Topt are the temperature 

response traits most relevant to test hypotheses related to the ther-
mal adaptation of microbial communities. We hypothesized that Topt 
and ΔC‡

P
 would both increase with warming due to a thermal selec-

tive pressure leading to increased abundance of microbes producing 

warm-adapted (rigid) enzymes to constrain reaction rates when 
temperature increases (Hochachka & Somero, 2002), in line with an 
attenuating effect of thermal adaptation on soil C losses (Bradford 
et al., 2019). However, Topt and ΔC‡

P
 did not vary with MET, so we 

must reject this hypothesis.
The variables with the most influence on the parameters derived 

from MMRT was C concentration. However, soil C:N ratios and N con-
centrations were positively correlated with C concentration, and so 
we are unable to distinguish between the influence of these variables 
on the MMRT parameters. Nonetheless, our findings can explain the 
positive influence of C concentration on the respiration rate at 25°C 
(R25) and ΔH‡

T0
, a parameter related to the magnitude of change in 

respiration rates. Substrate deprivation leads to decreased metabo-
lism and respiration in heterotrophic microbes (Bradford, 2013). As 
a result, the response of microbial respiration to temperature is de-
pendent on substrate availability, with an increase in the response 
as C concentration increase and substrates become more abundant 
(Davidson & Janssens, 2006). Furthermore, higher substrate availabil-
ity and respiration rate are positively correlated with microbial bio-
mass (Allison et al., 2010; Bradford, 2013), so, an increase in microbial 
biomass with higher C concentration and substrate availability in the 
treatments at our site would also explain increases in R25 and ΔH‡

T0
.

Topt and ΔC‡

P
 were also influenced by C concentration. Again, this 

effect could be attributed to the correlation with C:N ratios (or N 
concentrations). Both a positive influence of C:N ratios and C con-
centration on Topt and ΔC‡

P
 can be supported theoretically. Indeed, 

when substrates are accessible by microbes, there is a positive re-
lationship between the recalcitrance of substrates (of which C:N is 
often taken as an indicator) and the temperature sensitivity of their 
decomposition (Conant et al., 2011; Davidson & Janssens, 2006; 
Fierer et al., 2005). Decreases in the substrate quality due to the 
depletion of labile substrates have been proposed as an explana-
tion for compositional shifts in microbial communities and increases 
in temperature sensitivities that occur as an indirect consequence 
of warming (Bai et al., 2017; Karhu et al., 2014; Pold et al., 2015). 
Moreover, the temperature response of microbial decomposition 
is constrained by both biological enzymatic reaction and chemi-
cal reactions regulating substrate exchange between the solid and 
aqueous phases of the soil (Conant et al., 2011). Numa et al. (2021) 
and Schipper et al. (2019) argued that the resulting temperature re-
sponse would be a combination of an Arrhenius-driven temperature 
response of sorption/desorption and diffusion and an MMRT-driven 
response of the biological process. If C concentration at our site 
were positively related to physicochemical protection of C substrate 
(Kirschbaum et al., 2020), an increasing contribution of Arrhenius-
driven reactions could have resulted, and therefore a lower ob-
served ΔC‡

P
 (Schipper et al., 2019). Having disentangled the effects 

of warming from those of substrate quality and quantity (MET var-
ied independently from C concentration and C:N ratios), our data 
suggest that shifts in substrate quality and/or quantity may exert a 
selective pressure greater than that for temperature in the composi-
tion of communities with distinct temperature response parameters 
and relative temperature sensitivities.



6228  |    MOINET et al.

4.5  |  Thermal adaptation of microbial 
decomposition function

We found no evidence for thermal adaptation of microbial decom-
position of SOM, in contrast to other recent studies where respira-
tion was observed to be downregulated over long-term warming in 
conditions of unlimited substrate availability (Bradford et al., 2019; 
Dacal et al., 2019); this occurred despite temperature-driven shifts 
in the composition of microbial communities. However, changes in 
the temperature response of soil respiration observed in our study 
were largely driven by shifts in substrate quality and/or quantity. 
Rates and the magnitude of changes in soil respiration increased 
with substrate concentration, possibly partly as a consequence of 
increasing microbial biomass (which we did not measure), consist-
ent with previous observations in soils along geothermal gradients 
(Walker et al., 2018). Surprisingly, the variations in Topt and ΔC‡

P
 were 

also largely driven by substrate availability, with no detectable influ-
ence of environmental warming.

Our novel approach used a unique combination of measurements 
at a natural geothermally heated site with independent variability in 
soil temperatures and substrate quality and quantity. We derived 
MMRT parameters to determine intrinsic properties of microbial 
physiology at the community scale and characterized microbial com-
munity composition. As such, our study has provided new insights 
to understand long-term thermal adaptation of microbial communi-
ties. Our findings suggest that, while long-term warming selects for 
warm-adapted taxa, substrate quality and quantity exert a stronger 
influence than temperature itself in selecting for distinct thermal re-
sponse traits. This implies that observations of thermal adaptation 
in conditions of unlimited substrate supply may be unrealistic. The 
results have major implications for our understanding of soil micro-
bial processes and the long-term effects of climate warming on soil 
C dynamics and its feedback to climate change.
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