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Drought stress is an important abiotic factor limiting common bean yield, with great
impact on the production worldwide. Understanding the genetic basis regulating
beans’ yield and seed weight (SW) is a fundamental prerequisite for the development
of superior cultivars. The main objectives of this work were to conduct genome-
wide marker discovery by genotyping a Mesoamerican panel of common bean
germplasm, containing cultivated and landrace accessions of broad origin, followed
by the identification of genomic regions associated with productivity under two water
regimes using different genome-wide association study (GWAS) approaches. A total
of 11,870 markers were genotyped for the 339 genotypes, of which 3,213 were
SilicoDArT and 8,657 SNPs derived from DArT and CaptureSeq. The estimated linkage
disequilibrium extension, corrected for structure and relatedness (r2

sv), was 98.63 and
124.18 kb for landraces and breeding lines, respectively. Germplasm was structured
into landraces and lines/cultivars. We carried out GWASs for 100-SW and yield in
field environments with and without water stress for 3 consecutive years, using single-,
segment-, and gene-based models. Higher number of associations at high stringency
was identified for the SW trait under irrigation, totaling ∼185 QTLs for both single-
and segment-based, whereas gene-based GWASs showed ∼220 genomic regions
containing ∼650 genes. For SW under drought, 18 QTLs were identified for single-
and segment-based and 35 genes by gene-based GWASs. For yield, under irrigation,
25 associations were identified, whereas under drought the total was 10 using both
approaches. In addition to the consistent associations detected across experiments,
these GWAS approaches provided important complementary QTL information (∼221
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QTLs; 650 genes; r2 from 0.01% to 32%). Several QTLs were mined within or near
candidate genes playing significant role in productivity, providing better understanding
of the genetic mechanisms underlying these traits and making available molecular tools
to be used in marker-assisted breeding. The findings also allowed the identification of
genetic material (germplasm) with better yield performance under drought, promising
to a common bean breeding program. Finally, the availability of this highly diverse
Mesoamerican panel is of great scientific value for the analysis of any relevant traits
in common bean.

Keywords: Phaseolus vulgaris, DArTseq markers, CaptureSeq, genetic diversity, seed-weight, yield, GWAS,
candidate markers

INTRODUCTION

Prolonged drought episodes are critical to plant development and
can have devastating impacts on crop productivity worldwide
(Eisenstein, 2013; Madadgar et al., 2017). Agricultural losses
due to drought are associated with both reduced crop areas
and production losses, and studying these issues in an attempt
to understand their impacts and consequences has become
a major challenge for the scientific community (Lesk et al.,
2016). In this context, major global changes are taking place in
agriculture, such as the development of systems and practices
that are more resilient to the impacts of climate change, with
less vulnerability and greater adaptability, and the development
of agricultural activities with lower greenhouse gas emission,
more suitable production levels, improved distribution, less
waste, and equitable access, among others (Food and Agriculture
Organization [FAO], 2018). Developing countries are the most
vulnerable to drought risks and have suffered approximately 80%
of the damage caused by this stress over the 2006–2016 period
(Food and Agriculture Organization [FAO], 2018). In the specific
case of common bean, drought has affected its cultivation in
several regions of the world, causing high production losses (Rao,
2001; Heinemann et al., 2016).

Among legumes, common bean (Phaseolus vulgaris L.) is a
food of high nutritional value and of great economic and social
importance. It is a valuable source of carbohydrates, proteins,
and minerals, in addition to being rich in bioactive agents
with a variety of human health benefits, including biological
activities such as antioxidant, anti-inflammatory, antidiabetic,
antihypertensive, and anticancer activities (Heredia-Rodríguez
et al., 2016). Beans are part of the diet of more than half a billion
people in Latin America and Africa, supplying up to 15% of total
daily calories and 36% of total daily protein (Schmutz et al., 2014);
they are grown in 126 countries, with an annual planted area
of approximately 30.6 million hectares (Food and Agriculture
Organization [FAO], 2016). Approximately 15% of these areas are
in regions with severe drought, such as in Brazil, on the Peruvian
coast, in northern Mexico and in dry regions of Africa (Singh,
2005). For common bean, diseases represent the major cause of
productivity loss, followed by water stress (WS) (Singh, 1995),
which affects approximately 60% of the crop areas and is the
result of both drought periods during the crop cycle and irregular
rainfall (Graham and Ranalli, 1997; McClean et al., 2011).

Drought tolerance is achieved by many traits, most of them
with complex inheritance and low heritability, and all of these
traits are related with grain yield (GY) in crops (Schneider
et al., 1997b; Blair et al., 2012). In practical terms, selecting
lines with higher yield potential under drought conditions is
complicated because the extent of the effect depends on its
duration and the intensity of WS and may be potentiated by
other factors such as low fertility and soil acidity, diseases, and
high temperatures (Blum, 2011). In addition, plants use different
adaptive strategies for drought stress, such as escape or activation
of tolerance and recovery mechanisms (Levitt, 1972). In common
bean, several traits associated with drought tolerance have already
been identified, including (a) more developed root systems
(Sponchiado et al., 1989; Frahm et al., 2004); (b) translocation
and accumulation of biomass to the seeds (Ramirez-Vallejo
and Kelly, 1998; Rao et al., 2004; Polania et al., 2016); (c)
adjustment of phenological traits, such as days to flowering and
photosynthetic water-use efficiency, growth and development
(Acosta-Gallegos and White, 1995; Rosales-Serna et al., 2004);
and (d) the adjustment of physiological mechanisms associated
with stomatal conductance, leaf area, and osmotic adjustment
(Beebe et al., 2013; Lanna et al., 2016, 2018).

Nowadays, more efficient breeding strategies to release new
cultivars have been demanded, and molecular tools could
support that, based on accumulated knowledge. In most studies,
genetic maps of biparental populations have provided the basis
for quantitative trait loci (QTLs) identification for drought
tolerance in common bean (Schneider et al., 1997a; Blair
et al., 2012; Mukeshimana et al., 2014; Trapp et al., 2015;
Villordo-Pineda et al., 2015; Briñez et al., 2017). The use of
single-nucleotide polymorphism (SNP) markers, with a genome-
wide distribution, has increased the power to identify markers
in linkage disequilibrium (LD) with QTL/gene of interest.
Different SNP genotyping approaches are currently available,
such as restriction site–associated DNA sequencing (Willing
et al., 2011), Genotyping-by-sequencing (Elshire et al., 2011)
and diversity arrays technology (DArTseq) (Cruz et al., 2013).
Such methods based on reduction of genome complexity requires
a refined selection of the restriction enzymes in order to
identify and genotype larger numbers of variants with a broad
genome coverage, as shown for common beans by Ariani
et al. (2016). The DArTseq methodology differs from the others
by using two restriction enzymes, a common-cutting enzyme
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and a methylation-sensitive rare-cutting enzyme, preferentially
fragmenting hypomethylated regions that are generally enriched
with genes (Rabinowicz et al., 2005). In addition, the search for
SNPs in specific genomic regions using the targeted sequence
capture (CaptureSeq) methodology allowed the simultaneous
identification of thousands of SNPs in regions of interest,
allowing a genotyping refinement (Neves et al., 2013).

Increasing access to several high-throughput genotyping
technologies has allowed for a large volume of studies
using association mapping approaches. Several studies have
reported single-SNP genome-wide association studies (GWASs)
in common bean being evaluated in structured populations
within the Andean and Mesoamerican gene pools. This sampling
strategy by germplasm origin reduces genetic structure and extent
of LD providing more resolution for discovering potentially
useful causal variants. Using a panel of Mesoamerican accessions
and high-density SNPs, Schmutz et al. (2014) and Moghaddam
et al. (2016) have identified associations for several agronomic
traits that affect common bean production, such as days to
flowering and maturity, growth habit, lodging, and seed weight
(SW), among others. Furthermore, Hoyos-Villegas et al. (2017)
reported 27 associations for agronomic-related traits evaluated
under drought and irrigated conditions in a Middle American
diversity panel comprising 96 common bean genotypes. Recently,
Andean and Mesoamerican diversity panels were developed
and used to map production traits in both heat and drought
stress environments (Oladzad et al., 2019). Based on Andean
germplasm, genomic regions associated to cooking time (Cichy
et al., 2015), biological nitrogen fixation (Kamfwa et al., 2015),
and resistance to anthracnose (Zuiderveen et al., 2016) and
to bacterial blight (Tock et al., 2017) have been identified by
single-model GWASs. Other GWAS approaches that explore the
aggregated effects of multiple SNPs in genomic segments, such as
regional heritability mapping (Nagamine et al., 2012), increased
the power to capture genomic regions associated with lodging,
architecture, and yield in common beans (Resende et al., 2018).
In addition, GWAS approaches using the genetic information
provided by SNPs in a gene (gene-based GWASs) or SNPs in
segments (segment-based GWASs, Bakshi et al., 2016) have been
used as supplementary methods for SNP-based GWASs (Peng
et al., 2010). As these methods explore the aggregated effects of
several SNPs, including those with rare and low-frequency alleles,
in genomic and gene segments, they have the potential to capture
more of the genetic effects accounted for the traits, rather than
the methods based on individual SNPs, in which isolated effects
that contribute little to variance are not detected by GWASs
(Resende et al., 2017).

The objectives of this study were (1) to identify SNPs with
high representativeness over the Mesoamerican gene pool that
are part of the Brazilian core collection, through DArTseq and
CaptureSeq approaches; (2) to estimate the genetic parameters
and the genetic structure and investigate genome-wide LD in
cultivar and landrace germplasms; and (3) to identify genomic
regions associated with 100-SW and yield under different water
regimes and years of experimentation, using GWAS approaches
based on single-SNPs and models that explore the combined
effects of multiple SNPs using gene- and segment-based methods.

MATERIALS AND METHODS

Plant Material
A total of 339 Mesoamerican common bean accessions,
including 224 landraces from Brazil and 115 Brazilian and
international cultivars/lines, were used. These genotypes are
maintained as part of Embrapa’s Brazilian common bean core
collection (CONFE), which is backed up in the Svalbard Global
Seed Vault (Longyearbyen, Norway) (Supplementary Table 1).
The accessions were multiplied in a greenhouse, ensuring
homogeneity for genetic analysis, and individually collected
for molecular analysis. Total genomic DNA was obtained
using the Invisorb Spin Plant Mini Kit (Stratec Molecular,
Berlin, Germany), followed by shipment to DArTseq (DArT
Pty Ltd., Bruce, Australia) and RAPiD Genomics (Gainesville,
FL, United States) facilities. The georeferenced landraces were
plotted using the R package ggplot2 (Wickham, 2009) and the
map provided through the rnaturalearth package (South, 2017).

Phenotyping
The field experiments were carried out at the phenotyping site
for drought tolerance located at the EMATER Experimental
Station (Porangatu, Brazil) using two irrigation conditions,
adequate water supply and imposing water restriction (WS). The
experiments were conducted in 3 consecutive years (2014, 2015,
and 2016), in the third season, or irrigated growing season (May–
August), when rainfall is practically absent. The sample sizes are
presented in Table 1.

In 2014, 580 accessions from the Brazilian CONFE, composed
of Andean and Mesoamerican accessions, were phenotyped in
the field. The experiment was carried out using the Federer
augmented block design, in which the plots consisted of three 3-
m rows. The experiment comprised 20 blocks composed of 29
accessions and four controls each (BRS Estilo, BRS Esplendor,
BRS Embaixador, and Jalo Precoce). In 2015 and 2016, the
experiments were carried out using only the 339 Mesoamerican
accessions, and the plant breeders decided to use the square lattice
design with two replicates and four controls. Each experiment
was composed of 18 blocks with 18 treatments. The blocks
consisted of 3-m rows with spacing of 40 cm, with a density of
15–18 seeds per meter.

The water field treatments consisted of two watering regimes,
irrigated [non-stress (NS)] and with WS. In the control, adequate
condition of water in the soil was maintained throughout
the cycle of plant development, in which water slides of
approximately 25 mm were applied when the soil water potential
at 0.15-m depth reached -0.035 MPa (Silveira and Stone, 1994).
In the WS condition, the irrigation was maintained until the 20th
day after seedlings emergence, followed by WS applying water
slides of approximately 25 mm when the soil water potential
at 0.15-m depth reached -0.070 MPa until the end of the
cycle of the plants.

Evaluation of Productivity Components
The components of productivity SW, expressed as weight
per 100 grains (grams) and GY, obtained through the grain
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weight per plot transformed into kg ha−1 were evaluated. The
components of variance and adjusted means for each genotype
were obtained through individual analysis, by environment,
and by joint analysis, involving the environments for each
irrigation condition.

For the analysis conducted by year, considering the general
model with repetition and block within repetition effects, the
mixed linear model (MLM) described below was fitted:

yijkm = µ+ rj + bk/j + tm + gi/m + εijkm

where yijkm is the observation of genotype i in repetition j in block
k belonging to type m; µ is a constant; rj is the random effect of
repetition j; bk/j is the random effect of block k within repetition
j; tm is the fixed effect of type m of genotypes, with one group
of accession and one group of check cultivars; gi/m is the effect
of genotype i (accession, as random effect, or check cultivar, as
fixed effect) within type m; and εijkm is the experimental error
associated with observation ijkm.

For the joint analysis of the 3 years combined, the MLM
described below was fitted:

yijklm = µ+ al + rj/l + bk/j/l + tm + gi/m + gail + εijklm

where yijklm is the effect of genotype i in repetition j in block
k in environment l belonging to type m; µ is a constant; al is
the fixed effect of environment l; rj/l is the random effect of
repetition j within environment l; bk/j/l is the random effect of
block k within repetition j in environment l; tm is the fixed effect
of type m of genotypes, with one group of accession and one
group of check cultivars; gi/m is the effect of genotype i (accession,
as random effect, or check cultivar, as fixed effect) within type
m; gail is the interaction effect between the genotype i and the
environment l; and εijklm is the experimental error associated with
observation ijklm.

The variance components were estimated by the restricted
maximum likelihood (ML) method, according to Patterson and
Thompson (1971), and because of the presence of unbalanced
data set over the experiments (resulting from the loss of
some experimental plots and different number of repetitions),
the genetic values of each accession were predicted using the
BLUP (best linear unbiased prediction) procedure, according
to Henderson (1984). Based on the genetic, phenotypic, and
residual variance components, the broad sense heritability
(h2) was estimated at the level of accession means. The
accuracy of selection was also estimated (rgĝ), corresponding
to the square root of the heritability estimate, according to
Resende and Duarte (2007).

The MLMs were analyzed using the lme4 package of
the R platform (R Core Team, 2015). The BLUP-adjusted
values for each genotype within each experiment and over
experiments, obtained in joint analysis (BLUPj), were used for
GWASs. Box plots were generated using software R v. 3.0.1
(R Core Team, 2015).

DArTseq Genotyping
The DArTseq technology, proposed by Jaccoud et al. (2001),
was developed by the company Diversity Arrays Technology
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Pty Ltd. (Bruce, Australia). After preparation of the samples,
the DNA was sent to DArT P/L for genotyping. The markers
were developed as described by Sánchez-Sevilla et al. (2015).
The method was based on reducing the complexity of the
genome using the PstI–MseI restriction enzymes. The DArTseq
data were used to generate the dominant SilicoDArTs (presence
or absence of the hybridized fragment) and SNP markers
present in the genomic representations. The sequences were
processed, followed by SNP and SilicoDArT calling using DArT
Pty Ltd.’s proprietary pipelines. The parameters “reproducibility“
(percentage of technical replicate pairs scoring identically for a
given marker) and “call-rate” (percentage of samples for which a
marker was scored) were used to determine the quality of markers
(Kilian et al., 2012).

CaptureSeq Genotyping
A set of 5,293 differentially expressed genes under drought
stress (Pereira et al., 2020) were initially used as target regions
of the genome. The target capture (CaptureSeq) methodology
was carried out by the company RAPiD Genomics (Gainesville,
FL, United States). To target the sequences, the segments
were BLASTed against the P. vulgaris reference genome
(“Pvulgaris_218_v2.0.fasta”) (Schmutz et al., 2014). The resulting
sequences were subjected to RAPiD Genomics probe design and
synthesis. A set of 175 accessions, part of the 339 accessions
used for the DArTseq analysis, was processed and hybridized to
custom probes followed by next-generation sequencing (NGS)
using HiSeq 2000 (Illumina) as described by Neves et al. (2013).
Bioinformatics filtering steps were applied to obtain high-quality
SNP data across 5,050 genes, and only one probe per gene
was considered as callable region for on-target SNP discovery
and identification.

Imputation
Imputation of the SNPs was performed using the software
NGSEP v. 3.0.1 (Duitama et al., 2014), suitable for endogamous
populations, using the parameter c = 0.003 (estimate of the mean
number of centiMorgans per kb in euchromatic regions of the
genome) and number of clusters equal to 20 (maximum number
of groups in which the local haplotypes will be grouped). The
analysis was based on the hidden Markov model (Scheet and
Stephens, 2006), using the LD between the SNPs within the
haplotype blocks. The accuracy of the imputation was estimated
by the concordance rate (proportion of correctly imputed
genotypes), which 10% of the genotypes were randomly masked
followed by imputation and comparison with the true results.

Genomic Distribution of Markers
To evaluate the marker coverage on the genome, all sequences
were aligned to the P. vulgaris reference genome (Schmutz et al.,
2014) using the BLASTN E-value ≤ 1E-10 (Altschul et al., 1997)
and the best hit genomic location. The distribution of the markers
in the genome was represented using R v. 3.0.1 (R Core Team,
2015). SnpEff version 4.2 (Cingolani et al., 2012) was used to
annotate variants in the genome assembly based on their targeted
regions and predicted coding effects, as described by Valdisser
et al. (2017).

Linkage Disequilibrium and Haplotypes
Blocks
The markers were tested for pairwise LD by using the quadratic
coefficient of correlation (r2), corrected for the bias due to
population structure (r2

s), relatedness (r2
v), and for both (r2

SV )
using the LDcorSV package (Mangin et al., 2012; Desrousseaux
et al., 2017). The genetic relationship matrix was calculated
using the R-package rrBLUP (Endelman, 2011) using the method
proposed by VanRaden (2008). The estimation of the LD
extension throughout the genome was carried out using the
non-linear model proposed by Hill and Weir (1988), adjusted
with nls function of the R software v. 3.0.1 (R Core Team,
2015). Haplotype blocks were identified using the Haploview 4.2
(Barrett et al., 2005) from the total set of markers (11,870) based
on the confidence interval described by Gabriel et al. (2002).
Heterozygous loci were eliminated from the analysis.

Genetic Diversity and Structure
We used the data of the LD-pruned markers (LE; keep only
markers with r2 < 0.8 inside a window of 50 kb) using
the Plink v. 1.07 (Purcell et al., 2007), with minor allele
frequency (MAF) > 0.05 and call rate ≥ 95% to obtain the
estimates of genetic diversity and population structure. The
GenAlEx6 software (Peakall and Smouse, 2012) was used to
obtain the estimates of observed and expected heterozygosity
(genetic diversity of Nei), probability of identity (PI), and
exclusion (PE) by means of the multilocus option. The population
structure was heuristically inferred considering subpopulation
numbers (K) ranging from 1 to 10, using 20 interactions
for each K. The models for each K assumption were fitted
in Bayesian approach using 200,000 Markov Chain Monte
Carlo with discard of 100,000 interactions due burnin Period
(Pritchard et al., 2000).

The method reported by Evanno et al. (2005) using
Structure Harvester v. 0.6.93 (Earl and vonHoldt, 2012) was
used to estimate the most likely K explaining the population
structure, followed by the identification of the best alignment
to the replicate results of the cluster analysis using the
CLUMPP software (Jakobsson and Rosenberg, 2007). The
organization chart was generated in R v. 3.1.3 (R Core
Team, 2015). A phylogenetic tree reconstruction was carried
out with the RAxML v. 8.2 (Stamatakis, 2014) using both
rapid bootstrap algorithm and search for best scoring in
combination with an ML search. A GTR model of nucleotide
substitution with a gamma model of rate heterogeneity
was applied, and branch support was determined by 10,000
bootstrap replicates. Tree ETE Toolkit 3.0 (Huerta-Cepas
et al., 2016) was used to visualize the phylogenetic tree
with RAxML v. 8.2.

Markers Under Signature of Selection
(Outliers)
The outlier markers were detected using the hierarchical method
of Excoffier et al. (2009) implemented in Arlequin v. 3.5.2.2
(Excoffier and Lischer, 2010), which identified outlier loci by
comparing the levels of genetic diversity and differentiation
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between populations. The hierarchical island model was
simulated assuming 100 demes with 20,000 simulations to
generate an FST joint distribution versus heterozygosity. Those
loci that fall outside the 95% confidence interval were considered
outliers and were annotated using the Phytozome database
(Schmutz et al., 2014).

GWAS Analysis
The GWAS based on individual analysis of markers was
performed in the Tassel software version 5.2.44 (Bradbury
et al., 2007) using the MLM module, considering the markers
and the population structure groups as fixed-effect factors
and the genetic background as a random-effect factor with
correlated effect as represented in the kinship matrix. The
kinship matrix was estimated using the identity-by-state
algorithm in the Tassel software. The population structure
matrix (Q matrix) was obtained using the Structure software.
The significance of associations between markers and
phenotypic traits was evaluated using the false discovery
rate (FDR) method, as implemented in the Qvalue package
version 1.0 (Storey, 2002) of R v. 3.0.1 (R Core Team,
2015).

The GWASs using gene and segment-based models were
performed to leverage the aggregated effect of sets of SNPs,
given that it is higher than the individual effect of the
markers. Two approaches were used: (1) a gene-based model
using a gene region defined as 50 kb of UTRs of a gene,
and (2) a segment-based GWAS model using segments of
100 kb (close to the LD extension value). These approaches
were conducted using fastBAT (Bakshi et al., 2016) in GCTA
software (Yang et al., 2011). The proportion of the phenotypic
variation explained by each window (r2) for the group of
markers was estimated as described by Müller et al. (2019).
The Bonferroni procedure was implemented to control for
type I error at α = 0.05, and the Benjamini and Hochberg
(1995) procedure was used to control for FDR at 5%. The
multiple test corrections considered the total number of SNPs
for the single SNP-based, total number of regions for the
segment-based, and total number of genes for the gene-
based GWASs.

RESULTS

Productivity Components
Phenotypic data were successfully collected in five environments.
In the drought stress periods, between May and August, there
were no large variations between the years for the maximum and
minimum temperatures (35.3 and 21.3◦C, respectively), relative
humidity (43.9%), and rainfall (0.13 mm). In general, crops
during stress periods were grown under low relative air humidity
and reduced rainfall (Supplementary Table 2).

The estimates of heritability (h2) for SW ranged from 0.85
(WS-2014) to 0.98 (NS-2016), and the GY ranged from 0.37
(WS; 2014) to 0.59 (NS; 2015) (Table 1). Selection accuracy
was similar across all environments for both traits, with high

values for SW (ranging from 0.93 in the WS-2014 and WS-
2016 environments to 0.99 in the NS-2016 environment) and
moderate values for GY (ranging from 0.71 in the WS-2016
to 0.76 in the NS-2015 environments). Overall, slightly lower
estimates for the heritability coefficients and accuracy and higher
coefficient of variation were observed for the experiments under
water deficit stress.

In the control experiment (Table 1), the mean GY and SW
were higher in 2014 (2,391 kg ha−1; 26.81 g) than in 2015
(1,187 kg ha−1; 22.24 g) and 2016 (1,947 kg ha−1; 26.77 g). Under
drought, the highest estimates of GY and SW were obtained in
2016 (798.8 kg ha−1; 21.31 g), followed by 2014 (517.4 kg ha−1;
20.6 g). In the joint analysis, the adjusted average GY was 705.2
and 1,870 kg ha−1 in the environments with and without drought
stress, respectively, indicating a reduction of 62% in production.
For SW, the values were 23.23 and 27.78 with and without stress,
respectively, showing a decrease of 16%.

Considering the cultivated and landrace germplasms analyzed
separately, the mean GYs were 1,885.74 and 1,892.37 kg ha−1

in the irrigated environment, and 708.21 and 713.53 kg ha−1

under drought, respectively. For SW, the averages were 24.17 and
22.57 g under irrigation and 21.11 and 20.45 g under drought
for cultivated and landrace germplasms, respectively. The GY and
SW box plot charts showed a great dispersion of data in both the
control and drought experiments (Figure 1).

Based on the GY values, the genotypes were classified into
10 most and least productive accessions, with and without stress
(Table 2 and Supplementary Figure 1). Under irrigation, the
most productive group consisted of three cultivars/lines and
seven landrace varieties, which on average produced 2,260 kg
ha−1, whereas the least productive was composed of six landrace
varieties and four cultivars/lines, which produced on average
1,552 kg ha−1, that is, a reduction of 31%. Under the water deficit,
the most productive group was represented by four cultivars/lines
and six landrace varieties (mean of 893 kg ha−1) and the least
productive by six landrace varieties and four cultivars/lines (mean
of 563 kg ha−1), with a reduction of 37%. Three genotypes (Ouro
Negro, CF200012 and CF800113) were consistently classified as
the 10 most productive in both conditions of NS (2,314, 2,239,
and 2,262 kg ha−1) and WS (973, 873, and 871 kg ha−1).

DArTseq and CaptureSeq Genotyping
Genotyping of 339 Mesoamerican bean accessions using DArTseq
technology provided 24,484 markers, of which 11,862 were SNPs
and 12,622 were polymorphic SilicoDArT markers. For the
SNPs, the mean proportion of homozygotes and heterozygotes
was 0.99 and 0.01, respectively, whereas the mean of minor
allele frequency estimate was 10.16%. Regarding data quality,
reproducibility was high, with values ranging from 94.5 to
100% (average of 99.85%), and the mean proportion of missing
data per marker was 6% (mean call rate of 94%). Using
CaptureSeq technology, 11,989 SNPs were generated from
3,478 probes evaluated in 175 genotypes, with an average of
3.45 SNPs per probe.

In total, 36,473 markers were generated, of which 17,375
SNPs (11,638 and 5,737 derived from DArT and CaptureSeq,
respectively) were successfully imputed for 339 genotypes
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FIGURE 1 | Box plots from the BLUP-adjusted values for yield and 100-seed weight taken during the 3 years of experimentation, with (WS) and without (NS)
drought stress.

TABLE 2 | Ranking of the 10 genotypes that presented higher and lower yields (GY) obtained through BLUPj in the experiments with (WS) and without water
restrictions (NS).

Groups WS NS

Genotype ID GY (kg ha−1) Genotype ID GY (kg ha−1)

10+ Ouro Negro* (lines/cultivar) 973 CNF008845 (lines/cultivar) 2,371

BRS Pontal (lines/cultivars) 905 Ouro Negro* (lines/cultivar) 2,314

CF871226 (Landrace) 899 CF240056 (Landrace) 2,286

CNF007143 (lines/cultivar) 894 CNF011036 (lines/cultivar) 2,275

CF250002 (Landrace) 889 CF800113* (Landrace) 2,262

CNF007050 (lines/cultivar) 886 CF200012* (Landrace) 2,239

CF890223 (Landrace) 881 CF840600 (Landrace) 2,225

CF200012* (Landrace) 873 CF200048 (Landrace) 2,216

CF800113* (Landrace) 871 CF870030 (Landrace) 2,208

CF860105 (Landrace) 863 CF800110 (Landrace) 2,201

10 - CF840275§ (Landrace) 537 CNF001611 (lines/cultivar) 1,501

CNF007770§ (lines/cultivar) 556 CF200075 (Landrace) 1,528

CF840650 (Landrace) 557 CF840747 (Landrace) 1,545

CNF007646 (lines/cultivar) 559 CNF006978 (lines/cultivar) 1,555

CNF005887 (lines/cultivar) 562 CNF007770§ (lines/cultivar) 1,561

CF890110 (Landrace) 564 CF840275§ (Landrace) 1,561

CF240032 (Landrace) 568 CF840543 (Landrace) 1,561

CF240016 (Landrace) 574 CF810080 (Landrace) 1,564

CNF005482 (lines/cultivar) 575 CNF004121 (lines/cultivar) 1,570

CF800049 (Landrace) 575 CF841226 (Landrace) 1,577

*Genotypes with higher yield in environments with and without water deficiency.
§Genotypes with lower yield in environments with and without water deficiency.

(accuracy of 97%), resulting in 11,870 useful markers (MAF≥ 5%
and missing data < 5%) (Table 3).

Genomic Distribution
All markers evaluated (36,473) were aligned to the common
bean genome (Schmutz et al., 2014), of which 529 were in

scaffolds (Table 3 and Supplementary Figure 2). Among the
SNPs, transitions (Ts) were the most abundant (55%), with the
transition from cytosine to thymine being the most frequent
polymorphism (3338 DArT SNP and 1,706 CaptureSeq SNP),
whereas transversions (Tv) were identified in 45% of the SNPs.
The Ts/Tv (transition/transversion) rates observed were 1.22 and
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TABLE 3 | Distribution of SNPs and SilicoDArT on individual chromosomes of P. vulgaris.

Chrm Imputed markersε Total of markers Chr size (kb)* Average no. of total
markers/Mb

SNP_
DArT

SNP_
CaptSeq

DArT Total SNP_
DArT

SNP_
CaptSeq

DArT Total

1 515 291 255 1,061 1,066 914 1,072 3,052 52,183.5 58.49

2 610 286 312 1,208 1,388 956 1,426 3,770 49,033.7 76.89

3 539 265 318 1,122 1,190 909 1,340 3,439 52,218.6 65.86

4 488 345 395 1,228 828 1,471 1,015 3,314 45,793.2 72.37

5 353 186 197 736 790 785 847 2,422 40,237.5 60.19

6 472 198 215 885 980 808 948 2,736 31,973.2 85.57

7 459 273 267 999 1,057 953 1,097 3,107 51,698.4 60.10

8 831 574 484 1,889 1,317 2,005 1,468 4,790 59,634.6 80.32

9 363 179 180 722 1,065 786 1,016 2,867 37,399.6 76.66

10 369 244 242 855 829 827 912 2,568 43,213.2 59.43

11 492 325 348 1,165 1,121 1,470 1,288 3,879 50,203.6 77.27

Scaffolds — — — — 231 105 193 529 — —

Total 5,491 3,166 3,213 11,870 11,862 11,989 12,622 36,473 513,589.1 71.02

εMAF ≥ 0.05; call rate > 95%. *Schmutz et al. (2014). Chrm., chromosome; CaptSeq, CaptureSeq.

1.27 in DArT SNP and CaptureSeq SNP, respectively. Overall, the
mean number of markers per chromosome was approximately
3,268, with an average of one marker every 14,081 bp (71.02
markers/Mb) estimated.

Linkage Disequilibrium Analysis
The mean distance between markers along the chromosomes
was 21.43 Mb, with minimum and maximum distances of
1 bp and 63 Mb, respectively. For the LD analysis, more
than 692,000 r2 pairwise estimates were calculated per
chromosome. In general, the r2 distribution showed a rapid
LD decay when analyzing all genotypes (339) simultaneously,
as the physical distance increased (r2

SV ∼0.23). On the
basis of the r2 model (with no correction for the population
structure), LD extended over 237 kb, ranging from 158 kb
on chromosome 4–436 kb on chromosome 9. When the
corrections for structure and relatedness were applied
(r2

sv), the LD extension dropped by ∼70%, reaching the
value of 63.38 kb (Figure 2 and Supplementary Table 3).
Reduced LD extension was observed on chromosome 8
(32.48 kb) and greater on chromosome 9 (172.78 kb).
Considering only the landraces, the LD extension was
estimated to be at 98.63 kb, whereas for the breeding lines,
it was 124.18 kb.

Haplotype Blocks Distribution
A total of 1,548 haplotype blocks were identified, ranging
from 83 (chromosome 9) to 242 (chromosome 8). A total of
9,873 markers (83.18%) were located in these blocks, with a
mean of approximately six markers per block. Chromosome 3
(86.72%) and chromosome 9 (60.66%) had the highest and lowest
percentage of markers/block, respectively. The mean block size
was 21,266.64 kb, with the largest block found in chromosome
8, comprising 33,804.67 kb and 1,605 markers, and the smallest
block was identified on chromosome 7, with 13,949.93 kb and

835 markers. The maximum and minimum haplotype frequency
was 0.95 and 0.01, respectively, with the most frequent being
located on chromosomes 7 and 8. The blocks covered, on
average, 45.55% of the total genome (Supplementary Table 4).
For the landrace accessions, 1,329 blocks were identified within
the 11 chromosomes, with 8,977 markers located within these
blocks (87.73%), with a mean of 6.75 markers per block and
sum of blocks size 228,534 kb (mean of 171.96 kb per block).
For the cultivated accessions, 1,358 blocks were identified in
the 11 chromosomes with a total size of 222,286 kb (mean of
163.69 kb per block), of which 84.4% (8,534) of the markers were
located within blocks with a mean of 6.28 markers per block.
The highest number of blocks was observed on chromosome 8
for both strata of germplasms (213 for landraces and 220 for
lines/cultivars).

Genetic Diversity and Structure Analysis
These analyses were conducted using the set of 4,941 markers
in linkage equilibrium obtained from LD pruning. The
average estimates of HE for the Mesoamerican Brazilian
germplasm (n = 339) was 0.277 (±0.002), whereas for the
landraces (n = 224) and lines/cultivars (n = 115), they
were estimated at 0.262 (±0.002) and 0.285 (±0.002),
respectively. With regard to HO, FIS, and FIT indices, the
values were 0.023 ± 0.001, 0.917 ± 0.001 and 0.921 ± 0.0031,
respectively, for the entire set of samples (Supplementary
Table 5). A high number of polymorphic SNPs was
identified for the landraces (99.98%) and lines/cultivars
(99.84%), and a moderate genetic differentiation (FST),
according to Hartl and Clark (1997), was observed between
the germplasm groups (0.051 ± 0.001). Considering the
marker informativity, SNP markers were slightly superior
to SilicoDArT at estimating the parameters of mean gene
diversity (HE) and genetic differentiation (FST). Through
analysis of molecular variance (AMOVA), greater among
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FIGURE 2 | Genome-wide pattern of linkage disequilibrium (LD) decay in the lines/cultivars (A) and landrace (B) Mesoamerican germplasms represented by decay
curves without any correction (r2), adjusted for population structure (r2

s), relatedness (r2
v ) and for both (r2

sv ).

accessions variation (74%–95%) than among germplasm groups
(5%) was observed.

The probability that two unrelated individuals share the same
genotype (PI) was null (zero), reaching the minimum value
of 1,5342 × 10−140 for SNP from CaptureSeq and landrace
germplasm. To achieve a PI < 0.0001, a maximum of 34 SNPs
were required to differentiate genotypes within cultivars and 38
within landraces. The PE estimated was high, practically reaching
100% of probability of exclusion using panels ranging from 60 to
77 markers based on SilicoDArT and SNP DArT, respectively.

Structure analysis suggested K = 3, subdividing the genotypes
into three groups: M1, M2, and M3. The M1 group consisted
of a cluster of 88 accessions, the majority of black commercial
grain type (70%), being 61% cultivars/lines and 39% landraces.
In the M2 group, with only seven accessions, there was a
predominance of landrace germplasm (71%), and the majority
(71%) had a large grain size. The M3 group consisted of 116
accessions, of which 95% were landrace varieties and with a
wide variation of commercial grain types, with predominance
of Mulatinho and Carioca grains (39%). The M1 group was
revealed to be more diverse (HE = 0.229), followed by the M3
(HE = 0.198) and M2 groups (HE = 0.045). A total of 128
accessions (38%) were considered as resulting from multiple
ancestry (admixture) and presented the highest value of diversity
(HE = 0.298). The results of ML best tree and bootstrap
searches on the genotyped data sets are summarized in Figure 3.
The phylogenetic analysis showed a strong tendency to group
the accessions according to the germplasm type, landraces,
and lines/cultivars. These results were in accordance with the
Structure analysis.

SNPEff and Outlier Markers
A total of 9,838 effects were predicted for 3,582 SNPs, considering
the information on the location of all isoforms, genic, and
intergenic regions in the common bean genome (Schmutz
et al., 2014). The predicted effects were of modifier type
(80.87%), low impact (13.03%), moderate impact (5.71%), and
high impact (0.39%). Most SNPs with predicted effects were
observed in genic regions (5,699), of which 30.18% and 28.91%
were observed within exons and introns, respectively, with the
remaining in non-translated regions. In genic flanking sequences
(5-kb window), 4,139 effects were identified, of which 55.81
and 44.19% occurred in downstream and upstream regions,
respectively. From the 22 SNPs predicted with high impact
(Supplementary Table 6), 18 were annotated in different
functions, such as kinases, transcriptions factors, and cellulose
synthase, among others.

A total of eight loci deviated from the neutrality hypothesis
(outliers) when comparing the landraces and cultivars/lines
groups (p < 0.05), with five and three being present on
chromosomes 7 and 8, respectively (Supplementary Table 6). Of
these, six are SNPs (four DArT SNPs and two CaptureSeq SNPs),
and two are SilicoDArT. Based on SNPEff analysis, 17 putative
effects were predicted for six of the eight outliers, of which 5.88%
were low-impact, 17.65% moderate, and 76.47% modifier type.
The six outliers SNPs have effects on gene regions (11.76% on
introns and 23.53% on exons), on intergenic regions (5.88%), and
on regions flanking genes (5-kb window), 47.06% on downstream
region and 11.76% on the upstream region. The Tv/Ts rate of the
outliers was of 2. From the eight outliers’ loci, five were on genes
described as salt stress response and have antifungal activity,
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FIGURE 3 | Population structure and best scoring maximum likelihood tree based on the genotyped data sets. (A) Population structure for the Mesoamerican
germplasm (K = 3) showing, predominantly, lines/cultivars (M1, red), landraces with large grains (M2, green), landraces with a wide variation of commercial grain
types (M3, blue); (B) phylogenetic tree where the range of branch support was depicted at the nodes (gray dots: 0–60; orange dots: 60–70; blue dots: 70–85; and
green dots: 85–101); landrace germplasms are marked in blue and the lines/cultivars in yellow; the names of genotypes are shown on the top of the corresponding
clades and integrate information on to which structure group they belong.

tyrosine kinases, CCCH zinc finger protein, lipid transfer protein,
and DNA helicase.

GWAS Using Single SNP Model
Based on single-SNP model GWASs, a total of 210 marker-
trait associations were detected for the SW (Figures 4, 5,
gray circles) and GY (Figures 6, 7, gray circles) in the field
experiment conducted under irrigation and drought for the 3
consecutive years.

For SW, irrigated and drought experiments, a total of 177
associations were identified, of which 61 were detected over
more than two analyses and presented similar effects across
experiments (Figures 4, 5). The number of associations for
SW in irrigated conditions was 173 (Supplementary Table 7),
ranging from 24 on chromosome 3, to 4 on chromosome 5, and
showing the presence of nine clusters of QTLs. Based on the joint
analysis, QTLs under irrigated conditions were identified (123),
with phenotypic variance accounted for by these markers ranging
from 2.82 to 22.5%. Of the 173 QTL identified, 115 were exclusive,
and 58 were common across experiments (Figure 4).

For SW, under drought, of the 18 QTLs identified
(Supplementary Table 7 and Figure 5), 14 were common
across irrigation treatments, one across the same year of

experimentation (SNP 8212321), two across 2 years of
experimentation (DArT 3382165 and SNP 3377127), and
one QTL found in four experiments, across treatments in
all years of experimentation (SNP 1139472, r2 = 9.56%).
This last marker that falls apart 1.5 kb of a gene encoded a
protein involved in transport process (mechanosensitive ion
channel). The phenotypic variance ranged from 5.35 to 20.35%.
Overall, three associations were consistently identified in all
3 years of experimentation and joint analysis (SNPs 3378295,
3380258, and 3384387).

For GY, a total of 33 QTLs were identified, in the
two irrigation treatments, across 10 chromosomes, and
the phenotypic variance ranged from 4.42% to 12.95%
(Supplementary Table 8 and Figures 6, 7). Most QTLs (23
of 33) presented a negative alternative allele’s effect over
the target trait. Among all, four QTLs were consistently
identified under more than one growth condition and
presented similar effects over the trait. These four included
the SNP 1572065, detected by both drought in 2016 and
joint analysis that accounted for 11.56 and 7.93% of the
phenotypic variance, respectively, and DArT 3371424
identified by joint analyses in both drought and irrigated
experiments, which explained 6.05 and 6.20% of the phenotypic
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FIGURE 4 | Manhattan plot of the associations for SW for common bean, under irrigation, using a single-based GWAS (gray circle), segment-based GWAS (red
triangle), and gene-based GWAS (black circle) based on the role set of experimental data. Gray, red, and black lines indicate Bonferroni-corrected threshold with an
experimental type I error rate at α = 0.05.

FIGURE 5 | Manhattan plot of the associations for SW for common bean, under drought, using a single-based GWAS (gray circle), segment-based GWAS (red
triangle), and gene-based GWAS (black circle) based on the role set of experimental data. Gray, red, and black lines indicate Bonferroni-corrected threshold with an
experimental type I error rate at α = 0.05.
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FIGURE 6 | Manhattan plot of the associations for GY, under irrigation, using a single-based GWAS (gray circle), segment-based GWAS (red triangle), and
gene-based GWAS (black circle) based on the role set of experimental data. Gray, red, and black lines indicate Bonferroni-corrected threshold with an experimental
type I error rate at α = 0.05.

FIGURE 7 | Manhattan plot of the associations for GY, under drought, using a single-based GWAS (gray circle), segment-based GWAS (red triangle), and
gene-based GWAS (black circle) based on the role set of experimental data. Gray, red, and black lines indicate Bonferroni-corrected threshold with an experimental
type I error rate at α = 0.05.

variance, respectively. These markers were located within
putative gene sequences involved in pre-mRNA maturation
(polyadenylate-binding protein) and nitrogen assimilation

(asparagine synthase), respectively. From the seven QTLs
identified on chromosome 8, four were detected in the
marker interval 60713295–61898258 (∼1.2 Mb) and formed
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a QTL cluster, placed on different haplotype blocks, with
the phenotypic variance accounted by these markers ranging
from 5.85 to 9.55%.

Segment-Based Models
For the segment-based GWASs, 1,588 segments of size 100 kb
were tested. Of the 105 associations identified for the SW, under
irrigation (Figure 4, red triangle; Supplementary Table 9), a
higher number of associations were detected in the experiment
conducted in 2016 (40), followed by 2014 (36) and 2015 (11).
For the analysis combining the whole data set, a total of 58
associations were identified, with 12 being common between,
at least, two experiments. The proportion of the phenotypic
variation ranged from 0.0074% (SNP 16648859) to 32% (DArT
3376862). Overall, four associations were consistently identified
in all 3 years of experimentation and joint analysis (SNPs
3384387, 3383169, 3380258, and 3378295), explaining on average
8–21% of the phenotypic variance. These markers were found
within gene sequences with diverse putative functions, such as
binding pectin polymers in the cell wall, DNA/RNA binding
and protein interactions, nitrogenase activity, and regulation
of photosystem II, respectively. In addition, these same four
markers were shared between SW evaluated under drought and
irrigated conditions. All associations were comparable to those
obtained using single-model GWASs, and 12 QTLs were not
shared between GWAS methods.

For the SW evaluated under drought (Supplementary Table 9
and Figure 5), eight associations were identified. Of these, two
(SNP 3378295 and SNP 3380258) were consistently identified
over the three independent analyses (2014, 2015, and joint
analysis), and two (SNP 3383169 and DArT 3382165) were
detected in the experiment of 2014 and joint analysis. The
proportion of the phenotypic variation ranged from 0.038%
(SNP 3377757) to 32% (SNP 3378581), and the two markers
consistently identified over experiments explaining, on average,
20% of the phenotypic variance. The most significant regions
declared were placed on chromosomes 1 (SNPs 3380258)
and 8 (SNP 3378295). Two markers on chromosome 6
placed at the same interval (28842624 to 28934587 bp),
corresponding to a transcribed region of a NADH dehydrogenase
(Ubiquinone), explained the highest proportion of the genetic
variation (32%) under drought (SNP 3378581) and irrigation
conditions (DArT 3376862).

For the GY, overall, nine significant regions at the genome-
wide level were captured (five under irrigation and four under
drought), of which all QTLs were detected by single-model
GWASs (Figures 6, 7, red triangle and Supplementary Table 10).
Combining the data of all experiments increased the power to
detect significant associations, and using this approach, eight
(four under drought and four under irrigated conditions), of
the nine associations, were identified. The most significant
region declared for GY, under irrigation, contains two SNPs
(S04_8176704 and 3369849), placed on chromosome 4 and
within a ubiquitin gene. The association that explained the
highest proportion of the genetic variation under drought (SNP
3383887, 17%) was located physically close (∼4 kb) to transcripts
related to DNA transcription and RNA synthesis.

Gene-Based GWASs
Of the 27,012 genes restricted to chromosomes (including genes
only in chromosomes 1–11) in the P. vulgaris genome v. 2.1
(Schmutz et al., 2014), 10,163 were considered as gene sets in
our analysis as they contained SNPs targeted by the DArTseq
and CaptureSeq approaches. For the GY trait, no significant
association (FDR at 5%) was detected using this approach, even
combining the data set by gene-based joint GWASs.

For the SW trait, under irrigation (Figure 4, black circle
and Supplementary Table 11), 651 significant genes were
identified for the three experiments and joint analysis, placed
on 220 distinct start- and end-SNPs intervals, spanning all
chromosomes, except on the chromosome 5, with a large number
of associated genes (101) on chromosome 11. The number of
SNPs by gene ranged from 2 to 20 (chromosome 11, interval
containing the gene Phvul.011G194900), and putative functions
were attributed to 532 genes. As expected, most gene associations
(∼70%) were also detected at the same significant genomic
regions identified by segment-based and single-model SNP
GWASs. These genes explained proportions of the phenotypic
variations that ranged from 0.24 to 27%, and blocks of genes that
explained more than 20% of the phenotypic variance were placed
in all, except on chromosomes 1, 5, and 8.

A total of 35 genes placed on 4 chromosomes (6, 7, 10, and
11) were significantly associated with SW at drought, restricted
to the experiment conducted in 2014 and the joint analysis,
of which 12 were common between these analyses (Figure 5,
black circles and Supplementary Table 11). The number of SNPs
contiguous with the genes ranged from two to four. Seven genes
were placed on chromosome 6, within an interval of 65 kb
(28897165 to 28962611), positioned at adjacent position (apart
4 Mb) and accounted for 26% of the phenotypic variance. On
chromosome 7, 18 genes were identified (eight related with
a putative kinase and oxidoreductase functions), spanning an
interval of 444 kb; placed on four distinct intervals of SNPs; and
explained proportions of the phenotypic variations ranging from
2.3 to 26%. As expected, some regions containing genes were
common to those detected in the other analyses (single SNP-
and segment-based models); however, many new associations
have been revealed.

DISCUSSION

In common bean, there is a need to improve drought tolerance
by selecting genotypes with high yield potential under stress
and by introducing favorable alleles conferring these adaptations
into cultivated germplasm. In this study, a high number of
genetic markers and hundreds of Mesoamerican accessions
with reduced genetic relationship and useful genetic variation
were used for association analysis. The SW and GY data were
recorded in field experiments conducted at the experimental
station of Emater-GO, in Porangatu (Brazil), which historically
presents few rain occurrences during the winter season requiring
irrigation (Heinemann et al., 2007). Although this condition is
suitable for drought phenotyping, dry season in Porangatu shows
a decrease in accumulated radiation and a higher frequency
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of lower-than-optimal minimum temperature during the crop
cycle (Heinemann et al., 2016), limiting lines/cultivar to express
their full yield potential. Under irrigation, of the 10 genotypes
with the best performance, seven were landraces, with yields
similar to those of the cultivars and mostly coming from the
South of Brazil (six out of seven). Embrapa started collecting
landraces from several Brazilian regions in the 1970s, and
the South region has been considered a valuable source of
germplasm adapted for abiotic stresses (Vidigal-Filho et al., 2007;
Pereira et al., 2009). In this study, water deficit resulted in
significant reduction in productivity (by 62%), close to the yield
reduction (by ∼70%) obtained by Smith et al. (2019) in the
field evaluation of drought stress conducted at CIAT. Because
increased yield under drought is one of the greatest challenges
for the genetic breeding of common bean, one significant
contribution of this study was to indicate genotypes with superior
performance that could be explored through breeding. Among
the 10 genotypes with outstanding yield performance under
drought, six are landraces from Brazilian regions with contrasting
edaphoclimatic conditions (Supplementary Figure 1). Moreover,
three genotypes performed better with and without WS; two
of them are landraces (CF200012 and CF800113). Somehow,
the genetic diversity within these traditional germplasms gives
the necessary plasticity to support an adaptive response to
environmental variation, providing an advantage over improved
varieties (Mercer and Perales, 2010; Dwivedi et al., 2016).
This reinforces the fact that landraces remain a vital resource
for contemporary plant breeding and demand permanent
conservation and knowledge of their genetic variability (Villa
et al., 2005; Azeez et al., 2018). Regarding the Ouro Negro
cultivar, from Honduras, which has black grains and a normal
cultivation cycle (80–100 days; Amaro et al., 2015), in addition to
standing out for disease resistance (Valentini et al., 2017), it also
has high capacity to fix nitrogen (Da Silva et al., 2017), combining
a number of attributes for plant breeding.

The large-scale SNP discovery obtained by the DArTseq
and CaptureSeq technologies provided an extensive genome
coverage allowing the exploration of both the broad structural
(DArTseq) and gene variation (CaptureSeq), providing a very
powerful genomic tool to differentiate germplasm accessions and
to carry out high-resolution association mapping. The 17,375
SNPs identified (11,870 with MAF ≥ 0.05 and call rate > 95%)
were all placed on the P. vulgaris reference genome, supporting
the analysis of population structure, LD, and identification
of genomic regions under selection that have an impact on
crop improvement research. For the SNPs from DArTseq, the
estimates of marker reproducibility (99.8%) and call rate (94%)
were close and consistent with those previously reported (Cruz
et al., 2013; Ren et al., 2015), thus indicating the quality and
reliability of this set of SNPs. Using the CaptureSeq, we reported
the identification and genotyping of 3,166 SNPs located inside
or in close proximity to 3,304 (65.42%) annotated protein-
coding genes associated with drought tolerance (Pereira et al.,
2020) along the common bean genome. Despite a reduced
number of SNPs targeted, this strategy represents a real possibility
to explore the polymorphism in gene regions of interest,
enabling the mapping of the set of isoforms for association

analysis. Imputation accuracy was robust (97%), favored by
the homozygous nature of the common bean genome and the
availability of reference genomes (Nazzicari et al., 2016). Overall,
a single marker per 14 kb has been achieved, a slightly higher
density than that previously reported (SNP/86 kb) by Valdisser
et al. (2017) based solely on DArTseq. For the first time, a
diverse group of Mesoamerican germplasms (n = 339) was
genotyped with a wide genomic representativeness, providing a
more uniform and realistic distribution of allelic frequency over
the whole population. This large set of markers targeting the
genome of elite cultivars and landraces from Mesoamerican gene
pool enabled the discovery of alleles and useful haplotypes at
different frequencies, providing opportunity for additional novel
genetic discoveries, in addition to those reported in this study.

Genetic Diversity
The pattern of diversity of common bean in secondary
domestication centers has been reported worldwide, providing
relevant information on the evolutionary history of this species
(for review, see Bitocchi et al., 2017). In Brazil, although
germplasms of Andean and Mesoamerican origins are present,
there is a predominance of Mesoamerican accessions in both
modern varieties and landraces, which presents high levels
of gene diversity when compared to the Andean accessions
(Burle et al., 2010; Cardoso et al., 2014; Valdisser et al.,
2017). Considering all markers, the genetic diversity for the
Mesoamerican germplasm (HE = 0.277; n = 339) was higher than
that previously estimated by Valdisser et al. (2017) (HE = 0.168;
n = 111) and Rodriguez et al. (2016), who considered only
domesticated bean accessions (HE = 0.157; n = 100), what
certainly can be attributed to the larger sample size used in
this study. Slightly higher HE values obtained for lines/cultivars
(HE = 0.285; n = 115), compared with landraces (HE = 0.262;
n = 224), are probably due to the global representativeness
of the cultivated germplasms (breeding germplasm including
introductions from abroad) supporting the highest estimates of
diversity, whereas the landraces originated only from Brazil.
Despite a moderate genetic differentiation between germplasms
(Fst = 0.051), we identified a genetic structure (K = 3) within this
panel, predominantly, in accordance with the germplasm strata.
The M1 represented a mixing of germplasms (n = 88; HE = 0.229),
with a predominance of cultivars/lines (61%) most from Brazil,
and some came from Guatemala, El Salvador, and Colombia.
A very similar scenario clustering a diverse germplasm from
Mesoamerica was observed by Bitocchi et al. (2012) and Kuzay
et al. (2020), representing a useful source of tropical adaptive
variation. The M2 (n = 7; HE = 0.045) group was separated from
the larger groups (clustering landraces and abroad cultivar/lines
from Colombia and Zambia), and although there is no clear
explanation for this, aspects related to the domestication and
adaptation process could support this finding (Carovic-Stanko
et al., 2017). A more comprehensive pattern was observed for
M3 (n = 116; HE = 0.198), mainly formed by landraces (95%)
representative of all Brazilian regions, which is an evidence that
these accessions still retain much of their identity, a resource that
remains to be better exploited by breeders in strategically planned
breeding programs (Cortés et al., 2013). The common bean has
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been broadly adapted to the Brazilian territory (Burle et al.,
2010), having a significant genetic value that cannot be neglected
(Azeez et al., 2018). The greater between-accessions variation
(≥74%) was observed, thus evidencing that the germplasm
groups analyzed are not genetically homogeneous. In addition,
the results showed that 38% of the accessions presented high
level of admixture (n = 128; HE = 0.298), showing the movement
of alleles between germplasm groups, which contributes to
the expansion of variability but should be carefully taken to
prevent the loss of genetic identity of the landraces. Our
results suggest that the Brazilian Mesoamerican core collection
composed by different germplasm strata, established using
morphogeographical data and multivariate analysis (Oliveira
et al., 2011), covers a wide range of genetic variability and should
be explored worldwide.

Linkage Disequilibrium Analysis
The discovery of a large number of markers in Mesoamerican
germplasms of diverse origins, with a good distribution along
the chromosomes, enabled estimating LD extension with high
reliability, which is very important in the association studies
context (Song et al., 2015). The LD extension estimates with
corrections for structure and relatedness (r2

sv) showed a faster
LD decay (63.38 kb), contrary to what was observed without
correction (r2 = 237 kb), showing that modeling taking into
account both the genetic structure and kinship strongly affects
the association between markers. Our findings showed that
the bias induced by genetic relatedness was stronger than that
of population genetic structure itself, what was also observed
by Diniz et al. (2019). This has impact on determining the
number of markers that cover the common bean genome
and, consequently, on practical applications such as studies
of genomic selection, where the correct determination of a
consistent marker sets would provide more robust prediction
capacity (Liu et al., 2015). The decay reported here is higher
(r2

sv = 63.38 kb; n = 339) compared with previous report
with common beans (r2

sv = 130 kb; n = 111; Valdisser et al.,
2017) for the Mesoamerican germplasm. In addition, a less
extensive LD is likely a reflection of the broader genetic basis
of the genotyped Mesoamerican germplasm, as it comprised
a more diverse set of accessions from the Brazilian common
bean core collection. In addition, as previously reported and
expected, the lines/cultivars accessions showed a higher level of
LD extension (124 kb), compared with the landraces (98 kb),
certainly as a result of a smaller effective population size of the
breeding populations, a consequence of the successive use of
elite germplasm in forward breeding, which may reduce genetic
diversity over time. Initiative has been reported in the past to
introduce genetic diversity from the wild common bean into
the breeding program (Acosta-Gallegos et al., 2007), but these
resources are still underexploited.

Even using a large number of genome-wide markers, the
haplotypes blocks represented only 45.5% of the common bean
genome (containing ∼83% of the total markers) and had
average size of 21 Mb. This coverage was considerably higher
when compared with the study of Valdisser et al. (2017) for
the Mesoamerican gene pool (12.2% with 5,531 SNPs), which

was due to the expanded sample size and higher number
of markers used in this study. In general, the markers were
well-distributed along the chromosomes, and regions with a
reduced number of markers (Supplementary Figure 2) were
coincident with the chromosomal structure of common bean
centromeric and pericentromeric regions (Schmutz et al., 2014).
Thus, in order to activate higher haplotype completeness, in
addition to the need to continue sampling genotypes from
different origins, it is necessary to even increase the density
of the markers throughout the genome. This can be obtained
combining several methods for sequence variation discovery,
such as the use of different restriction enzymes, sequencing
of large genome fragments, and even sequencing of the entire
genome, in addition to expansion of the representativeness of
genotypes (Fu et al., 2016; Edge et al., 2017; Torkamaneh et al.,
2019). Despite the great interest in the practical implications
of these LD block structures for gene-mapping studies in
common bean, an autogamous species, haplotype coverage
is still low and should be considerably expanded in future
studies with beans.

Predicted Coding Effects and Outlier
Markers
Data from this study indicated a smaller proportion of
SNPs (0.39%) with predicted effects of high impact. These
genes were associated with kinases, transcriptions factors, and
cellulose synthase, among others, and the consequences of
these changes are unclear. Certainly, the impact of these
SNPs on the gene’s functionality could be buffered by the
plasticity and robustness of genome architecture, expression,
and regulation (Koonin and Wolf, 2010). Regardless of that,
these results could be a useful resource for future experimental
identification and provide interesting information for better
common bean breeding. The analysis showed eight outlier loci
placed on chromosomes 7 and 8, suggestive of an adaptive
divergence between landrace and lines/cultivars. Regions under
domestication placed on chromosome 7 in the Mesoamerican
group were previously reported by Schmutz et al. (2014).
In our study, the functional annotation showed outlier loci
involved in important mechanisms that could have favored the
adaptive process in domestication, such as genes associated
with tolerance to biotic and abiotic stress placed apart ∼49 kb
(protein kinases); a gene (DNA helicase) directly involved in
cell cycle progression (Tsuchiya et al., 1998), which has impact
on cell growth and cell division (Jones et al., 2017); lipid
transfer proteins involved with a large number of biological
process, defense signaling, and biotic and abiotic stress (reviewed
by Salminen et al., 2016; D’Agostino et al., 2019); and a
CCCH zinc finger family gene, which has an important role
in plant developmental processes and response to biotic and
abiotic stress (Pi et al., 2018). Altogether, these results suggest
that the fixation of favorable alleles on these selective loci
certainly conferred adaptive advantage affecting the breeding
germplasm over time. For breeding purposes, these target loci
are a valuable resource and could be exploited by creating and
introgressing new variability into the cultivated germplasm and
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also be the starting point for applying gene editing strategies
(Aranzana et al., 2019).

GWAS Analysis
Several GWASs in common bean are based on analysis
combining collections of Andean and Mesoamerican
germplasms, providing a broad perspective over the common
bean diversity (Perseguini et al., 2016; Raggi et al., 2019; Ojwang
et al., 2019; Tigist et al., 2019). However, each gene pool has
been domesticated for specific agronomic, morphological, and
physiological and under diverse edaphoclimatic conditions
(Rendón-Anaya et al., 2017). As a consequence, a change in allele
frequency associated with the genetic factors is expected within
the gene pools, and it may not be segregating or have a negligible
effect in a different gene pool controlling the agronomic traits
of interest. In this study, a diverse collection of Mesoamerican
common bean germplasms was used, and although less genetic
variation is expected, the detected associations should be
more relevant to breeding purposes, because a large set of
cultivated/elite germplasms has been evaluated, each with its
individualized recombination history.

Seed weight is one of the yield components of common
bean and, in general, is positively correlated with seed yield
(Kamaluddin and Shahid, 2011; Balcha and Tigabu, 2015) and
regulated by a complex series of genes during the growth
period encompassing a large set of functions and biological
processes (Zhang et al., 2015). The demand for development
of productive common bean cultivars with adequate seed is
increasing in importance, either for national or international
market. Mesoamerican grains are representative of the most
consumed bean types in Brazil, and the breeding programs have
prioritized the selection of medium-sized (25–30 g) black and
carioca beans, to meet the preferences of packaging companies
and consumers (Carbonell et al., 2010). A relatively large number
of SW QTLs mappings have been identified using different
types and sizes of mapping populations, molecular markers,
and mapping strategies (Pérez-Vega et al., 2010; Mukeshimana
et al., 2014; Briñez et al., 2017; Sandhu et al., 2018; Kamfwa
et al., 2015). To our knowledge, the highest number of QTLs
for SW has been reported in this study (189), in addition to
the genes identified by gene-based GWAS (651), and several
previous studies have located SW QTL on the same chromosomes
as described here.

A total of 185 exclusive QTLs were identified by single and
segment-based analysis of SW under irrigation, of which 93
(50%) were common. In general, the proportion of phenotypic
variance (r2) explained by the segment-based approach was
typically higher (42% of the markers explained more than 10% of
the phenotypic variance) than that of the single-based approach
(8% explained more than 10%). This is expected as a result of
the segment-based analysis, which combines interval mapping
with association analysis to capture variance across the whole
population, powered by the combined effect of several closely
linked loci at the target locus (Resende et al., 2017). By segment-
based approach, four QTLs were consistently identified across the
experiments and joint analysis on chromosomes 1 (SNP3380258,
maximum r2 = 21%), 7 (SNP3384387, 15%), 8 (SNP3378295,

20%), and 11 (SNP3383169, 17%), whereas by gene-based
approach we identified 18 genes across the multiyear experiments
and joint analysis positioned on chromosomes 7 (located at the
14.57 to 15.53 Mb) and 11 (at 48.51 and 52.81 Mb). From these
genes, nine were characterized in diverse biological functions that
act in a broad spectrum of cellular and physiological processes,
which can provide useful reference for genetic improvement
of SW in common beans. Among these, we highlighted genes
associated with plant development and abiotic stress tolerance
(Wang and Bouwmeester, 2017); genes that act regulating cellular
processes (Mudgil et al., 2004); proteins determinant for signal
transduction mediated by plant hormones (Schapire et al., 2006);
and seed storage proteins (Dunwell, 1998), among others.

A total of 38 QTLs for SW were identified in, at least,
two successive years, placed on all chromosomes, except 1 and
5. Based on GWAS analysis of Mesoamerican common bean
panel, Moghaddam et al. (2016) also identified genomic regions
associated with SW in the Durango and Jalisco subpopulation
exactly coincident with the region identified on chromosome
8 in this study (Phvul.008G013300) and very close to the
regions identified for chromosomes 6 and 10. Transcript
Phvul.008G013300 encodes a subtilisin-like serine protease that
plays roles in plant development and signaling cascades. Previous
reports have also identified QTL for seed size on chromosome
9 (markers ss715646851 and ss715646847, Hoyos-Villegas et al.,
2017) located at ∼16.6 Mb (r2 = 4% for each SNP), under
both irrigated and rain-fed conditions based on a Mesoamerican
gene pool (N = 96), and quite similar to the QTLs identified in
this study (chromosome 9, ∼17 Mb), providing evidence of a
consistent region controlling SW across different environmental
conditions and genetic backgrounds.

Among the yield components, SW has a large impact under
drought, being affected by several physiological mechanisms,
such as oxidative damages, photosynthate remobilization,
nitrogen assimilation, and plant growth, among others (Sehgal
et al., 2018; Teran et al., 2019). The impact of drought on
common bean for SW in a field environment conducted at CIAT
resulted in a reduction by ∼25% (Smith et al., 2019). In this
study, drought stress reduced SW by 16%. Regarding the GWAS
analysis, a reduced set of associations was identified for SW
under drought, compared with the irrigated condition, and the
higher number of associations was identified using gene-based
approach (35). The top associated markers/genes were placed on
chromosomes 6 and 7 comprising 14 genes, of which resistance
gene was highlighted (Toll–interleukin resistance), located at
28.91 Mb, identified by both segment and gene-based analyses
(r2 from 26 to 32%, respectively). Several genes in the vicinity of
those association signals were identified by gene-based analysis,
providing additional and complementary biological information
that would not have been easily observed with SNP-based GWAS
alone. Several SW QTLs under drought were previously identified
on chromosome 1, at the 3.3- and 47.7-Mb position (Trapp
et al., 2015) and at the interval of 54.88–76.87 Mb (Briñez
et al., 2017, an r2 = 17.32%); on chromosome 3 at 23–33 Mb
and chromosome 7 at 150 Mb (Mukeshimana et al., 2014);
and on chromosome 9 at ∼16.6-Mb position (Hoyos-Villegas
et al., 2017), among others. These QTLs vary both in relation to
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the mapped chromosome, as well as in to the position within
the chromosomes compared to this study, indicating a great
diversity of regions in the bean genome associated with SW in
the presence of drought.

Interestingly, three QTLs on chromosomes 1 (SNP 3380258
at 33 Mb), 7 (SNP 3384387 at 1.5 Mb), and 8 (SNP 3378295
at 54 Mb) and 28 genes placed on chromosomes 7, 10, and
11 were identified in both irrigation conditions (WS and
NS), suggestive that these QTLs have a constitutive effect
on SW. These genes were classified functionally into several
groups, including the following: (1) kinases, which play an
important role in the regulation of cellular functions, including
carbohydrate metabolism, growth, and differentiation, among
others, having an impact on GY (Zhang et al., 2012; Shankar
et al., 2015); (2) genes involved in the regulation of cell-wall
polymers, having a structural role in plant growth and stress
defenses (Gao et al., 2017); (3) genes that encode proteins
that play a role in the vesicle budding from the endoplasmic
reticulum (ER) and ER–Golgi protein trafficking, which could
be involved in carbohydrate translocation to seed (Wang
et al., 2016); (4) proteins involved in plant hormone signaling,
such as gibberellin, cytokinin, and auxin responses, as well
as ethylene biosynthesis, which mediate regulation of plant
growth, development, and consequently GY (Schapire et al.,
2006; Nadolska-Orczyk et al., 2017); and (5) genes that have
roles in regulation of organelle transcriptome and biogenesis
(Manna, 2015). In summary, we can see important genetic
mechanisms under drought of great importance for SW, thus
providing a considerable amount of information. From the
perspective of practical and applied breeding, this large set of
QTLs identified under irrigation and drought is challenging and
difficult to be selected and manipulated because of their genetic
complexity. Based on these results, there is strong evidence that
the approach of genomic selection might be more appropriate,
because it would take into account the effects of all markers
and allow the selection based on genomic breeding values
(Meuwissen et al., 2001).

For the GY trait, under irrigation, 25 QTLs were identified
by the single- and segment-based approaches, placed on
chromosomes 2, 3, 4, 8, 9, and 11. However, no QTL for
GY was consistent across experiments, and only two QTLs
(3371424 and 3370686) identified by single-model approach were
consistent across water treatments. Several QTLs in this study
were found on chromosomes previously identified as containing
QTLs for yield conducted in several environments and genetic
backgrounds. Based on genetic linkage analysis, QTLs for yield
have been reported throughout chromosomes 1, 2, 3, 4, 5, 7,
8, 9, 10, and 11 (Tar’an et al., 2002; Beattie et al., 2003; Blair
et al., 2006; Wright and Kelly, 2011; Checa and Blair, 2012;
Mukeshimana et al., 2014; Diaz et al., 2018; Dramadri et al., 2019).
Previous QTL studies based on GWAS have provided insight
into the genetic architecture of yield in common bean. Kamfwa
et al. (2015) identified significant SNPs for seed yield on Pv03
and Pv09, in agreement with the results found in the present
study. More recently, Oladzad et al. (2019) identified SNPs
associated with yield in a panel of Mesoamerican germplasm
grown under heat stress in Honduras and Puerto Rico (n = 119

genotypes), placed on chromosomes 3, 8, and 11. The QTL
identified on chromosome 3 was at the position 41,096,424 and
explained 14% of the variation in yield, whereas in our study
the QTL was placed at position 48,279,384 and explained 4%
of the variance. Another QTL for GY identified by Oladzad
et al. (2019) on chromosome 8 at 9,130 Mb was in a very
close position to one of the six QTLs detected in our study
(SNP 8207790 at 9,871 Mb, r2 = ∼6%). For the QTLs placed
on chromosome 11, considering the three identified in our
study, one was at similar position (SNP 8215509 at 49,353 Mb,
r2 = ∼13%) to that previously identified by Oladzad et al. (2019)
and placed at 47,305 Mb.

The detection of QTL affecting yield, under drought, would
be of great interest for the design of molecular tools for marker-
assisted selection and identification of target genes for edition,
mainly when complemented by fine mapping studies (Tura
et al., 2020). Despite a smaller number of QTLs identified under
drought (10) compared to the irrigated condition (25), novel
genomic regions were detected. Many of the morphological
and physiological mechanisms linked to drought tolerance in
common beans are known (Rosales et al., 2012; Polania et al.,
2016; Lanna et al., 2018); however, to obtain an accurate
phenotyping, adding to the large number of genes involved in
the control of these traits (several of small effect) makes the
drought tolerance at the genetic level difficult to be understood
(Würschum, 2012). In our study, all identified QTLs (10) were
detected in joint multienvironmental analyses, and most had a
negative additive effect associated to the reference allele in the
single-model GWAS, meaning that plants with the alternative
allele increased trait performance. Only one QTL identified
by multiexperimental joint analysis (7.93%) was also identified
in individual environmental analysis (S01_1572065), which
showed a high phenotypic contribution rate (11.56%). Wang
et al. (2019) suggested that both the QTL additive effect and
QTL × environment interaction act on reducing the phenotypic
variation in the multienvironmental joint analysis, since the
individual environmental analysis method only estimates the
additive effects of QTL, which also seems to apply in the
current study. In addition to that, all QTLs showed stability
across the years of experimentation, and heritability ranged
from 0.37 to 0.57 (moderate to high), indicating that the
selection is likely to provide a benefit for common bean
breeding, and the markers could provide promising targets
for application in future studies. The higher proportion of
phenotypic variations (17%) was explained by SNP 3383887
on chromosome 10, placed in a region comprising 4 SNPs,
and SNP S01_1572065 (12%) placed on chromosome 1. The
significant SNP 3383887 was located in gene Phvul.010G141600,
of unknown function in common beans, encoding a protein
homologous (74%) to the soybean transcription factor (C2H2
zinc finger), which was found to play an important role in
abiotic plant stress (Guoliang et al., 2020), and SNP S01_1572065
located in gene Phvul.001G019600, which was annotated as
a posttranscriptional gene regulator (polyadenylate-binding
protein) that has an important biological function in plant
adaptation to changing environments, in particular drought
stress (Marondedze et al., 2019).
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CONCLUSION

This study reports the use of high-density genotypic data in a
panel composed of 339 diverse Mesoamerican common bean
accessions structured into Brazilian landraces and lines/cultivars
from diverse origins (national and international germplasms).
A large set of markers (11,870) based on DArTseq and
CaptureSeq was successfully genotyped. The overall extension of
LD decay along the genome, which is a relevant parameter in
association studies between variants and traits, was estimated to
be ∼63 kb, showing great variation in function of the evaluated
germplasm (98–124 kb). In addition, important genomic
regions under selection during landraces and lines/cultivars
domestication were identified. The Mesoamerican germplasm
panel was evaluated in field experiments conducted in 3
consecutive years in the presence and absence of water
deficit and allowed the identification of genotypes with better
performance for SW and GY promising to common bean
breeding programs. A total of 189 QTLs were found associated
with SW and 33 with GY, and many were within or near
genes that have been reported to play important roles in
biochemical and physiological processes related to GY, thus
providing important clues on the mechanism of productivity
under water deficit. These findings will be of great use for
MAS of common bean varieties with improved SW and
GY. This study makes available, under seed request, a panel
of genotyped germplasm useful for GWASs of any relevant
trait in common bean.
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