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Abstract: This study aims to assess the carbon stock in a pasture area and fragment of forest in
natural regeneration, given the importance of agroforestry systems in mitigating gas emissions which
contribute to the greenhouse effect, as well as promoting the maintenance of agricultural productivity.
Our other goal was to predict the carbon stock, according to different land use systems, from physical
and chemical soil variables using the Random Forest algorithm. We carried out our study at an
Entisols Quartzipsamments area with a completely randomized experimental design: four treatments
and six replites. The treatments consisted of the following: (i) an agroforestry system developed for
livestock, (ii) an agroforestry system developed for fruit culture, (iii) a conventional pasture, and
(iv) a forest fragment. Deformed and undeformed soil samples were collected in order to analyze
their physical and chemical properties across two consecutive agricultural years. The response
variable, carbon stock, was subjected to a boxplot analysis and all the databases were used for a
predictive modeling which in turn used the Random Forest algorithm. Results led to the conclusion
that the agroforestry systems developed both for fruit culture and livestock, are more efficient at
stocking carbon in the soil than the pasture area and forest fragment undergoing natural regeneration.
Nitrogen stock and land use systems are the most important variables to estimate carbon stock
from the physical and chemical variables of soil using the Random Forest algorithm. The predictive
models generated from the physical and chemical variables of soil, as well as the Random Forest
algorithm, presented a high potential for predicting soil carbon stock and are sensitive to different
land use systems.

Keywords: organic matter; carbon sequestration; land use systems; data mining technique; ran-
dom forest

1. Introduction

The use of agroforestry systems to achieve optimum agronomic benefits through the
efficient use of resources (nutrients, light, water collection, and utilization) has received
great attention for its contribution to mitigating climate change through organic carbon
sequestration [1]. In this context, understanding the dynamics and storage of soil carbon,
especially in agroforestry systems, is essential for informing public policies focused on
disseminating these agricultural practices [2].
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Soil can function both as a carbon source or a carbon sink in the atmosphere [3].
Overall, approximately 38.4 Gt (1 gigatons = 1 billion tons) of carbon are stored in the
soil, making it the largest terrestrial carbon reservoir [4]. However, small changes in land
management or edaphoclimatic conditions may lead to significant losses of carbon in the
form of CO2, resulting in the spatial and temporal variability of soil carbon stocks.

In general, organic carbon in soil is extremely dynamic as an energy source to all
microorganisms, as well as other organisms belonging to the soil biota. This type of carbon
is highly susceptible to erosion since it is preferentially removed for having a low density
and located near the soil surface [5]. Thus, the carbon stock of the soil is dynamically
balanced with its environment. In addition, its magnitude and changing rate depend on
the balance between carbon gains and losses [5,6]. If carbon inlets are higher than outlets
(through mineralization or erosion) soil carbon stock increases [7].

In addition to the environmental issue, carbon sequestration contributes to an increase
in organic matter in soil, which plays an important role in maintaining agricultural produc-
tivity. It promotes improvements in physical, chemical, and biological attributes allowing
for the increased productivity and reduced costs of irrigation, fertilizers, soil conditioners,
and other agricultural inputs [2]. Therefore, carbon sequestration can partially compensate
for emissions caused by fossil fuels and other human activities, while improving soil quality
and agronomic productivity [8].

According to [9], mathematical models are promising tools to assess carbon loss and
gain processes; however, the high complexity of these systems, combined with a lack of
information to parameterize and test these models, prevents the development of compre-
hensive and generic models for such a purpose. An alternative approach is the use of
data-mining techniques to predict the soil carbon stock in agroforestry systems, whose
objective is to extract predictive knowledge hidden in large databases [10]. The Random
Forest algorithm is considered to be one of the most precise prediction methods for classi-
fication and regression, due to its capacity to model complex interactions between input
variables and its robustness in the presence of outliers [11]. In addition, the advantages of
this algorithm include an ability to investigate nonlinear and hierarchical relations between
predictor variables and response variables (in this case, the soil carbon stock) by using a
joint learning approach [12].

Given this context, despite the scientific advances in agroforestry systems in recent
years, some key questions remain unanswered: What is the potential of agroforestry
systems to increase soil carbon stocks? Are data mining techniques capable of predicting
soil carbon stocks using only one subset of variables? Two hypotheses were raised: (i)
agroforestry systems provide higher soil carbon accumulation than a pasture area, similar
to a natural forest; and (ii) the physical and chemical variables of soil have a high capacity to
predict carbon stocks and can be used to generate predictive models through the Random
Forest algorithm for different land use systems.

Our objective was to assess the carbon stocks in agroforestry systems in a pasture area
and a forest fragment undergoing natural regeneration (used as references) in addition to
predicting the carbon stocks for different land use systems with the physical and chemical
variables of soil using the Random Forest algorithm.

2. Materials and Methods
2.1. Description of the Study Area and History of the Areas

We conducted our study at an experimental area in the premises of the Fazenda
da Toca, located in the municipality of Itirapina, São Paulo, Brazil, with geographical
coordinates of 22◦12′ south and 47◦44′ west, at an altitude of approximately 800 m above
sea level (Figure 1). The region climate was classified as a humid subtropical climate
with rain in the summer and drought during the winter (Cwa), according to the Köeppen
classification [13].
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Figure 1. Location of experimental areas in the municipality of Itirapina, São Paulo, Brazil.

Four land use systems were assessed: (i) agroforestry system developed for livestock
(AFS1), (ii) the agroforestry system developed for fruit culture (AFS2), (iii) area used
as pasture (Pasture), and (iv) forest fragment undergoing natural regeneration process
(Forest). All land use systems were comprised under the same type of soil—classified as
Neossolo Quartzarênico according to the Brazilian Soil Classification System [14]—with
a sandy texture corresponding to the Entisols Quartzipsamments according to the Soil
Taxonomy [15]. Table 1 presents the granulometry performed in June 2016 to characterize
the soil texture areas.

Table 1. Granulometric composition of experimental areas under different land use systems located
in the municipality of Itirapina, São Paulo, Brazil.

Land Use Systems
Sand Clay Silt

g kg−1

AFS1 897 75 28
AFS2 888 85 27

Pasture 953 37 10
Forest 937 50 13

AFS1—agroforestry system developed for livestock, AFS2—agroforestry system developed for fruit culture,
Pasture—pasture system, Forest—forest fragment in natural regeneration.

Land use systems were implanted in areas which were occupied by crops until 2011,
except for the forest fragment (tree species), which had been undergoing a natural process
of regeneration for more than 35 years. This area was used as a reference of the natural
recovery strategy in this transitional region between the Atlantic and Cerrado forest biomes.

The management systems adopted to implement the AFS1 and AFS2 areas were
similar to each other and effectively followed the subsequent order of events. (1st) Grasses
(Brachiaria sp.) and pigeon pea (Cajanus cajan) were planted to decompress the soil and
produce biomass. (2nd) After 2 years, the area was cleared, preserving the grass stems for
regrowth, after which tracks for soil tillage were opened using a rotary hoe (machinery
to remove biomass and allow soil tillage for planting in windrows). (3rd) Preparation of
planting windrows was carried out (1.2 m wide tracks at a distance of 5 m from each other)
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with rotary tillers and fertilizing with rock dust (500 g linear meter−1). (4th) Hoed material
was laid on the tracks prepared for planting using the same machinery (rotary hoe) to form
a thick layer of mulch and to control the growth of grass in the windrows, nutrient cycling,
and accumulation of organic matter to the soil of this region. (5th) Species of interest were
introduced according to the productive focus of each system.

The implantation of AFS1 occurred in June 2015 in total area of 15 ha, focused on
producing livestock and wood (Eucalyptus pellita) by preparing 1.2 m wide rows spaced 5 m
from each other to plant eucalyptus. The inter-rows were occupied with Marandu grass
(Urochloa brizantha cv. Marandu) to supply organic residue to cover the soil of the planting
tracks. Considering the need for a greater spacing of the pasture, this model included
12 m-wide tracks of Marandu grass for every three rows of planted eucalyptus. In turn,
AFS2 was planted in June 2014 in a total area of 5.2 ha, and focused on fruit production
(bananas, citrus, and mango) and wood (Acacia mangium and Eucalyptus sp.) following the
same pattern as the previous model (AFS1) where 1.2 wide windrows spaced 5 m from
each other were used. The inter-rows were also occupied with Marandu grass.

In addition to the use of rock dust during the system’s implantation, biofertilizer
(principal active compound of this material is fresh cattle manure), organic compound,
or castor oil meal were applied sporadically in the planting windrows. After hoeing the
inter-rows, Azospirillum was applied to the grass.

The pasture area was used in this study as a reference that demonstrated the common
trend of agricultural occupation of the region. Planting was carried out in 2012, using grass
(Urochloa brizantha cv. Marandu). The farm functioned until April 2016, when it ceased
activities in the dairy and the area was abandoned. Therefore, the soil sampling was taken
from the 4-year-old grasses.

2.2. Experimental Design, Soil Collection and Analyzed Physical and Chemical Properties

We used a completely randomized experimental design with six repetitions and four
land use systems: AFS1, AFS2, pasture, and forest.

Soil samples were collected to analyze the physical and chemical variables during
two agricultural years—the first collection in the second quarter of 2016 and the second
collection in the second quarter of 2017. The soil collections were performed at the depths
of 0.00–0.05, 0.05–0.10, 0.10–0.20, and 0.20–0.40 m. The sampling for AFS1 and AFS2 were
performed at three sampling regions: (i) planting windrows (L), (ii) windrow buffers (I),
and (iii) inter-rows (E). However, in AFS1, an additional collection was performed in the
12 m inter-rows designed for animal pasture (E12). Because of their homogeneity, both the
pasture and forest areas were not subdivided in sampling regions, and the soil sampling
was performed in six repetitions at each depth, randomly distributed throughout the areas
(Figure 2).

Bulk density (Ds), macroporosity (Macro), and microporosity (Micro) were determined
according to the methodologies of the Brazilian Agricultural Research Corporation [16].
Furthermore, we determined the soil pH (CaCl2 0.01 mol L−1), exchangeable cations (Ca2+,
Mg2+ and K+), organic soil matter (carbon content obtained through wet oxidation), and
acidity potential; and calculated the sum of bases, cation exchange capacity, and bases of
saturation according to methodology proposed by [17]. Micronutrients copper (Cu), iron
(Fe), manganese (Mn), and zinc (Zn) were extracted using diethylenetriaminepentaacetic
acid solution (DTPA) at 7.3 pH, as described by [18].
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Figure 2. Representative scheme of soil collection performed for different land use systems
with emphasis on sampling regions. (A) AFS1—agroforestry system developed for livestock,
(B) AFS2—agroforestry system developed for fruit culture, (C) Pasture—pasture system, and
(D) Forest—forest fragment in natural regeneration.

Organic C and total N contents were determined from samples of air-dried fine earth
(ADFE) crushed in mortar and filtered in a 100-mesh sieve (0.149 mm), before determining
the total C and N content through dry combustion using an elemental analyzer (Leco
CHN-600 instrument) [19].

C and N stocks were calculated (in Mg ha−1) according to each sampled soil layer by
multiplying the concentration of each element (%) by Ds (g cm−3) and layer thickness (cm).
As the samples were always collected in fixed layers, the values of carbon stock found were
corrected based on their equivalent mass—a methodology proposed in [20]—by using the
equivalent soil mass found in the forest area as reference.

2.3. Predictive Modeling

The complete database was composed of 21 variables, of which 20 were predictive
variables and 1 was a goal-variable or response-variable, which referred to the carbon
stock in the soil (Table 2). For the purpose of inducing the model, the complete database
was subdivided in four data subsets, one for each sampling depth: 0.00–0.05, 0.05–0.10,
0.10–0.20, and 0.20–0.40 m.

The response variable (soil carbon stock) was initially submitted to descriptive analysis
through boxplot graphs in which the following measures were identified: lower limit, first
quartile, median, third quartile, and upper limit.

Afterwards, in order to select only the variables which contributed to the model, a
correlation matrix was used to eliminate variables with null variance or variable which
were highly correlated between each other. In the case of two highly correlated variables,
one was randomly maintained and the other was eliminated for not adding any practical in-
formation to the model. In contrast, a procedure to eliminate null variables was performed
to ensure that no variable had null variance.
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Table 2. Physical and chemical variables in soil used to compose the database to predict soil carbon stock.

Variable Description Abbreviation Unit Type

Land use AFS1, AFS2, Pasture and Forest – – Predictive

Physical
Bulk density Bd kg dm−3 Predictive

Macroporosity Macro m3 m−3 Predictive
Microporosity Micro m3 m−3 Predictive

Chemical

pH – – Predictive
Phosphorus P mg dm−3 Predictive
Potassium K mmolc dm−3 Predictive
Calcium Ca mmolc dm−3 Predictive

Magnesium Mg mmolc dm−3 Predictive
Saturation by aluminum m mmolc dm−3 Predictive

Sum of bases SB mmolc dm−3 Predictive
Cation-exchange capacity CEC mmolc dm−3 Predictive

Bases saturation V % Predictive
Boron B mg dm−3 Predictive

Copper Cu mg dm−3 Predictive
Iron Fe mg dm−3 Predictive

Manganese Mn mg dm−3 Predictive
Zinc Zn mg dm−3 Predictive

Soil organic matter SOM g dm−3 Predictive
Soil nitrogen stock N stock Mg ha−1 Predictive
Soil carbon stock C stock Mg ha−1 Response

AFS1—agroforestry system developed for livestock, AFS2—agroforestry system developed for fruit culture, Pasture—pasture system,
Forest—forest fragment in natural regeneration.

Following this, we modeled the soil carbon stock through the Random Forest algo-
rithm implemented on the R program [21]. Specifically for the Random Forest algorithm,
at each division in each tree, an improvement in the divided criterium was an important
measure attributed to the division variable and was accumulated over all trees in the
forest for each variable. Thus, to access the importance of the selected variables, each
tree was trained in a bootstrap sample, and the optimum variables in each division were
identified from a random subset of all variables. Different selection criteria were applied
for classification and regression problems: the former used the Gini coefficient and the
latter employed variance reduction [22].

Model validation was performed using the hold-out method, in which 70% of the data
were used for training and 30% for testing. Later, the results were graphically expressed
through a regression in which the final result was the mean of all regression tree results
forming the Random Forest algorithm [23]. The model performance was assessed through
the coefficient of determination (R2), Pearson correlation coefficient (r), and root-mean-
square error (RSME) obtained from the analysis between the values observed and predicted
through the models generated.

3. Results

Firstly, a descriptive analysis was conducted using boxplot graphs to understand the
soil carbon stock behavior (response variables) for each land use system assessed (Figure 3).

In general, the area cultivated in the pasture had the lowest carbon stock in relation to
the remaining land use systems, followed by forest area (Figure 3). In addition, the AFS2
was significant in relation to other land use systems for showing higher mean values for
soil carbon stock in the superficial layers; values of 7.73 and 7.09 Mg ha−1 were observed
at the layers of 0.00–0.05 and 0.05–0.10 m, respectively. In contrast, for deeper layers, the
AFS1 was significant with a carbon stock of 10.66 Mg ha−1 for the layer 0.10–0.20 in AFS1
L and 15.40 for layer 0.20–0.40 m in AFS1 l.
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Figure 3. Boxplot graphs to the response variable, soil carbon stock (Mg ha−1), in different land
use systems. AFS1—agroforestry system developed for livestock, AFS2—agroforestry system de-
veloped for fruit culture, Pasture—pasture system, Forest—forest fragment in natural regeneration,
L—planting windrows, l—tracks of windrow influence, E—inter-rows, and E12—inter-row of 12 m
developed for animal pasture.
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Subsequently, we generated a correlation matrix to select variables to identify null
variance or high correlation (Figure 4). We found that variables such as SB, CEC and V
were highly correlated among themselves and with the exchangeable bases Ca, Mg and K,
as well as with pH and m.
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Figure 4. Pearson correlation matrix used to select the variables to be used in the Random Forest model to predict the
soil carbon stock in different land use systems. Bd-bulk density (kg dm−3), Macro-macroporosity (m3 m−3), Micro—
microporosity (m3 m−3), SOM—soil organic matter (g dm−3), pH—potential hydrogen, P—available phosphorus content
(mg dm−3), K—potassium content (mmolc dm−3), Ca—calcium content (mmolc dm−3), Mg—magnesium content (mmolc
dm−3), m—saturation by aluminum (mmolc dm−3), SB—sum of bases (mmolc dm−3), CEC—cation-exchange capacity
(mmolc dm−3), V—bases saturation (%), B—Boron content (mg dm−3), Cu—copper content (mg dm−3), Fe—iron content
(mg dm−3), Mn—manganese content (mg dm−3), Zn—zinc content (mg dm−33), and N Stock—nitrogen stock (Mg ha−1).

These variables were eliminated because of their high correlation degree; Figure 5
illustrates the variables selected to build the model. Different amounts of variables were
selected for each layer and 10 variables were maintained for layer 0.00–0.05 m, 12 for
layer 0.05–0.10 m, 13 for 0.10–0.20 m, and 14 for layer 0.20–0.40 m. The layer 0.00–0.05 m
presented the highest number of interactions between the variables analyzed, which makes
it the only layer to have the lowest number of variables selected to build the model.
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Furthermore, with the increase in depth, the interactions between the variables became
less intense and a larger number of variables was selected for model construction.
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Figure 5. Variables selected at each depth to be used in the Random Forest model to predict soil carbon stock for
different land use systems. Bd—bulk density (kg dm−3, Macro—macroporosity (m3 m−3), Micro—microporosity (m3 m−3),
SOM—soil organic matter (g dm−3), pH—potential hydrogen, P—available phosphorus content (mg dm−3), K—potassium
content (mmolc dm−3), Ca—calcium content (mmolc dm−3), Mg—magnesium content (mmolc dm−3), m—saturation by
aluminum (mmolc dm−3), CEC—cation-exchange capacity (mmolc dm−3), B—Boron content (mg dm−3), Cu—copper
content (mg dm−3), Fe—iron content (mg dm−3), Mn—manganese content (mg dm−3), Zn—zinc content (mg dm−3), and
N Stock—Nitrogen stock (mg dm−3).

The database was tested for data dispersion, frequency distribution, and Pearson
correlation coefficient (Figure 6) to prove the absence of correlations in the database after
the variable selection process. The results confirmed that variables with null variance and
a high correlation were completely eliminated from the database, and only those with a
correlation coefficient below 70% were used.
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Figure 6. Data dispersion, frequency distribution, and Pearson correlation coefficient of variables selected at each depth
to be used in the Random Forest predictive model to predict soil carbon stock for different land use systems. Bd—bulk
density (kg dm−3, Macro—macroporosity (m3 m−3), Micro—microporosity (m3 m−3), SOM—soil organic matter (g dm−3),
pH—potential hydrogen, P—available phosphorus content (mg dm−3), K—potassium content (mmolc dm−3), Ca—calcium
content (mmolc dm−3), Mg—magnesium content (mmolc dm−3), m—saturation by aluminum (mmolc dm−3), CEC—cation-
exchange capacity (mmolc dm−3), B—Boron content (mg dm−3), Cu—copper content (mg dm−3), Fe—iron content (mg
dm−3), Mn—manganese content (mg dm−3), Zn—zinc content (mg dm−3), and N Stock—Nitrogen stock (mg dm−3).

According to Figure 7, nitrogen stock was the most important variable in predicting
soil carbon stock, followed by land use system, a behavior verified in all the soil layers
available. However, from the third most important variable onward, the variable selected
starts to show a differentiation according to the soil layer, revealing Fe and m as the most
important variables for the layers 0.00–0.05 and 0.05–0.10 m, respectively, as well as the
SOM for layers 0.10–0.20 and 0.20–0.40 m.
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Figure 7. Relative importance of soil physical and chemical variables used to predict soil carbon stock using the Random
Forest model: Bd—bulk density (kg dm−3, Macro—macroporosity (m3 m−3), Micro—microporosity (m3 m−3), SOM—soil
organic matter (g dm−3), pH—potential hydrogen, P—available phosphorus content (mg dm−3), K—potassium content
(mmolc dm−3), Ca—calcium content (mmolc dm−3), Mg—magnesium content (mmolc dm−3), m—saturation by alu-
minum (mmolc dm−3), CEC—cation-exchange capacity (mmolc dm−3), B—Boron content (mg dm−3), Cu—copper content
(mg dm−3), Fe—iron content (mg dm−3), Mn—manganese content (mg dm−3), Zn—zinc content (mg dm−3), and N
Stock—Nitrogen stock (mg dm−3).

Figure 8 illustrates the predictive models of soil carbon stock for each layer assessed.
A high correlation was found between the values predicted and verified in the models
generated, in which the values obtained remained above 0.80 in all layers. In addition,
the models generated for the layers 0.00–0.05 m, 0.05–0.10 m, and 0.10–0.20 m had de-
termination coefficient values above 0.70, reaching values of 0.71, 0.87, and 0.72 for such
soil layers, respectively. The layer 0.20–0.40 m used the largest number of variables and
showed the smallest values of correlation coefficients (0.82), determination (0.67), and
root—mean—square error (2.69).
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4. Discussion

Nitrogen stock was the most important variable for predicting soil carbon stock in
different land use systems, a result similar to the findings by [24] where several approaches
involving predictive modeling were used; the variable of total nitrogen concentration
contributed the most to explaining the spatial patterns of soil carbon stocks. Nitrogen avail-
ability could act in two opposite ways to maintain soil carbon stock: The first contributed
to increased soil C stock by enhancing primary production and consequently raising the
amount of biomass above the ground. The second contributed to decreased soil carbon
stock since higher N availability could also accelerate the SOM mineralization rate [7].

Land use was the variable with the second strongest influence on predicting carbon
stock. Science has indicated that land use and changing land use are the most important
factors in determining carbon stocks and sequestration in the short term, since soil carbon
stocks could take anywhere from decades to centuries to accumulate, but carbon losses
resulting from changes in land use could occur rapidly in few years and were extremely
difficult to reverse [25]. Therefore, considering the importance of land use to predict carbon
stocks, along with the possibility of performing land use mapping through satellite images,
it was possible to quantify the impact on the soil carbon stock associated with future
changes in land use [26]. This result was quite relevant for allowing the development of
public policies focused on a rational land use; to prioritize land use systems to promote
increased carbon sequestration and enhanced soil carbon stocks.

Another important result pointed out that models generated from the physical and
chemical variables of soil and the Random Forest algorithm had a high potential to predict
carbon stock, and the models generated were sensitive to different land use systems.
However, a study conducted by [24] using a support vector regression (SVR), an artificial
neural network (ANN), and the Random Forest to predict and map soil carbon stocks
revealed that the Random Forest algorithm achieved the worst result, having generated
a model with a determination coefficient of only 0.53. Nevertheless, the authors justified
that the development of the Random Forest algorithm may have been compromised due
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to different extensions of the study areas, topography, sampling density, or quantity and
quality of the auxiliary data used.

In the 0–40 cm layer of soil, AFS1 and AFS2 areas had higher carbon stocks than the
the pasture and forest areas. These results agree with [27], who demonstrated the high
potential of agroforestry systems to increase carbon stocks, both in soil and in the biomass
of trees in different pedoclimatic conditions in France. However, these findings contrast
with the indications found by [28] and [2]: agroforestry systems had a soil carbon stock
similar to a natural forest.

Even though the forest fragment used as a reference in this study had been undergoing
a natural regeneration process for over 35 years, the carbon storage process tended to be
slow as it was located in a soil classified as Quartzarenic Neosol, which tended to show
few mechanisms to stabilize soil carbon. Soils with limited capacity to protect organic
carbon, either chemically, biochemically or through aggregation, leave the carbon in an
unprotected form and vulnerable to decomposition [29].

The profile of the carbon stock analysis along revealed that the AFS2 planting windrows
were more efficient at stocking carbon in the topsoil layers. In contrast, the AFS1 demon-
strated a better ability to stock carbon in deeper layers (0.10–0.20 and 0.20–0.40 m), both for
planting windrows and windrow buffers. According to [27], soil carbon stocks were larger
particularly in rows of trees from AFSs and mainly at the upper 0.30 m of the soil. It was
also possible to increase carbon stocks at deeper layers in some silvicultural systems.

The intensive application of vegetable residues from hoeing the inter-rows combined
with a pruning system management favored the formation of a thick layer of vegetable
residues in the planting windrows in AFS2. This likely contributed to the results found for a
larger soil carbon stock, especially for the most superficial layers in the system. In addition,
the AFS2 was characterized by a high diversity of plants and high biomass production,
therefore showing more potential to contribute to vegetable residues in planting windrows.

By contrast, the AFS2 had a lower plant diversity biomass accumulation on the soil
surface, but had an important carbon source in depth, which is connected to the root
biomass. A study conducted by [30] demonstrated that 26-year-old agroforestry systems
have significantly increased the total organic carbon content in the soil as well as carbon
storage through two a two-way carbon input, rhizodeposition, and deposition of residues
above the ground. However, according to [31], the contributions of roots under the carbon
stocks are smaller in depth (below 0.30 m) compared to the most superficial layers of the
soil, such as the effect of residues on wooded areas restricted to the superficial layer.

5. Conclusions

Agroforestry systems developed both for fruit culture and livestock were more effi-
cient at stocking carbon in the soil than a pasture area and a forest fragment in natural
regeneration, due to the greater addition of crop residues on topsoil superficies and the
management of organic fertilizer in agroforestry systems. Nitrogen stock and the land
use system represent the most important variables used to estimate carbon stock from the
physical and chemical variables of soil using the Random Forest algorithm. The predictive
models generated from the physical and chemical variables of soil through the Random
Forest algorithm had a high potential to predict soil carbon stocks and could be applied in
different land use systems.

Author Contributions: Conceptualization, Z.M.d.S.; methodology, M.F.M.M. and C.V.V.F.; software,
S.R.M.O. and C.V.V.F.; validation, S.R.M.O., Z.M.d.S. and R.L.M.T.; formal analysis, M.F.M.M.,
C.V.V.F. and F.S.G.; writing—original draft preparation, M.F.M.M.; writing—review and editing,
C.V.V.F., Z.M.d.S. and R.L.M.T.; funding acquisition, Z.M.d.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.



Forests 2021, 12, 1240 14 of 15

Acknowledgments: We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Brazil for providing Master’s scholarships to Marçal, M.F.M., and thank the owners of TOCA
farm for providing the experimental areas and financial support to our research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 2014, 34, 443–454.

[CrossRef]
2. Da Conceição, M.C.G.; Matos, E.S.; Bidone, E.D.; Rodrigues, R.D.A.R.; Cordeiro, R.C. Changes in Soil Carbon Stocks under

Integrated Crop-Livestock-Forest System in the Brazilian Amazon Region. Agric. Sci. 2017, 8, 904–913. [CrossRef]
3. Bayer, C.; Amado, T.J.C.; Tornquist, C.G.; Cerri, C.E.C.; Dieckow, J.; Zanatta, J.A.Z.; Nicoloso, R.S. Estabilização do carbono no

solo e mitigação das emissões de gases de efeito estufa na agricultura conservacionista. In Tópicos em Ciência do Solo, 1st ed.;
Klauberg Filho, O., Mafra, A.L., Gatiboni, L.C., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2011; Volume 7,
pp. 55–118.

4. Stockmann, U.; Adams, M.; Crawford, J.; Field, D.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.; Courcelles,
V.D.R.D.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst.
Environ. 2013, 164, 80–99. [CrossRef]

5. Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [CrossRef]
6. Paustian, L.; Babcock, B.; Hatfield, J.L.; Lal, R.; Mccarl, B.A.; Mclaughlin, S.; Mosier, A.; Rice, C.; Robertson, G.P.; Rosenberg,

N.J.; et al. Agricultural mitigation of greenhouse gases: Science and policy options. In Proceedings of the Anais Conference
Proceedings, First National Conference on Carbon Sequestration, Washington, DC, USA, 14–17 May 2001.

7. Chenu, C.; Angers, D.A.; Barre, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils:
Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [CrossRef]

8. Srinivasarao, C.; Lal, R.; Kundu, S.; Thakur, P.B. Conservation Agriculture and Soil Carbon Sequestration. In Conservation
Agriculture; Springer: Cham, Switzerland, 2014; pp. 479–524.

9. Kim, D.-G.; Kirschbaum, M.U.; Beedy, T.L. Carbon sequestration and net emissions of CH4 and N2O under agroforestry:
Synthesizing available data and suggestions for future studies. Agric. Ecosyst. Environ. 2016, 226, 65–78. [CrossRef]

10. Behrens, T.; Scholten, T. Chapter 25 A Comparison of Data-Mining Techniques in Predictive Soil Mapping. Vital Soil Funct. Value
Prop. 2006, 31, 353–617. [CrossRef]

11. Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and
remote sensing data. Crop J. 2016, 4, 212–219. [CrossRef]

12. Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm.
Agron. Sustain. Dev. 2016, 36, 27. [CrossRef]

13. Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil.
Meteorol. Z. 2013, 22, 711–728. [CrossRef]

14. Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.;
Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; p. 353.

15. Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture, Natural Resources Conservation
Service: Washington, DC, USA, 2014.

16. Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos, 3rd ed.; Revista e Ampliada;
Embrapa: Brasília, Brazil, 2017; p. 573.

17. Raij, B.V.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Instituto
Agronômico: Campinas, Brazil, 2001.

18. Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42,
421–428. [CrossRef]

19. Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3; Black, C.A., Ed.;
Soil Science of America/American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010.

20. Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes.
Can. J. Soil Sci. 1995, 75, 529–538. [CrossRef]

21. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2018. Available online: https://www.R-project.org/ (accessed on 18 July 2020).

22. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer:
Cham, Switzerland, 2009.

23. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
24. Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and

random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52,
394–403. [CrossRef]

25. Ostle, N.; Levy, P.; Evans, C.; Smith, P. UK land use and soil carbon sequestration. Land Use Policy 2009, 26, S274–S283. [CrossRef]

http://doi.org/10.1007/s13593-014-0212-y
http://doi.org/10.4236/as.2017.89066
http://doi.org/10.1016/j.agee.2012.10.001
http://doi.org/10.1016/j.cosust.2015.09.002
http://doi.org/10.1016/j.still.2018.04.011
http://doi.org/10.1016/j.agee.2016.04.011
http://doi.org/10.1016/s0166-2481(06)31025-2
http://doi.org/10.1016/j.cj.2016.01.008
http://doi.org/10.1007/s13593-016-0364-z
http://doi.org/10.1127/0941-2948/2013/0507
http://doi.org/10.2136/sssaj1978.03615995004200030009x
http://doi.org/10.4141/cjss95-075
https://www.R-project.org/
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.ecolind.2014.12.028
http://doi.org/10.1016/j.landusepol.2009.08.006


Forests 2021, 12, 1240 15 of 15

26. Scott, N.; Tate, K.; Giltrap, D.; Smith, C.T.; Wilde, H.; Newsome, P.; Davis, M. Monitoring land-use change effects on soil carbon in
New Zealand: Quantifying baseline soil carbon stocks. Environ. Pollut. 2002, 116, S167–S186. [CrossRef]

27. Cardinael, R.; Chevallier, T.; Cambou, A.; Béral, C.; Barthès, B.G.; Dupraz, C.; Durand, C.; Kouakoua, E.; Chenu, C. Increased soil
organic carbon stocks under agroforestry: A survey of six different sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255.
[CrossRef]

28. Monroe, P.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.; Marques, J.R.B. Soil carbon stocks and origin under different cacao
agroforestry systems in Southern Bahia, Brazil. Agric. Ecosyst. Environ. 2016, 221, 99–108. [CrossRef]

29. Six, J.; Conant, R.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils.
Plant Soil 2002, 241, 155–176. [CrossRef]

30. Ramesh, T.; Manjaiah, K.M.; Mohopatra, K.P.; Rajasekar, K.; Ngachan, S.V. Assessment of soil organic carbon stocks and fractions
under different agroforestry systems in subtropical hill agroecosystems of north-east India. Agrofor. Syst. 2015, 89, 677–690.
[CrossRef]

31. Lim, S.-S.; Baah-Acheamfour, M.; Choi, W.-J.; Arshad, M.A.; Fatemi, F.; Banerjee, S.; Carlyle, C.; Bork, E.W.; Park, H.-J.; Chang,
S.X. Soil organic carbon stocks in three Canadian agroforestry systems: From surface organic to deeper mineral soils. For. Ecol.
Manag. 2018, 417, 103–109. [CrossRef]

http://doi.org/10.1016/S0269-7491(01)00249-4
http://doi.org/10.1016/j.agee.2016.12.011
http://doi.org/10.1016/j.agee.2016.01.022
http://doi.org/10.1023/A:1016125726789
http://doi.org/10.1007/s10457-015-9804-z
http://doi.org/10.1016/j.foreco.2018.02.050

	Introduction 
	Materials and Methods 
	Description of the Study Area and History of the Areas 
	Experimental Design, Soil Collection and Analyzed Physical and Chemical Properties 
	Predictive Modeling 

	Results 
	Discussion 
	Conclusions 
	References

