FLUXOS DE ÓXIDO NITROSO DERIVADO DA FERTILIZAÇÃO DE UREIA PASTILHADA NA PRODUÇÃO DE MILHO CULTIVADO EM SISTEMA DE PREPARO CONVENCIONAL DO SOLO NO ESTADO DE SERGIPE

Cláudia Pozzi Jantalia¹; Wadson de Menezes Santos²; Bruno José Rodrigues Alves¹; Segundo Urquiaga¹; Edson Patto Pacheco³; Inácio de Barros³; Marcelo Ferreira Fernandes³; Eduardo Pires Bender⁴; Josimar Nogueira Batista⁴

1 Empresa Brasileira de Pesquisa Agropecuária – Embrapa Agrobiologia; 2 Universidade Federal de Sergipe; 3 Empresa Brasileira de Pesquisa Agropecuária – Embrapa Tabuleiros Costeiros; 4 Universidade Federal Rural do Rio de Janeiro.

Na maioria dos solos brasileiros, a disponibilidade natural de nitrogênio é insuficiente para assegurar altas produtividades, tornando-se crucial um fornecimento através da adubação em quantidades adequadas para garantir o crescimento, o desenvolvimento e a produção das plantas de milho. Nas condições de tabuleiro do estado de Sergipe a distribuição errática de chuvas no período de produção de grãos, que acontece de abril a setembro, é um desafio a mais. Isso porque, além das condições edafoclimáticas, o milho é uma cultura altamente exigente em nitrogênio, o que torna esse nutriente, depois do fornecimento de água, o mais limitante à produção quando não suprido de forma adequada. A fonte de nitrogênio mais utilizada na agricultura brasileira é a ureia, seguida do sulfato de amônio. A ureia tem como vantagem a elevada concentração de N (± 45%), o que reduz os custos com o transporte e a aplicação. Por outro lado, apresenta grande potencial de perda de N em formas gasosas. Nesse sentido, existe uma carência de estudos de aplicação de ureia como fonte de nitrogênio e seus impactos quanto às perdas ambientais de N na região delimitada nos estados de Sergipe (SE), Alagoas (AL) e Bahia (BA) (as três siglas combinadas: SEALBA).

O objetivo deste estudo foi estimar o fator de emissão de óxido nitroso (N₂O) a partir da fertilização de ureia pastilhada na dose de 150 kg de N por hectare para produção de milho cultivado em sistema de preparo convencional do solo, numa área experimental da Embrapa Tabuleiros Costeiros, localizada próximo à cidade de Nossa Senhora das Dores-SE. O solo da área foi classificado como Argissolo Vermelho-Amarelo Distrófico. Os fluxos de N₂O foram medidos ao longo de dois anos usando câmaras estáticas validadas seguindo protocolos do grupo do Agricultural Research Service (ARS-USDA). As avaliações foram concomitantes em área com e sem aplicação de ureia pastilhada (44,9%N) na dose de 150 kg de N por hectare. Foram monitorados também o espaco poroso saturado por água (% EPSA) no solo e N mineral do solo juntamente com a precipitação e a temperatura do ar. As estimativas de emissões de N₂O foram obtidas pela integração dos fluxos com o tempo e também aplicando o fator de emissão direta do IPCC (FE1 = 1%) para as quantidades de N adicionadas como fertilizantes.

RESULTADOS PRELIMINARES

- Nenhuma relação entre os fluxos de N₂O e % WFPS ou N mineral foi observada;
- Os fatores de emissão (FE) para N₂O mudaram de acordo com a precipitação acumulada no ano agrícola e permanecem acima dos índices do IPCC em 2015, enquanto que, em 2016, os índices ficaram abaixo para o N₂O (< 1%) (Tabela).

DESAFIOS

- Disponibilidade de recursos financeiros para a continuidade e a ampliação das avaliações em maior quantidade de locais e pontos de amostragens;
- Disponibilidade de recursos humanos treinados para a coleta de campo.

SOLUCÕES

 O aprimoramento de novas tecnologias de fontes de nitrogênio que tenham a ureia como base se faz necessário para a melhoria da eficiência do uso de N e para a redução nas perdas por via gasosa, principalmente em áreas de clima quente e com potencial para produção de grãos, como a região delimitada nos estados de Sergipe (SE), Alagoas (AL) e Bahia (BA) (SEALBA). Esse será um fator que pode contribuir para o conhecimento e a tomada de decisão, favorecendo o desenvolvimento da economia dessa nova fronteira agrícola brasileira.

DADOS PUBLICADOS EM:

SANTOS, W. M. Desempenho agronômico e volatilização da amônia de fertilizantes pastilhados e convencionais na cultura de milho. 2017. 68 f. Dissertação (Mestrado em Agricultura e Biodiversidade) — Universidade Federal de Sergipe, São Cristóvão, 2017.

DADOS PESSOAIS DOS COORDENADORES DO PROJETO

Dr. Edson Patto Pacheco

Embrapa Tabuleiros Costeiros e-mail: edson.patto@embrapa.br

Dra. Claudia P. Jantalia

Embrapa Agrobiologia

e-mail: claudia.jantalia@embrapa.br

Tabela 1: Emissões acumuladas de N_2O e fatores de emissão de ureia pastilhada (UP) aplicada na dose de 150 kg ha⁻¹ de N como cobertura e em área controle sem aplicação de N na cultura do milho

Ano	2015			2016		
Tratamento	N₂O-N perdas (g N₂O-N ha¹)		EF (%)	N ₂ O-N perdas (g N ₂ O-N ha ⁻¹)		EF (%)
	N₂O-N acumulado	N₂O-N fertilizante		N ₂ O-N acumulado	N ₂ 0-N fertilizante	
UP	2433 α	2293	1.53	861 a	701	0.47
Controle	140 b	-	-	160 b	-	-

Fonte: própria autoria.