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H I G H L I G H T S  

• Review of animal science studies that used deep learning in computer vision systems. 
• Greater adoption of deep learning algorithms for image classification. 
• The phenotype with greater interest was animal behavior.. 
• Swine was the most frequent species found in the reviewed articles.  
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A B S T R A C T   

In livestock operations, systematically monitoring animal body weight, biometric body measurements, animal 
behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and 
animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability 
to generate real-time, non-invasive, and accurate animal-level information. However, the development of a 
computer vision system requires sophisticated statistical and computational approaches for efficient data man
agement and appropriate data mining, as it involves massive datasets. This article aims to provide an overview of 
how deep learning has been implemented in computer vision systems used in livestock, and how such imple
mentation can be an effective tool to predict animal phenotypes and to accelerate the development of predictive 
modeling for precise management decisions. First, we reviewed the most recent milestones achieved with 
computer vision systems and the respective deep learning algorithms implemented in Animal Science studies. 
Then, we reviewed the published research studies in Animal Science which used deep learning algorithms as the 
primary analytical strategy for image classification, object detection, object segmentation, and feature extrac
tion. The great number of reviewed articles published in the last few years demonstrates the high interest and 
rapid development of deep learning algorithms in computer vision systems across livestock species. Deep 
learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), 
DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network ar
chitectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across 
livestock species. The great performance of these deep learning algorithms suggests an improved predictive 
ability in livestock applications and a faster inference. However, only a few articles fully described the deep 
learning algorithms and their implementation. Thus, information regarding hyperparameter tuning, pre-trained 
weights, deep learning backbone, and hierarchical data structure were missing. We summarized peer-reviewed 
articles by computer vision tasks (image classification, object detection, and object segmentation), deep learning 
algorithms, animal species, and phenotypes including animal identification and behavior, feed intake, animal 
body weight, and many others. Understanding the principles of computer vision and the algorithms used for each 
application is crucial to develop efficient systems in livestock operations. Such development will potentially have 
a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in 
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the future to improve farm management decisions, breeding programs through high-throughput phenotyping, 
and optimized data-driven interventions.   

1. Introduction 

The data revolution undergoing in almost every industry sector is 
causing an expressive shift in science, technology, and education. 
Several digital technologies such as wearable sensors (Neethirajan, 
2017; Rutten et al., 2013), robotic milking systems (Rodenburg, 2017), 
infrared spectrometry (Bresolin and Dorea, 2020), and computer vision 
systems (Fernandes et al., 2020b; Wurtz et al., 2019) have been devel
oped and deployed in livestock operations. The data generated by these 
technologies carries an incredible value, and it can be used to generate 
difficult-to-measure animal-level phenotypes. However, to extract the 
full potential of such datasets, precise phenotypes need to be predicted 
and used for optimized data-driven decisions. To accomplish that, 
appropriate analytical tools should be correctly implemented. 

Among the digital technologies in livestock, computer vision systems 
are emerging as a powerful solution for high-throughput phenotyping, 
which is crucial to create optimized farm management decisions and 
genetic improvement in breeding programs. The amount of information 
carried in a single image usually goes beyond the developers primary 
interest when computer vision systems are created. For example, sup
pose the images presented in Fig. 1 are analyzed using a computer vision 
system built to identify individual animals and to predict their behavior. 
The predicted phenotypes would be four individual IDs with their 
respective behavior activity: in this case, standing. Interestingly, addi
tional information present in the image is not being used, such as the 
housing system, the presence of trees, the green leaves in the trees 
(indicating season), the sky condition (rainy, cloudy, or sunny), the 
animal stock density (area of pen/animal), animal social network, etc. 
Even if the primary interest is related to animal behavior and identifi
cation, the amount of information in the image can allow for future 
development, as new ideas are created, and more sophisticated data 
analytics tools become available. Very few sensing technologies can 
generate such rich data source from a single device. 

Three recent review articles (Fernandes et al., 2020a; Wurtz et al., 
2019; Nasirahmadi, Edwards, Sturm) explored the potential of computer 
vision systems for high-throughput phenotyping. Wurtz et al. (2019) and 
Nasirahmadi et al. (2017) discussed the advances that occurred in 
automated and high throughput image detection of farm animal 
behavioral traits, focusing on animal welfare and production. The article 
published by Fernandes et al., 2020a provided an overview of key 
concepts related to computer vision, image processing, image analyses, 
and the types of devices and image ranging systems. Fernandes et al., 
2020a also provided important key metrics for prediction quality 
assessment, and a compilation of animal phenotypes used for manage
ment purpose (e.g. body condition score, body weight, animal behavior, 

etc.), predicted through image analyses. 
Several papers using deep learning algorithms as the main frame

work of image analyses in computer vision systems have been published 
in the last few years. The rapid and recent implementation of such al
gorithms for image analyses and the great predictive ability reported by 
the published literature indicates a powerful analytical tool to predict 
animal-level phenotype. The objectives of this article were: (1) to pro
vide an overview of the main deep learning algorithms used in computer 
vision systems that are commonly implemented in Animal Sciences or 
that demonstrate potential to be applied on it; and (2) to perform a 
systematic review of Animal Science studies that used deep learning as 
the main algorithm to predict phenotypes of livestock animals. 

This article is divided into two main sections. The first section aims to 
provide an overview of the state-of-the-art deep learning algorithms 
used in computer vision systems and their primary milestones, consid
ering four different tasks: image classification, object detection, object 
segmentation, and feature extraction. In the second section, a systematic 
review of studies using deep learning in computer vision systems for 
phenotype prediction is provided, and we finish presenting our 
concluding remarks. That structure intends to bring to light the gaps in 
livestock applications that could be potentially solved or improved with 
state-of-the-art computer vision algorithms. It is important to mention 
that this review does not aim at proposing new solutions but serves as a 
reference for future works building them. 

2. Deep learning for computer vision systems 

2.1. Deep learning basics 

Deep learning algorithms were inspired by how the human brain 
works, using an enormous number of neurons linked by a massive 
number of connections to execute complex activities including speaking, 
moving, thinking, and seeing (Goodfellow et al., 2016). Most deep 
learning architectures are artificial neural networks composed of mul
tiple layers, thus being called "deep", and a basic element called neuron 
(Goodfellow et al., 2016). Neurons are commonly grouped in layers, 
where all neurons have the same function, but each of them learns 
different parameters. A sequence of layers will continuously transform 
the input data and map it into a desired outcome in a process called 
feedforward. The weights of connections between different neurons are 
optimized through a learning process called backpropagation (Good
fellow et al., 2016). During this optimization process, the error (differ
ence between the observed and predicted outcome) is computed and 
backpropagated through the network using gradients. Those gradients 
are used to update the weights of connections between neurons to 

Fig. 1. Group of four Holstein dairy calves housed in a super-hutch. Figure 1a (left side) winter period, trees without leaves, and clear sky. Figure 1b (right side) 
summer period, trees with green leaves, and cloudy sky. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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minimize the error observed in the outcome. Thus, the network learns 
the optimal parameters for the neurons and the weight that each 
connection requires to predict the desired outcome. The error minimi
zation usually leads to the convergence of parameters in the network 
architecture, resulting in accurate and precise predictions given a new 
data point or image. 

Different layers are commonly used to build deep networks: fully 
connected or dense, convolutional, deconvolutional, pooling, recurrent, 
and others. Fully connected or dense layers are composed of neurons 
with a single activation function that receives a numerical value as 
input, applies the function, and outputs the resulting value. Convolu
tional layers implement convolutions using kernels, where each node 
convolves its kernel with the input image and outputs the convolved 
image. Convolutional layers can also be used to change image scales 
through the network using strides that create output images smaller than 
the input, or using the transpose of convolutions to create output images 
larger than the input (often called deconvolutional layers). Pooling and 
upsampling layers do the same by aggregating input image values into 
smaller images, or interpolating smaller images’ values into bigger im
ages, respectively. Those are often used together with convolutional 
layers to create encoders and decoders, for image segmentation, for 
instance. Many other different types of layers have been continuously 
proposed in the literature, and the reader should refer to Goodfellow 
et al. (2016) and Computer Vision venues for more detailed information. 

The concatenation of layers allows the creation of a complex deep 
network for a given task. To illustrate that, we present a basic network 
architecture to identify digits using the public MNIST dataset, which 
comprises many digit images (ranging from 0 to 9) and their corre
sponding label. The task to be tackled is to identify the correct label 
given an input image using a convolutional neural network architecture 
for digit image classification, as depicted in Fig. 2. It comprises an input 
layer that receives samples of digit images, followed by two blocks of 
convolutional layers with rectified linear unit as the activation function 
and max pooling layers. The compact image feature maps are then 
flattened to derive a feature array, and finally used for classification 
through a fully connected or dense layer with softmax activation func
tion, which represents the probability distribution over n different 
classes (Goodfellow et al., 2016). The network also contains a dropout 
layer, which removes some of the connections between nodes to 
improve network generalization by reducing overfitting. (Goodfellow 
et al., 2016). The loss function used was the categorical cross-entropy 
and the optimizer Adam (Kingma and Ba, 2017), with default values. 
Training consisted of presenting a batch of 128 digit image samples and 
computing the error using the categorical cross-entropy loss function 
that was backpropagated to optimize the network weights for 15 epochs 
or iterations. That straightforward procedure manages to deliver 99% of 
overall accuracy (Acc) for digit images classification in unseen test 
images. 

Public databases and benchmarks 
It is important to highlight that most of the progress observed in the 

computer vision community was boosted by several publicly available 
datasets, challenges, and benchmarks, as the MNIST dataset presented 
above (2). Several other datasets are available such as PASCAL VOC 
(Visual Object Classes) (Everingham et al., 2010), ImageNet (Deng et al., 
2009) and MSCOCO (Lin et al., 2014). PASCAL VOC is a popular dataset 
with annotated images available for different tasks: classification, seg
mentation, detection, action recognition, and person layout. The seg
mentation task comprises 21 classes of object labels with 1464 images 
for training, 1449 for validation, and a private test set for the actual 
challenge. The ImageNet dataset was also created as a collaboration 
between Stanford University and Princeton University, currently hold
ing around fourteen million images initially labeled with synsets, or 
semantically meaningful set of words, from the WordNet (Fellbaum, 
1998) lexicon tree. The first challenge consisted of a simple classifica
tion task, where each image was labeled to a single category among 
several hundred. Although this challenge is still ongoing, it has further 
evolved into a multi-classification task where individual instances of the 
objects in the images were classified and located with bounding boxes. 
MSCOCO is a large-scale dataset for object detection, segmentation, and 
captioning. It includes scene imagery containing everyday objects in 
their natural contexts, with a total of 2.5 million labeled instances in 
328,000 images. The detection challenge comprises more than 80 clas
ses, providing more than 82,000 images for training, 40,500 for vali
dation, and more than 80,000 images for testing. Although many of 
these public image datasets contain images of different species of ani
mals, including pig, cattle and poultry, there are few datasets designed 
specifically for use in livestock computer vision systems, as seen in 
Table 1. One can observe that most of these datasets were published by 
the University of Bristol and regards cattle or cows’ detection and 
classification. The Holstein Cattle Recognition dataset (Bhole et al., 
2021) consists of thermal and RGB images from 136 animals. The 

Fig. 2. Example of a simple convolutional neural network architecture for digit images classification.  

Table 1 
Databases in livestock using computer vision systems.  

Database Species Task Image type 

Holstein Cattle Recognition ( 
Bhole et al., 2021) 

Cattle Classification Thermal and 
RGB 

Newcastle (Alameer, 2020) Pig Detection Top-View RGB 
FriesianCattle2015 (Andrew 

et al., 2016) 
Cattle Classification Top-View RGB 

FriesianCattle2017 (Andrew 
et al., 2017) 

Cattle Classification Top-View RGB 

Cows2021 (Gao et al., 2021) Cows Detection 
Classification 

Top-View RGB 

AerialCattle2017 (Andrew et al., 
2019) 

Cattle Detection Aerial RGB 
from UAV 

Zenodo (Benitez Pereira et al., 
2020) 

Cows Detection Video 
Sequences 

OpenCows2020 (Andrew et al., 
2020) 

Cows Detection 
Classification 

Top-View RGB  
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Newcastle dataset (Alameer, 2020) contains frames of pigs manually 
annotated into one of five categories for postures and drinking. The 
FriesianCattle2015 (Andrew et al., 2016) and FriesianCattle2017 
(Andrew et al., 2017) datasets consist of depth-segmented RGB images 
of Friesian Cattle. The Cows2021 dataset (Gao et al., 2021) consists of 
top-view images from a herd of 186 Holstein-Friesian cattle with manual 
annotation of bounding boxes and animal identities. The Aer
ialCattle2017 (Andrew et al., 2019) dataset comprises images contain
ing tracked Friesian cattle ROIs filmed by UAV. The Zenodo dataset 
(Benitez Pereira et al., 2020) consists of video data over two-month 
period of cows in front of automatic milking stations and manually an
notated behavioral classes. The OpenCows2020 dataset (Andrew et al., 
2020) consists of top-down images of Holstein cattle taken both indoors 
and outdoors, and was designed for detection, localization, and identi
fication tasks. 

In the next subsections, we will explore different models for handling 
different image analysis tasks using deep learning, and briefly present 
the advantages and progress implemented in each algorithm. 

2.2. Image classification 

Image classification is one of the most popular tasks for computer 
vision applications and its main goal is identifying if a given object 
appears in an image. For example, image classification can be used to 
predict if there is a calf in the image or not. The task can also be 
expanded to a multiclass problem, in which more than two classes could 
be used, and a deep learning algorithm could be applied to classify if 
there is a calf, a cow, or no animal in the image. 

Several deep learning approaches using different strategies or ar
chitectures have been proposed for image classification. One of the first 
deep learning architectures proposed used convolutional and fully 
connected layers to handle feature extraction and classification in a 
single model. Such architecture brought a leap in performance that 
began a revolution in image analysis. Inspired by Krizhevsky et al. 
(2012); Lecun et al. (1998) proposed a model that outperformed the 
previous best model based on contemporary state-of-the-art feature 
extraction by a considerable margin in the ImageNet challenge, of 
almost 11%. The AlexNet model, currently considered a simple archi
tecture, comprises five consecutive convolutional filters, max-pool 
layers, and three fully connected layers for classification. Since this 
breakthrough, different research groups have extensively explored the 
development of new network architectures. In 2014, K. Simonyan and A. 
Zisserman published the VGG16 model (Simonyan and Zisserman, 
2014), still used today for image classification problems (Figure 3). It 
comprises sixteen convolutional layers, multiple max-pool layers, and 

three final fully connected layers. They also proposed to use rectified 
linear unit activation functions to chain the numerous convolutional 
layers, creating means for highly nonlinear transformations in the 
model. Additionally, they offered to use smaller convolution kernels and 
showed they could extract the same features using much fewer param
eters. This model delivered an error rate of 7.3% in the 2014 ImageNet 
challenge, reducing the AlexNet model’s error by a factor of 2 . 

In 2014, Lin et al. (2013) proposed the concept of inception modules, 
conceived to focus on massive local feature extraction. Such network 
architecture was proposed to achieve the same performance of 
sequential stacked layers by simultaneously training multiple convolu
tional layers and stacking their feature maps linked with a multi-layer 
perceptron. C. Szegedy et al. have explored this idea in GoogLeNet 
(Szegedy et al., 2014), commonly known as the first Inception network, 
with 22 layers using inception modules that contain a total of 50 
convolution layers (Fig. 4). Each inception module implemented 
convolution layers with different kernel sizes to extract features at 
different scales. The feature maps produced were then concatenated and 
analyzed by the next inception module, and a final dense layer was used 
to map features into class labels. The GoogLeNet model achieved a 6.7% 
error rate over the 2014 ImageNet challenge, comparable to the VGG16 
result, but using only nearly 10% of its parameters. 

In 2015, Szegedy et al. (2015) developed the Inception-v2 model, 
which was mostly inspired by the first version, but with a significant 
modification that replaced the convolutional layers in the inception 
module with a combination of convolutional and fully-connected layers. 
They called this modification a convolution factorization, decreasing the 
number of parameters in each inception module, reducing the compu
tational cost. This model reached a top-5 error rate of 5.6% on the 2012 
ImageNet challenge. C. Szegedy et al. also further proposed the famous 
Inception-v3 model, fine-tuning the batch-normalization, using a higher 
resolution input, reducing the strides of the first two layers, and 
removing a max-pool layer to analyze images with higher precision. This 
model reached a top-5 performance at the 2012 ImageNet challenge 
with an error rate of 3.58%. 

In 2015, He et al., 2015a noticed that merely increasing the depth of 
models also increased their error rate, not due to overfitting but to the 
difficulties of training and optimizing very deep models. The authors 
proposed the residual learning strategy (ResNet), through a connection 
between the output of one (or multiple) convolutional layers and their 
original input with an identity mapping, which would allow the 
inbetween layers to learn residuals (Fig. 5). The model could then learn a 
residual function between inputs and outputs that keeps most of the 
input information and produces only slight output changes. Conse
quently, patterns from the input image can be held to deeper layers. The 

Fig. 3. VGG-16 architecture. Image from Simonyan and Zisserman (2014).  
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original ResNet model used 152 convolutional layers organized in blocks 
of two layers with residual learning and delivered an error rate of 3.57% 
on ImageNet 2015 challenge. 

In 2016, C. Szegedy et al. combined inception modules and residual 
blocks, building residual inception blocks. The resulting Inception-v4 
(Inception-ResNet) model (Szegedy et al., 2016) allowed faster 
training and outperformed other models in the 2012 ImageNet challenge 
with an error rate of 3.08%. While most of the recent advances in image 
classification combine some of the algorithms previously discussed, 

some of them focus on better understanding the models and proposing 
more efficient approaches. In this sense, in 2017, Coudet et al. proposed 
xCeption (Chollet, 2016) (from extreme inception), which was inspired 
based on Inception-v3 and featured a separable convolution component 
to run convolutions in images more efficiently. It achieved the 
state-of-the-art results in 2017 for ImageNet with much smaller models 
in terms of the number of parameters. MobileNet (Howard et al., 2017) 
also proposed to use separable convolutional layers to build a family of 
lightweight networks designed to work primarily in mobile applications. 
More recently, NASNet (Pham et al., 2018) proposed a neural archi
tecture search methodology to create optimal neural networks by 
searching the best assembling combinations from a set of commonly 
used operations. The authors proposed the use of a controller neural 
network to form components with high performance instead of 
designing the network manually for a given task. While NASNet can 
deliver very efficient networks for a specific task, the whole process 
requires a massive computational effort for exploring different design 
possibilities (Pham et al., 2018). 

2.3. Object detection 

Object detection is another essential research topic in computer 
vision covered by extensive literature. Deep learning approaches 
consistently rank among the state-of-the-art for object detection tasks 
and can be roughly divided into region proposal- and regression-based 
methods (Li et al., 2020). The first method proposes a classification of 
object regions for one or more categories in an image while the 
regression-based method detects objects by treating their coordinates as 
a regression problem. One of the first thriving region proposal-based 
methods was the region-based Convolutional Neural Network (CNN) 
introduced by Girshick et al. (2016). Such algorithm generates a large 
number of region proposals using selective search (Uijlings et al., 2013), 
then extracts deep convolutional features from these regions using CNN, 
and finally trains a support vector machine to label object candidates 
into PASCAL VOC classes. 

Many improvements were added to this initial idea of region-based 
CNN, resulting in new approaches. With Fast R-CNN (Girshick, 2015), 
for example, the authors proposed to feed the input image into a CNN, 
generating a convolutional feature map to find the region proposals, 

Fig. 4. Inception modules. Image from Szegedy et al. (2014).  

Fig. 5. Residual learning modules. Image from He et al., 2015a.  

Fig. 6. Faster R-CNN architecture. Image from Ren et al. (2015).  

Fig. 7. YOLO architecture. Images from Redmon et al. (2015).  
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instead of feeding only the region proposals from the original image into 
a CNN. In Faster R-CNN (Ren et al., 2015) the authors decided to use a 
separate network to predict the region proposals instead of using se
lective search algorithm on the feature map (Fig. 6). For the Cascaded 
R-CNN (Cai and Vasconcelos, 2018) the authors proposed to use a 
sequence of cascaded object detectors with increasing accuracy based on 
R-CNN-like networks. To be more selective against close false positives, 
the authors adopted this sequence of detectors trained with increasing 
IoU (Intersection over Union) thresholds. 

Regression-based networks for object detection were firstly proposed 
in OverFeat (Sermanet et al., 2014) and became very popular with YOLO 
(Redmon et al., 2015) and RetinaNet (Lin et al., 2017). YOLO is a 
regression network that uses a single CNN backbone to predict bounding 
boxes with label probabilities in a single evaluation schema (Redmon 

et al., 2015). This architecture creates a regular grid to split the input 
image space and locate objects at the grid centers (Fig. 7). Each cell 
derives several bounding boxes and class probabilities, and the network 
training consists of maximizing these values for each cell. In YOLOv2, 
many modifications from the original architecture (YOLO) were pro
posed to improve its precision, including replacing fully connected 
layers by anchor boxes (has fewer parameters and is more robust) for 
predicting bounding boxes, similar to the proposed in Single Shot Mul
tibox detector - SSD (Liu et al., 2016). For YOLOv3, the idea of using 
anchor boxes was improved using dimension clusters to predict 
bounding boxes and logistic classifiers to produce class probabilities for 
each bounding box, instead of the usual softmax. RetinaNet uses ResNet 
(He et al., 2015a) and Feature Pyramid (Lin et al., 2017a) networks as 
the backbone for feature extraction concatenated to two task-specific 

Fig. 8. CNN + CRF architecture. Image from Chen et al., 2014a.  

Fig. 9. unet architecture. Image from Ronneberger et al. (2015).  

Fig. 10. PSPNet architecture. Image from Zhao et al. (2017).  
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subnetworks for classification and bounding box regression using focal 
loss, in a single-stage regression training schema, outperforming Faster 
R-CNN. Tiny-YOLO (Redmon et al., 2015) was proposed as smaller 
version of YOLO, which requires less time to train and test but is usually 
less accurate than the original models. 

2.4. Image segmentation 

Semantic segmentation is a fundamental part of many computer 
vision systems and involves partitioning images into multiple segments 
or objects and labeling such segments with known classes. While this 
field has a long history of research, deep learning networks delivered 
models with remarkable performance for segmentation in the last few 
years, becoming the new standard for image segmentation. One of the 
first studies using deep learning for semantic segmentation was a fully 
convolutional network (FCN), proposed by Long et al. (2015). The 
model included only convolutional layers applied sequentially to an 
input image with arbitrary size and produced a consistent segmentation 
image where pixels were mapped to different classes. 

The main limitation of classic FCN models was the inability to handle 
contextual information efficiently, and different studies explored such 
drawback. Chen et al., 2014a investigated the spatialization of the final 
layer outcome in deep CNN showing that they were not reliable for 
accurate object segmentation. Chen et al., 2014a further proposed to 
feed the CNN outcome to fully connected conditional random fields 
(CRF) as a way to enable better definition of segmented boundaries 
(Fig. 8). Their results overcame the existing methods for image seg
mentation at that time. To optimize CNN and CRF together, different 
initiative were introduced. Schwing and Urtasun (Schwing and Urtasun, 
2015) and Zheng et al. (2015) proposed a fully connected deep struc
tured network for image segmentation integrating CRF with CNN. Lin 
et al. (2016) proposed an efficient algorithm for semantic segmentation 
based on contextual deep CRF, where they explored different regions in 
the same images for retrieving contextual information for training. Liu 
et al. (2015) proposed a deterministic end-to-end approach called 
Parsing Network for embedding information extracted using CNN into 
Markov random fields models. 

Encoder-decoder models are also widely used for semantic segmen
tation. Such models are composed of an encoder, which creates an 
efficient representation of the input image and a decoder that decodes 
the representation into target segmentation maps. This simple yet 
powerful framing enables different networks to collaborate and create 
highly optimized mappings between input and labeled data. One of the 
first encoder-decoder models was proposed by Noh et al. (2015) and 
consisted of a VGG 16-layer network for encoding input data into a 
feature vector, and a deconvolution network composed of deconvolution 
and pooling layers to identify pixel-wise labels and create segmentation 
masks. SegNet, which is a deep convolutional neural network 

architecture for semantic pixel-wise segmentation, proposed by Badri
narayanan et al. (2017), comprises an encoder based on a VGG 16-layer 
network, and a mirrored structure serving as a decoder. This model is 
lightweight, mainly due to its mechanism to upsample encoded feature 
maps using pooling layers convolved with trainable convolutional filters 
to produce dense feature maps. 

These early encoder-decoder models were known to struggle for 
segmenting small structures since they needed to hold information of the 
first layers in the subsequent feature maps, which were increasingly 
downsampled. To overcome such limitations, different approaches used 
skip connections between encoder layers and decoder layers, which 
reinforced features at different scales. One of the most popular encoder- 
decoder models using skip connections is the U-Net architecture, pro
posed by Ronneberger et al. (2015). It comprises two branches: an 
encoder branch to capture context, and a symmetric decoder branch to 
enable precise localization (Fig. 9). Feature maps from the encoder were 
copied to the decoder to reinforce patterns at different scales, and a final 
convolution layer creates a segmentation map. Multi-scale feature in
formation was further explored in the Feature Pyramid Network (FPN) 
proposed by Lin et al. (2017b), which was developed initially for object 
detection but was later extended to perform segmentation. In this 
network, the authors proposed to a multi-scale structured network using 
feature pyramids, where low and high-resolution features were merged 
using lateral connections between downsampling and upsampling 
branches. The extension for image segmentation was implemented using 
two multi-layer perceptrons to generate the segmentation masks. 
Focusing on multi-scale image segmentation, Zhao et al. (2017) pro
posed the PSPNet (Pyramid Scene Parsing Network), where patterns at 
different scales are extracted from the input image using residual 
branches and a pyramid pooling module (Fig. 10). Four different scales 
were considered by the authors, each one corresponding to a pyramid 
level, and were concatenated into a single matrix comprising both local 
and global features at different scales. A final convolutional layer pro
duces the pixel-wise predictions. 

Some extensions of R-CNN presented in Section 2.3 simultaneously 
perform object detection and semantic segmentation. He et al. (2017) 
proposed Mask R-CNN, a model that detects objects in images and 
simultaneously generates segmentation masks for each instance found 
(instance segmentation). The Mask R-CNN architecture uses a Faster 
R-CNN backbone, but with three output branches: the first computes the 
bounding box coordinates, the second computes the associated classes, 
and the third computes a binary mask segmenting the object found. Its 
loss function combines the bounding box coordinates, the predicted 
class, and the segmentation mask losses into a joint optimization 
schema, delivering strong results. 

DeepLab models (L.-C. Chen et al., 2018; L. Chen et al., 2018; Chen 
et al., 2014a; Chen, Papandreou, Schroff, Adam) uses dilated or atrous 
convolutions, where a dilation rate defines a spacing between the kernel 

Fig. 11. DeepLab v3+ architecture. Image from Chen et al. (2018).  
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weights for an efficient convolution at configurable scales. For example, 
a 3 × 3 kernel with a dilation rate of 2 will process the same image area 
as a 5 × 5 kernel using only 9 parameters instead of 25. This allows 
enlarging the receptive field with no increase in computational cost. 
DeepLab V1 (Chen et al., 2014a) first combined atrous convolution to 
address problems regarding the decreasing resolution with the depth in 
the network, and fully connected conditional random fields (CRF) as a 
post-processing step for a class coherent smoothed outcome. DeepLab 
V2 (Chen et al., 2018) added atrous spatial pyramid pooling, which 
samples convolutional feature layers with filters at multiple sampling 
rates, capturing image context at different scales to segment objects 
robustly. The best DeepLab reached a 79.7% mIoU (mean IoU) score on 
the 2012 PASCAL VOC challenge. DeepLab V3, proposed by Chen et al. 
(2017), goes deeper and uses cascaded modules of atrous convolutions 
increasing with depth, and then concatenates and processes the out
comes using a final convolutional layer to create the segmentation map. 
In 2018, Chen et al. (2018) proposed a model, called DeepLab V3+, that 
uses an encoder-decoder architecture with atrous separable convolution, 
inspired by the xCeption architecture (Fig. 11). They proposed to use 
DeepLab V3 as the encoder, and a decoder with skip connections at some 
of the encoder layers. The best DeepLab V3+ obtained an 89.0% mIoU 
score on the 2012 PASCAL VOC challenge. It is currently one of the most 
robust models for semantic segmentation, widely used in different 
applications. 

2.5. Feature extraction 

Extracting features from images is useful for classifying objects and 
connecting image content to previous consolidated knowledge. For 
instance, regression networks can identify known biological or struc
tural features in images while encoder-decoder networks can find the 
most efficient set of features that describe a set of images. Most of the 
convolutional networks used for image classification Section 2.2 can 
also be used to solve regression problems for feature extraction. In such 
cases, the softmax layer is commonly replaced by a fully connected 
regression layer with linear or sigmoid activations. Several deep 
learning algorithms were proposed in this regard, obtaining strong re
sults in image regression problems like head pose estimation (Liu et al., 
2016) or facial landmark detection (Sun et al., 2013). 

In problems where the features’ semantic meaning is not essential, 
auto-encoders are an efficient tool for computing image features. These 
models are encoder-decoder networks that learn to map input data in the 
output (Vincent et al., 2010). The encoder compresses the input into a 
lower-dimensional code, and the decoder reconstructs the output from 
the code. The code consists of the innermost layer of the network and 
represents a compact “summary” or “compression” of the input, also 
called the latent-space representation. Autoencoders are fully unsuper
vised, which means one does not need to provide any annotation to train 
the model, and are also inherently lossy, which means that the input 
data’s reconstruction is usually a degraded version of the input (Vincent 
et al., 2010). In general, Autoencoders are powerful feature extractors 
because they learn the minimum necessary representation of the input 
for reconstructing the input data. This information tends to hold the 
essential description of input data, an excellent characteristic for feature 
extractors. One of the most popular auto-encoders is the stacked 
denoising Autoencoder (Vincent et al., 2010), where many Autoen
coders are stacked together to perform image denoising. Variational 
Autoencoders (Kingma and Welling, 2013) propose to force a prior 
distribution on the latent representation, which allows not only the in
spection of latent variables but also realistic sample synthesis. Similarly, 
adversarial Autoencoders (Makhzani et al., 2015) use an adversarial loss 
on the latent representation to promote an approximation to a given 
distribution that can be potentially linked to specific features. 

Another very important group of deep neural networks is Generative 
Adversarial Network. Although none of the reviewed articles evaluated 
such algorithm, we included a brief description of this neural network, 

given the rapid and large implementation in other fields of research such 
as healthcare (Oliveira, 2020), generation of animation models (Vou
gioukas et al., 2019), and image translation and edition (Park et al., 
2019). Generative adversarial networks (GANs), introduced by Good
fellow et al. (2014) uses adversarial training involving two convolu
tional networks: the generator, responsible for synthesizing the images, 
and the discriminator that learns if a given image is real or synthesized. 
In Animal Sciences, a possible application would be on image generation 
to complement unbalanced training sets and potentially improve pre
diction quality in real testing sets. Additionally, GANs can be potentially 
used in animal biomedical image analysis for lesion segmentation (Luc 
et al., 2016), synthesis of realistic disease evolution scenarios and 
others. 

3. Applications of deep learning in livestock 

The increase in herd sizes observed in recent years has created 
operational difficulties in monitoring animal health and nutrition in 
livestock farms. The use of deep learning for monitoring animal health 
and other phenotypes is very recent and is expected to increase over the 
next years, following the pattern of algorithms development and the 
expansion of computational resources. 

For each discussed task (image classification, object detection, image 
segmentation and feature extraction), the main deep learning algo
rithms used for image analyses were reviewed and discussed. It was not 
our aim to review all possible applications of deep learning for each task, 
as each of those comprises a whole research field. However, in each 
section, we presented a selection of emblematic works and aimed to 
enable the reader interested in computer vision systems and deep 
learning to navigate through the different algorithms and link them to 
potential applications in livestock systems. Additionally, we connected 
the deep learning strategy used in each computer vision task with the 
main biological problem related to the phenotypes of interest for live
stock animals. 

3.1. Search criteria and overview of deep learning-based computer vision 
systems articles 

We performed a systematic review of peer-reviewed articles in which 
deep learning algorithms were primarily used for image analyses of 
livestock animals. Literature was reviewed following Moher et al. (2009) 
guidelines for Systematic Reviews and Meta-Analyses (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA). 
The PRISMA flow diagram is shown in Fig. 12, along with the number of 
retained publications or retrieved at each stage. The eligibility criteria 
adopted in the current review were: (1) only peer-reviewed publications 
written in English; (2) research studies focused on dairy and beef cattle, 
swine, goat and poultry; (3) only studies on computer vision (machine 
vision) that used deep learning algorithms as the primary approach for 
image analyses. 

The terms computer vision, deep learning, animal, livestock, cattle, 
dairy, beef, swine, pigs, poultry, and broiler, as well as their random 
combinations, were used to search the articles in the Web of Science 
platform in October 2020. In addition, we searched for extra literature 
using Google and Google Scholar to find additional papers (n = 9). All 
retrieved titles (n = 118) were recorded, and non peer-reviewed articles 
(n = 13) and duplicates (n = 4) were removed based on source, author 
name, year, and article title, reducing the number of retrieved articles to 
101. The focus of this article was to review the published literature on 
computer vision and deep leaning in livestock animals; as such, we 
removed: (1) publications unrelated to livestock animals that were 
selected even using the searched terms (n = 28); (2) publications that 
did not include images and/or deep learning algorithms (n = 23); (3) 
review articles (n = 3); and (4) articles not written in English (n = 3). 
After implementing all the mentioned criteria, we reduced the number 
of retrieved articles to 44 as shown in the PRISMA flow diagram Fig. 12. 
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The mentioned review papers (Fernandes et al., 2020a; Wurtz et al., 
2019; Nasirahmadi, Edwards, Sturm) provided an extensive overview of 
computer vision systems applied to processing animal phenotypes but 
did not focus on the deep learning strategies. Most of the published 
studies used traditional image analysis and processing, as shown in the 
153 articles review from Wurtz et al. (2019). In this review article, we 
filtered the selected articles (n = 44) based on the following computer 
vision tasks: image classification, object detection, object segmentation, 
and feature extraction. Such filter was essential to reveal the most used 
computer vision tasks in Animal Science studies and hence to determine 
which algorithms should be reviewed within each task. 

3.2. Applying image classification in animal science 

From the total reviewed articles, 48% implemented deep learning 
algorithms designed to perform image classification. In comparison, 
25% used algorithms for object detection and only 9% for object seg
mentation. Some articles combined algorithms to perform image ana
lyses, such as object detection and classification (9%) and object 
detection and segmentation (2%) (Fig. 13(a)). It is important to high
light that 7% of the articles used deep neural network architecture for 
image classification to accommodate a regression problem. In such 
cases, the major change in the deep learning algorithms was the last 
activation layer, modified to output the predicted values as a continuous 

numeric value instead of a class probability. These computer vision tasks 
were implemented mostly using RGB images, which represented 82% 
(36 articles) of the total type of images used in the reviewed articles. 
Depth and infrared images were very little studied with 7% (3 articles) 
and 5% (2 articles), respectively (Fig. 13(c)). 

The oldest peer-reviewed article retrieved in our list after applying 
the selection criteria (Fig. 12) was published in 2015 (Zhao and He, 
2015). Additionally, 84% of the total reviewed articles (n = 44) were 
published in 2019 (n = 17) and 2020 (n = 20), while 16% were pub
lished in 2015 (n = 1) and 2018 (n = 6) (Fig. 13(d)). These results can 
confirm the rapid and recent interest in deep learning as the primary 
algorithm for analyzing images in computer vision systems. Most of the 
articles were published in the Journal of Computers and Electronics in 
Agriculture (n = 13), followed by Biosystems Engineering (n = 6), IEEE 
Access (n = 4) and Sensors (n = 4). Swine (n = 21) was the most 
frequent species found in the reviewed articles followed by dairy (n =

11) and beef (n = 5) cattle, poultry (n = 4), and goat (n = 1) (Fig. 13 
(a)). The most frequently investigated scenario was animal behavior 
monitoring (n = 12), followed by animal detection/counting (n = 8), 
animal recognition (n = 8), health status and lameness detection (n =

4), animal pose estimation (n = 4), weight/body condition score 
assessment (n = 3), and others (n = 5) (Fig. 13(b)). 

In computer vision, image classification was the most frequent task 
(n = 27 among the 44 articles reviewed) found in Animal Science studies 

Fig. 12. Search flow used in the review.  
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(Table 2). Image classification has been used for different livestock ap
plications including animal identification (Bezen et al., 2020; Marsot 
et al., 2020), posture (Riekert et al., 2020), and behavior (Chen et al., 
2020a–d). Animal identification is a crucial step for a full implementa
tion of an automated computer vision system in livestock operations. 
Additionally, accurate individual animal identification through image 
analyses could open new avenues for animal traceability programs, 
which is extremely important given the growing demand for food safety 
by final consumers around the world. If accurate through the entire 
animal life cycle, such image-based predictions would allow a greater 
level of data security and reduce the chance of fraud throughout the 
supply chain. Several articles proposed the use of deep learning for 
animal identification in cattle (Bezen et al., 2020; Kumar et al., 2018; 
Qiao et al., 2019a; Zhao and He, 2015) and swine (Hansen et al., 2018; 
Marsot et al., 2020; Zheng et al., 2015). Some of the deep learning al
gorithms described in Section 2.2 were reported in livestock works, 
including Inception-v3 (Chen et al., 2020d), ResNet (ResNet50; Chen 
et al., 2020c), Xception (Chen et al., 2020b), NASNet (Barbedo et al., 
2017), and others such as LeNet-5 (Zhao and He, 2015). Those authors 
reported accuracy values ranging from 83.8 to 99.0% for animal 
recognition (Table 2). It is important to note that some studies did not 
consider individual animal classification as a multiclass problem, but 
rather as a binary classification problem (presence of an animal in the 
image). Only RGB images of animals or pictures of digital numbers 
presented in collar tags Bezen et al. (2020) or parts of animals (Kumar 
et al., 2018; Marsot et al., 2020) have been used for animal recognition. 
Despite the high accuracy reported in the reviewed papers, the identi
fication of individual animals of single-color breeds (e.g. Angus, Jersey, 
and Landrace) based only in RGB images can be a challenge. In this 
context, more research evaluating different algorithms that use 3D 
representations as input should be considered in the future. 

3.3. High-throughput phenotyping using deep learning-based computer 
vision systems 

Deep learning-based computer vision systems have been used for 

high-throughput phenotyping as a strategy to collect animal behaviors 
in cattle, swine, broiler, and goats (Tables 2 and 3). In 2018, studies 
published by Zheng et al. (2018) and Yang et al. (2018) proposed the use 
of deep learning algorithms to identify pig postures (drinking, urination, 
and mounting) and individual ID, and to recognize feeding behavior. 
Recently, Chen et al. (2020a, 2020b, 2020c, 2020d) implemented 
different CNN architectures (VGG16, ResNet50, Inception-v3, and 
Xception) for handling pig behavior, combining them with a Recurrent 
Neural Network (RNN) called Long Short-Term Memory (LSTM). LSTM 
(Hochreiter and Schmidhuber, 1997) networks are usually used to 
process time-dependent sequences of data, as found in speech and video 
data, even though inputs other than time series can be used in such 
neural networks. To combine such algorithms, the spatial features 
extracted from the CNN are used as inputs in the LSTM, which then 
extracts spatial-temporal features. Using this combination (CNN +
LSTM), the authors found high accuracies to predict aggressive episodes 
of pigs (Acc = 97.2%), drinking episodes (Acc = 92.5%), feeding 
behavior (Acc = 98.4%) and the recognition of pigs engaging with 
different enrichment objects (Acc = 95.6–97.6%). Chen et al. (2020d) 
compared different deep learning architectures (VGG16, ResNet50, 
Inception-v3, and Xception) combined with LSTM to predict pig feeding 
behavior and they concluded that the combination Xception + LSTM 
presented the most accurate predictions. Although most of the published 
articles focused on animal identification and behavior, other important 
phenotypes were investigated, as reported by Atkinson et al. (2020), 
who demonstrated the potential of Resnet-101 to predict large particle 
content in dairy cattle feces (90% detection rate, using NIR and 3D 
images) and Huang et al. (2019) who reported high predictive accu
racies (98.5 and 99.1%) to classify dairy cow body condition score using 
Single Shot MultiBox Detector (SSD) algorithms in RGB images. 

Some of the reviewed articles (Bezen et al., 2020; Cang et al., 2019; 
Fernandes et al., 2020b; Tian et al., 2019) used deep neural networks to 
solve a regression problem. Dairy cow feed intake, and pig body weight, 
muscle depth, and backfat thickness were the phenotypes predicted 
through regression-based deep learning algorithms. Through the modi
fication of the last activation function, the deep neural network outputs 

Fig. 13. Charts with descriptive information about the article corpus gathered in our search about computer vision applied to livestock species.  
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the predicted values as a continuous numerical value instead of class 
probabilities. 

3.4. Applying object detection in animal science 

Tasks related to object detection were implemented for multiples 
purposes in studies involving livestock animals. As previously described 
in the section Object Detection - Deep Learning Algorithms, the main 
goal of this task is to detect one or more objects in an image. In Animal 
Science studies, the algorithms designed for object detection were 
mostly used for animal detection (Cowton et al., 2019; Lee et al., 2019; 
Psota et al., 2019; Seo et al., 2020), mainly swine. Other applications 
were found, such as the detection of lameness (Kang et al., 2020) and 
digital dermatitis (Cernek et al., 2020) in dairy cattle (Tables 2 and 3). 
Cernek et al. (2020) implemented YOLOv2 in RGB images and found an 
accuracy of 88%. Such results indicate great potential for computer 
vision systems to identify cows with digital dermatitis, reducing 
dermatitis prevalence and improving animal welfare. Kang et al. (2020) 
developed a lameness scoring system for dairy cows using the Receptive 
Field Block Net Single Shot Detector deep learning network to locate 

cow hooves in the video with 87.0% of mean average precision. The 
located legs were then used as input for an algorithm proposed to 
calculate the supporting phase, which is the difference between the hoof 
lifting time and the hoof load time. 

Articles using deep neural networks in combination with other al
gorithms were found among the reviewed papers. In some articles, deep 
learning was used to remove background or detect an object as a way to 
remove unnecessary noise for posterior analyses. For example, Lee et al. 
(2019) proposed a hybrid method composed by an image processing 
step, followed by a deep learning algorithm. They used Gaussian 
Mixture Model to detect the moving frame for 24 h, TinyYOLOv3 to 
detect individual pigs in each selected frame, and lastly they segmented 
the pig body implementing Otsus method, which performed automatic 
image thresholding to calculate pig size. Instead of using end-to-end 
deep learning methods, Lee et al. (2019) proposed these hybrid 
models and reported greater analysis speed and adequate accuracy when 
implemented in single board GPUs, such as Jeston TX2, and compared 
with deep learning strategies like Mask R-CNN. 

YOLO and Faster R-CNN were the main algorithms used for object 
detection in Animal Science studies. The deep learning architecture 

Table 2 
Classification and regression in livestock.  

Paper Type Phenotype Algorithm Backbone Score 

Atkinson et al. 
(2020) 

Dairy Grain/fiber detection in feces Resnet-101  Acc = 90% 

Barbedo et al. 
(2017) 

Beef Animal detection in pastures CNN 15 different architectures 
(best NASNet) 

Acc = 99.2–96.4% 

Chen et al. 
(2020c) 

Swine Drinking behaivor ResNet50 LSTM  Acc = 92.5% 

Chen et al. 
(2020d) 

Swine Feed behavoir Inception-v3 LSTM  Acc = 95.2–97.9% 

Chen et al. 
(2020b) 

Swine Action recognition (agressive 
episodes) 

xCeption LSTM  Acc = 98.4% 

Chen et al. 
(2020a) 

Swine Action recognition 
(engagement with objects) 

VGG-16 LSTM  Acc = 98.2% 

de Freitas et al. 
(2019) 

Beef Kerato conjunctivitis 
identification 

CNN  Acc = 79.57% 

Hansen et al. 
(2018) 

Swine Face recognition CNN  Acc = 96.7% 

Kumar et al. 
(2018) 

Beef Animal identification CNN; SDAE; RBM  Acc = 95.98%; 96.92%; 98.99% 

Li et al. (2019) Beef 
Dairy 

Cattle pose estimation CPMs; Stacked hourglass; Heatmap 
regression  

PCKh0.5 = 88.29%; 90.39%; 83.52% 

Marsot et al. 
(2020) 

Swine Face recognition CNN  Acc = 83.75% 

McKenna et al. 
(2020) 

Swine Postmortem liver and heart 
pathologies Inspection 

CNN AlexNet AUC = 0.89–0.96 

Qiao et al., 2019 Beef Animal Recoginition CNN LSTM Inception-v3 Acc = 78-91% 
Riekert et al. 

(2020) 
Swine Position and posture of pigs Faster RCNN NASNet Positions 67.7% AP, Position and 

posture detection mAP of 80.2% 
Wang et al. 

(2018) 
Swine Animal recognition CNN Inception-v3 + Xception 

+ DPNs131 
Acc = 96.41% 

Ye et al. (2020) Poultry Stunned condition FasterRCNN+MRMnet (Multi-Layer 
Residual Module)  

Acc = 98.06% 

Zhao and He 
(2015) 

Dairy Animal recognition CNNs LeNet-5 Acc = 90.55–93.33% 

Bezen et al. 
(2020) 

Dairy Feed Intake CNN Resnet50 AE = 0.241 kg / MSE = 0.106 kg2 

Cang et al. (2019) Swine Body weight Faster R-CNN + VGG  AE = 0.644 kg / ARE = 0.374% 
Fernandes et al., 

2020b 
Swine Body composition traits MLP  MASE = 2.69–13.56; R2 = 0.45–0.86 

Tian et al. (2019) Swine Animal counting Counting CNN + ResNeXt  MAE = 1.67; RMSE = 2.13 
Geng et al. (2019) Poultry Hatching egg activity FCNs GRUs  Acc = 99.69% 
Fang et al. (2020) Poultry Animal tracking CNN AlexNet OR = 0.758; MTPE = 0.730 
Zhuang and 

Zhang (2019) 
Poultry Sick or health classification SSD Inception-v3 mAP = 48.1%-99.7% 

Huang et al. 
(2019) 

Dairy Body condition score Improved SSD; SSD; YOLO-v3 DenseNet and Inception- 
v4; VGG-16 

Acc = 88.84–99.10% 

Yang et al. (2018) Swine Recognition of nursing 
interactions 

FCN + SVM VGG16 Acc = 97.6% 

Zhang et al. 
(2019) 

Swine Behavior recognation MobileNet and SDD  Precision = 91.4–96.5%  
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varied across studies, with ResNet, Xcpetion, VGG16, Inception, and 
Darknet featuring among the most used. Barbedo et al. (2017) used an 
UAV to obtain aerial images of beef farms and tested 15 CNN architec
tures to detect animals. These authors concluded that many CNN ar
chitectures were robust enough to detect cattle on farm, and they 
highlighted great performance of NASNet and Xception network. Geffen 
et al. (2020) used Faster R-CNN, with ResNet-101 as the backbone 
network, to detect and count hens per cage with a detection accuracy of 
89.6%. Ye et al. (2020) using R-CNN, reported 98.6% of accuracy to 
predict stunned condition in broilers. It is important to highlight that 
few articles with poultry were found and retrieved in this review. 

3.5. Applying object segmentation in animal science 

Object segmentation was the computer vision task with the fewest 
number of published studies in Animal Science, as observed in Table 4. 
Four publications with object segmentation were selected and retrieved 
in this review, 2 of them using Mask R-CNN, 1 using U-Net, and 1 using 
DeepLab V3+. Qiao et al., 2019 used a Mask R-CNN based cattle 
instance segmentation and contour line extraction method. The pro
posed approach resulted in accurate cattle segmentation, with Mean 
Pixel Accuracy (MPA) of 0.92, and achieved contour extraction with an 
Average Distance Error (ADE) of 33.5 pixels, overperforming SharpMask 
and DeepMask instance segmentation methods. Wu et al. (2020) used a 
DeepLab V3+ semantic segmentation model to perform cow body seg
mentation. Subsequently, a phase-based video magnification algorithm 
was applied in processed images to amplify the weak breathing move
ments, and the Lucas–Kanade optical flow algorithm was used to detect 
breathing direction. In addition, a respiration rate detection model was 
used to detect the respiratory rate of dairy cows. 

In this review, we identified several potential applications of com
puter vision system based on deep learning algorithms to support 

livestock operations. For instance, we did not find articles in Animal 
Science using Autoencoders for feature extraction. However, we believe 
that such an analytical tool has a great potential to be implemented in 
livestock image data to reduce data dimensionality and select important 
features for phenotype prediction. We observed that most articles using 
deep learning for image classification implemented standard CNN 
models, but papers related to object detection are already applying 
competitive models such as ResNet, Inception, and Xception, and have 
reported good results. However, further development for more complex 
tasks related to detection, like modeling behavior, will need to embed 
more complex models from related areas like object tracking. Image 
segmentation seems to be the least explored field for livestock applica
tions among the ones evaluated in our review. The papers identified for 
segmenting livestock images used Mask R-CNN, U-Net, and Deeplab 
models, but some other state-of-the-art models for semantic segmenta
tion, such as PSPNet, were not yet considered, and we believe such al
gorithms could help improve results in real application settings (e.g. in 
commercial farms). 

4. Concluding remarks 

The recent adoption of deep learning algorithms in computer vision 
systems designed for livestock applications and its great predictive 
ability reported in the published studies have demonstrated the poten
tial of such analytical approach for high-throughput phenotyping. Such 
computer vision systems can bring real-time, non-invasive, and precise 
predictions related to health, welfare, nutrition, and reproduction at 
group and animal level. 

The number of studies using deep learning as the main framework for 
image analyses in computer vision systems is still small and very recent 
in Animal Sciences, given that 84% of the publications with livestock 
animals were published between 2019 and 2020. However, it is 

Table 3 
Object detection in livestock.  

Paper Type Phenotype Algorithm Backbone Score 

Bezen et al. (2020) Dairy Tag number 
identification 

Faster RCNN Resnet Acc = 93.6% 

Zheng et al. (2018) Swine Lactating postures Faster RCNN ZFNet Acc = 93% 
Cowton et al. (2019) Swine Animal detection Faster R-CNN  mAP = 0.901 
Geffen et al. (2020) Poultry Counting hens/cage Faster R-CNN ResNet101 Acc = 89.6% 
Guzhva et al. (2018) Dairy Animal tracking CNN VGG 225 average tracking time per 

starting point 
Jiang et al. (2019) Dairy Key parts of dairy cows FLYOLOv3  Precision = 99.18%; Recall =

97.51% 
Kang et al. (2020) Dairy Lameness scoring RFB_Net_SSD VGG16 Acc = 93-96% 
Lee et al. (2019) Swine Detection of 

undergrown pigs 
TinyYOLO Tiny Darknet NA 

Nasirahmadi et al. 
(2017) 

Swine Behavior Faster R-CNN Inception-v2, ResNet50, ResNet101 and 
Inception-ResNet-v2 

AP = 0.92–0.95 

Psota et al. (2019) Swine Animal detection Hourglass networks  Precision = 0.91–1.0; Recall =
0.66–0.96 

Seo et al. (2020) Swine Animal detection TinyYOLO Tiny Darknet Acc = 97.6% 
Tsai et al. (2020) Dairy Drinking behavior Tiny YOLOv3 Tiny Darknet F1 score = 0.987 
Cernek et al. (2020) Dairy Digital dermatitis 

scoring 
YOLO  Acc = 71-88%; Cohen’s kappa =

0.36–0.51 
Jiang et al. (2020) Goat Behavior recognation Faster R-CNN, YOLOv3, 

YOLOv4  
Acc = 90.46–98.27%  

Table 4 
Image segmentation in livestock.  

Paper Type Phenotype Algorithm Backbone Score 

Nye et al. (2020) Dairy Heritability of conformational 
traits 

Mask R-CNN/ 
CNN* 

Resnet Proportion of White color: R2 = 0.926; Heritabilities: 
h2 = 0.180.82 

Bruenger et al. 
(2020) 

Swine Posture estimation Unet Inception-ResNet-v2, ResNet34, 
EfficientNet 

F1-score = 95% 

Qiao et al., 2019 Beef Cattle segmentation Mask R-CNN Resnet Acc = 92%; Average Distance Error = 53.05 
Wu et al. (2020) Dairy Animal detection DeepLab V3+ ResNet-101 Acc = 99.40%; IoU = 0.987  
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important to point out that most of the proposed deep learning algo
rithms used in the reviewed studies were released very recently. For 
example, xCeption (Chollet, 2016) and Mask R-CNN (He et al., 2017) 
were published in 2016 and 2017, respectively. Thus, it is expected to 
observe such a delay between the development of deep learning algo
rithms and their wide implementation in other research areas, such as 
agriculture and livestock. 

The great adoption of deep learning algorithms for image classifi
cation tasks compared to object detection and image segmentation is 
expected when computer vision starts to be implemented in a new field. 
Usually, object segmentation has a posterior implementation compared 
to image classification, as more complex problems cannot be solved by 
image classification alone, and thus more refined image analyses are 
necessary. For example, a deep learning algorithm trained exclusively to 
assert if there is a cow in an image will not predict exact locations, 
distances among cows, body areas for each animal, etc. As such, moving 
from image classification to instance segmentation is an expected step as 
more complex problems are present. Another limiting factor for the 
quick implementation of deep learning algorithms for object segmen
tation is image labeling and annotation, which is more labor-intensive 
and costly compared to image classification. 

Few reviewed articles provided detailed information regarding the 
use of pre-trained weights. Although several articles used a well-known 
deep learning architecture, such as ResNet, Inception, and Xception, 
very few reported if the network was entirely re-trained or if some layers 
were frozen and some re-trained. The use of pre-trained weights can be 
an effective strategy to speed up the training process and improve 
network convergence, especially when given small datasets. Reporting 
such information is important to ensure research reproducibility and 
critical evaluation. As computer vision advances in a new field, such as 
livestock, more customized image analyses are required, and the full 
benefit of using pre-trained networks is reduced. In this regard, the need 
for large datasets for specific applications (e.g. agricultural datasets) 
would become very important. 

Most of the articles used Holdout as the data split strategy used to 
create training and testing sets. In general, very little attention has been 
put into the hierarchical structure present in the dataset. The paper 
published by Psota et al. (2019) demonstrated the importance of vali
dating the trained algorithm in an unseen group of images from new 
environments, where the light conditions, background, and time were 
different from images in the training set. Psota et al. (2019) reported a 
reduction in precision and recall from 100% and 96% (randomly data 
split - images collected in the same environment) to 91% and 67% 
(unseen images: new environment). Fernandes et al., 2020b also re
ported an increase in root mean squared error (from 4.74 to 6.34 kg) of 
body weight prediction when the deep learning algorithm was trained 
using finishing pigs from two commercial lines and validated using 
another line, compared to k-fold cross-validation strategies. The studies 
from Psota et al. (2019) and Fernandes et al., 2020b demonstrated that 
hierarchical data structure present in the image dataset could produce 
over-optimistic predictions if not carefully considered during algorithms 
validation. This is a critical factor in developing trustworthy technolo
gies and avoiding frustration by end-users in the livestock industry. 
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Guzhva, O., Ardö, H., Nilsson, M., Herlin, A., Tufvesson, L., 2018. Now you see me: 
convolutional neural network based tracker for dairy cows. Front. Robot. AI 5 (SEP), 
107. https://doi.org/10.3389/frobt.2018.00107. 

Hansen, M.F., Smith, M.L., Smith, L.N., Salter, M.G., Baxter, E.M., Farish, M., Grieve, B., 
2018. Towards on-farm pig face recognition using convolutional neural networks. 
Comput. Ind. 98, 145–152. https://doi.org/10.1016/j.compind.2018.02.016. 

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask R-CNN. 2017 IEEE International 
Conference on Computer Vision (ICCV), pp. 2980–2988. 

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 
1735–1780. 

He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep residual learning for image recognition. 
arXiv:1512.03385. 

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, 
M., Adam, H., 2017. Mobilenets: efficient convolutional neural networks for mobile 
vision applications. CoRR abs/1704.04861. 

Huang, X., Hu, Z., Wang, X., Yang, X., Zhang, J., Shi, D., 2019. An improved single shot 
multibox detector method applied in body condition score for dairy cows. Animals. 
https://doi.org/10.3390/ani9070470. 

Jiang, B., Wu, Q., Yin, X., Wu, D., Song, H., He, D., 2019. FLYOLOv3 deep learning for 
key parts of dairy cow body detection. Comput. Electron. Agric. https://doi.org/ 
10.1016/j.compag.2019.104982. 

Jiang, M., Rao, Y., Zhang, J., Shen, Y., 2020. Automatic behavior recognition of group- 
housed goats using deep learning. Comput. Electron. Agric. https://doi.org/ 
10.1016/j.compag.2020.105706. 

Kang, X., Zhang, X., Liu, G., 2020. Accurate detection of lameness in dairy cattle with 
computer vision: a new and individualized detection strategy based on the analysis 
of the supporting phase. J. Dairy Sci. 0 (0) https://doi.org/10.3168/jds.2020-18288. 

Kingma, D. P., Ba, J., 2017. Adam: a method for stochastic optimization. arXiv: 
1412.6980. 

Kingma, D. P., Welling, M., 2013. Auto-encoding variational Bayes. arXiv:1312.6114. 
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep 

convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., 
Weinberger, K.Q. (Eds.), Advances in Neural Information Processing Systems, 25. 
Curran Associates, Inc., pp. 1097–1105 

Kumar, S., Pandey, A., Sai Ram Satwik, K., Kumar, S., Singh, S.K., Singh, A.K., Mohan, A., 
2018. Deep learning framework for recognition of cattle using muzzle point image 
pattern. Measurement 116, 1–17. https://doi.org/10.1016/j. 
measurement.2017.10.064. 

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to 
document recognition. Proceedings of the IEEE, pp. 2278–2324. 

Lee, S., Ahn, H., Seo, J., Chung, Y., Park, D., Pan, S., 2019. Practical monitoring of 
undergrown pigs for IoT-based large-scale smart farm. IEEE Access. https://doi.org/ 
10.1109/ACCESS.2019.2955761. 

Li, K., Wan, G., Cheng, G., Meng, L., Han, J., 2020. Object detection in optical remote 
sensing images: asurvey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 
159, 296–-307. https://doi.org/10.1016/j.isprsjprs.2019.11.023. 

Li, X., Cai, C., Zhang, R., Ju, L., He, J., 2019. Deep cascaded convolutional models for 
cattle pose estimation. Comput. Electron. Agric. https://doi.org/10.1016/j. 
compag.2019.104885. 

Lin, G., Shen, C., van den Hengel, A., Reid, I., 2016. Efficient piecewise training of deep 
structured models for semantic segmentation. 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 3194–3203. 

Lin, M., Chen, Q., Yan, S., 2013. Network in network. arXiv:1312.4400. 
Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid 

networks for object detection. 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 936–944. 

Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid 
networks for object detection. 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pp. 936–944. 

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object 
detection. arXiv:1708.02002. 

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., 
Zitnick, C.L., 2014. Microsoft coco: common objects in context. In: Fleet, D., 
Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), European Conference on Computer 
Vision (ECCV). Springer International Publishing, Cham, pp. 740–755. 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C.-Y., Berg, A.C., 2016. SSD: 
single shot multibox detector. ECCV. Springer, pp. 21–37. 

Liu, X., Liang, W., Wang, Y., Li, S., Pei, M., 2016. 3D head pose estimation with 
convolutional neural network trained on synthetic images. 2016 IEEE International 
Conference on Image Processing (ICIP), pp. 1289–1293. 

Liu, Z., Li, X., Luo, P., Loy, C., Tang, X., 2015. Semantic image segmentation via deep 
parsing network. 2015 IEEE International Conference on Computer Vision (ICCV), 
pp. 1377–1385. 

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic 
segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 3431–3440. 

Luc, P., Couprie, C., Chintala, S., Verbeek, J., 2016. Semantic segmentation using 
adversarial networks. arXiv:1611.08408. 

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B., 2015. Adversarial 
autoencoders. arXiv:1511.05644. 

Marsot, M., Mei, J., Shan, X., Ye, L., Feng, P., Yan, X., Li, C., Zhao, Y., 2020. An adaptive 
pig face recognition approach using convolutional neural networks. Comput. 
Electron. Agric. https://doi.org/10.1016/j.compag.2020.105386. 

McKenna, S., Amaral, T., Kyriazakis, I., 2020. Automated classification for visual-only 
postmortem inspection of porcine pathology. IEEE Trans. Autom. Sci. Eng. 17 (2), 
1005–1016. https://doi.org/10.1109/TASE.2019.2960106. 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., 2009. Preferred reporting items for 
systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6 (7), 
e1000097. https://doi.org/10.1371/journal.pmed.1000097. 

Nasirahmadi, A., Edwards, S. A., Sturm, B., 2017. Implementation of machine vision for 
detecting behaviour of cattle and pigs. 10.1016/j.livsci.2017.05.014. 

Neethirajan, S., 2017. Recent advances in wearable sensors for animal health 
management. Sens. Bio-Sensing Res. 12, 15–29. https://doi.org/10.1016/j. 
sbsr.2016.11.004. 

Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic 
segmentation. 2015 IEEE International Conference on Computer Vision (ICCV), 
pp. 1520–1528. 
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