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Abstract: The Brazilian Cerrado (tropical savanna) is the second largest biome in South America
and the main region in the country for agricultural production. Altitude is crucial information for
decision-makers and planners since it is directly related to temperature that conditions, for example,
the climatic risk of rainfed crop plantations. This study analyzes the conformity of two freely available
digital elevation models (DEMs), the NASADEM Merged Digital Elevation Model Global 1 arc second
(NASADEM_HGT) version 1 and the Advanced Land Observing Satellite Global Digital Surface
Model (ALOS AW3D30), version 3.1, with the altitudes provided by 1695 reference stations of the
Brazilian Geodetic System. Both models were evaluated based on the parameters recommended in
the Brazilian Cartographic Accuracy Standard for Digital Cartographic Products (PEC-PCD), which
defines error tolerances according to eight different scales (from 1:1000 to 1:250,000) and classes A
(most strict tolerance, for example, 0.17 m for 1:1000 scale), B, C, and D (least strict tolerance, for
example, 50 m for 1:250,000 scale). Considering the class A, the NASADEM_HGT meets 1:250,000
and lower scales, while AW3D30 meets 1:100,000 and lower scales; for class B, NASADEM_HGT
meets 1:100,000 scale and AW3D30 meets 1:50,000. AW3D30 presented lower values of root mean
square error, standard deviation, and bias, indicating that it presents higher accuracy in relation to
the NASADEM_HGT. Within eight of Cerrado’s municipalities with the highest grain production,
the differences between average altitudes, measured by the Cohen’s effect size, were statistically
insignificant. The results obtained by the PEC-PCD for the Cerrado biome indicate that both models
can be employed in different DEM-dependent applications over this biome.

Keywords: digital elevation model; cartographic accuracy standard; Brazilian Geodetic System;
PEC-PCD

1. Introduction

Digital elevation models (DEMs) have been applied in different studies, including
water management, geomorphology and landscape analysis, volcanic activity monitoring,
and sea level change detection [1]. Grohmann [2] also pointed out other applications such as
development of geopotential global models, evaluation of glacier volume change, climatic
modeling, vegetation mapping, and development of navigation systems for commercial
aviation. Most of the environmental and geological studies need accurate elevation data
with global coverage [1]. The high demand for DEMs accelerated the launch of satellites
that collect stereo pair data in the optical spectral range as well as interferometric synthetic
aperture radar (InSAR) data in the microwave spectral range.
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The most popular and freely available DEMs are the 1 arc second (~30-meter spatial
resolution) Shuttle Radar Topography Mission (SRTM) [3] and the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model
(GDEM) [4,5]. More recently, the German Aerospace Center (DLR) produced a global,
consistent, and high-resolution (12-meter spatial resolution) DEM with unprecedented
accuracy based on the TanDEM-X mission [6]. These data are only freely available for scien-
tific and commercial purposes. Other DEMs are the 30-meter spatial resolution NASADEM,
considered as the successor of SRTM, that was produced by reprocessing the SRTM and
merging it with ASTER GDEM [7], as well as the Advanced Land Observing Satellite Global
Digital Surface Model (ALOS AW3D30; 30-meter spatial resolution), produced based on the
ALQOS Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM) [8]. Recently,
NASA made available the NASADEM Merged Digital Elevation Model Global 1 arc second
(NASADEM_HGT) data layers that include the DEM itself, the number of scenes processed
by each pixel, and an updated SRTM water body mask [9].

Several studies have been published assessing the vertical accuracy of these products.
For example, the vertical accuracy of AW3D30 was assessed by [2,5,10], while NASADEM
accuracy was assessed by [11,12]. Assessment of the accuracy of satellite-based DEMs is
based on the comparison with the altitudes provided by high-precision global navigation
satellite systems (GNSS) receivers, geodetic marks, and laser scanning data, among other
products. For example, Gdulova et al. [13] assessed the vertical accuracy of TanDEM-X
DEM (12-meter spatial resolution) over a European mountain environment based on the
airborne LiDAR data, presenting vertical accuracy exceeding 30 cm. They found that this
product complies with the 10-m mission specification benchmark: in non-forested areas, the
LE90 (90% confidence of vertical accuracy) reached values below 6 m, while in coniferous
forests, it was equal to or below 12 m. Gonzalez-Morada and Viveen [14] compared ASTER
GDEM, SRTM, AW3D30, and TanDEM-X DEMs against a set of 139 measurements gathered
by a dual-frequency Trimble 5800 Global Navigation Satellite System (GNSS) receiver. The
root mean square error (RMSE) were below 7 m for all models, especially for TanDEM-X
(RMSE = 1.7 m).

In Brazil, the accuracy of DEMs is often presented in terms of Standard of Carto-
graphic Accuracy of Digital Cartographic Products (PEC-PCD, abbreviation in Portuguese),
according to the DEM’s RMSE, eight scales of evaluation (1:1000, 1:2000, 1:5000, 1:10,000,
1:25,000, 1:50,000, 1:100,000, and 1:250,000), and classes A, B, C, and D (see Sections 2.1
and 2.2 for details). Viel et al. [15] evaluated the PEC-PCD of SRTM, AW3D30, and ASTER
GDEM from a test site located in the Rio Grande do Sul State, Brazil. Results showed that
all models fitted 1:50,000, class D. According to Barbosa et al. [16], AW3D30 DEM reached a
PEC-PCD of 1:25,000, class C, in a study area located in the municipality of Formoso, Minas
Gerais State, Brazil. To our best knowledge, the majority of the studies using the Brazilian
PEC-PCD criterion are conducted taking into consideration relatively small areas, that is,
with site-specific conditions in terms of topography and land use and land cover. Therefore,
more regional evaluation (e.g., at the scale of biome) of existing DEMs are needed in order
to include a wider range of landscape conditions.

In this context, this study aims to analyze the altimetric conformity and accuracy of
the global NASADEM_HGT and AW3D30 version 3.1 DEM with the altitude data from the
Brazilian geodetic stations located in the Cerrado biome. These two DEMs were selected
because they are freely available on a global scale with spatial resolution of 1 arc second,
widely used by the scientific communities (except the NASADEM_HGT, launched recently).

2. Background
2.1. Brazilian Geodetic System (SGB)

The Brazilian Geodetic System (SGB) has a set of points with geographic coordinates
(latitude and longitude) and altitude, calculated according to precision geodetic models [17].
The geodetic database can be understood as the set of information of the reference stations
that constitute the SGB. Such stations are mostly materialized with concrete landmarks
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containing metal sheets on their top with identification of the respective registration and
the type of station. The coordinates, altitude, and gravity of these stations are determined
through the high-precision geodetic procedures and models [18].

The Decree-Law No. 243 of 28 February 1967 [19] established the guidelines and basis
for the Brazilian cartography, recommending the development of a planialtimetric system
of geodetic control points to serve as a basis for the development of cartographic works
and to be the reference for the determination of coordinates and altitudes in Brazil. The
Brazilian Institute of Geography and Statistics (IBGE) is responsible for the maintenance
and densification of the SGB network [19]. The first geodetic basis was installed in 1944,
near the city of Goiadnia, Goids State. In 1991, IBGE acquired Global Positioning System
(GPS) receivers and began to use this technology to increase the SGB dataset, which consists
of the following networks [20]:

1.  Planialtimetric network: set of satellite-based geodetic stations, classified as GPS or
Doppler, and the polygonal stations and triangulation vertices based on conventional
surveying [20].

2. Altimetric network: set of reference levels for vertical positioning and composed
of high precision geometric leveling measurements [21]. In 2018, this network was
adjusted by geopotential numbers, where gravity observations in reference levels were
considered with the objective of obtaining physically meaningful altitudes, resulting
in normal-orthometric altitudes [22]. In this study, it was not possible to use the
SGB’s altimetry network as a reference, determined through the reference levels, since
IBGE has not launched the quasi-geoidal model yet to which the normal orthometric
altitudes of the reference levels will be referred. This quasi-geoidal model is necessary
for the conversion of the orthometric altitudes of the DEMs to the reference system of
the IBGE ’s planialtimetric stations used in the study.

3.  Gravimetric network: a set of geodetic stations, called gravimetric stations, which
contain information of the gravity acceleration and stations’ characteristics [23].

2.2. Brazilian Standard of Positional Accuracy

The Decree-Law No. 89817 of 1984 [24] details the Brazilian standard of positional
accuracy for analog cartographic data (PEC) and, with adaptations to PEC-PCD (for digital
cartographic products), constituted the Standard of Cartographic Accuracy (PEC) and
Standard Error (EP) tolerances defined according to the eight scales of evaluation (1:1000,
1:2000, 1:5000, 1:10,000, 1:25,000, 1:50,000, 1:100,000, and 1:250,000) and the corresponding
classes A (best accuracy), B, C, and D (worst accuracy).

In 2010, the Brazilian Army Geographic Service (DSG) published the document titled
Specifications of the Vector Geospatial Data Acquisition Techniques (ET-ADGV) [25]. In
2016, Technical Specification for Quality Control of Geospatial Data (ET-CQDG) [26] was
published to provide a standardized way to evaluate the quality of the geospatial datasets
that are part of the Brazilian National Cartographic System. Both the ET-ADGV and the
ET-CQDG technical specifications are complementary to the Decree-Law No. 89817, which
has regulatory power. In other words, a spatial data, to be classified in a certain scale and
class, need to consider the following conditions [24,27]:

e Ninety percent of the samples points in a cartographic product shall present values of
positional discrepancies equal to or less than the PEC tolerance value (1.6449*EP) of
the scale and class tested, when compared with corresponding ground truth data.

e  The RMSE of the positional discrepancies must be equal to or less than the EP tolerance
defined for each scale and class.

Table 1 shows the error tolerances in meters of PEC-PCD, discriminated by class A, B,
C, and D. It also shows the EP tolerances, which is related to the RMSE, of the positional
discrepancies of the analyzed points in relation to the reference points [25].
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Table 1. Standard of altimetric cartographic accuracy of digital elevation models (DEMs) for the production of digital
cartographic products defined for eight different scales and for classes A (most restricted), B, C, and D (least restricted).

Class
Scale B C D
PEC (m) EP (m) PEC (m) EP (m) PEC (m) EP (m) PEC (m) EP (m)

1:1000 0.27 0.17 0.50 0.33 0.60 0.40 0.75 0.50

1:2000 0.27 0.17 0.50 0.33 0.60 0.40 0.75 0.50

1:5000 0.54 0.34 1.00 0.66 1.20 0.80 1.50 1.00
1:10,000 1.35 0.84 2.50 1.67 3.00 2.00 3.75 2.50
1:25,000 2.70 1.67 5.00 3.33 6.00 4.00 7.50 5.00
1:50,000 5.50 3.33 10.00 6.66 12.00 8.00 15.00 10.00
1:100,000 13.70 8.33 25.00 16.66 30.00 20.00 37.50 25.00
1:250,000 27.00 16.67 50.00 33.33 60.00 40.00 75.00 50.00

Source: [25].

For example, a specific DEM will be classified as class A in the 1:50,000 scale if it
presents RMSE < EP of 3.33 m and if 90% of altimetric discrepancies (errors) are <5.50 m
(permissible error, represented in Table 1 by the PEC, in meters). Altimetric discrepancies
(error—e) is defined in this technical specification as the difference between DEMs’ altitudes
(Z) and the reference ones (Z,) (Equation (1)).

e="Zm— 7y 1)

Carvalho and Silva [28] stated that both PEC and PEC-PCD do not clearly present
the methodological procedures to be applied in the quality assessment process so that
many complementary methods of analysis have been used to verify positional accuracies.
Furthermore, the Decree-Law No. 89817 of 20 June 1984 defines that the PEC is a statistical
dispersion indicator, relative to 90% of probability, corresponding to 1.6449 times the EP,
that is, PEC = 1.6449*EP, considering this value relative to the 90% probability within the
normal distribution curve. Thus, both PEC and PEC-PCD are valid only if the variable has
a normal distribution.

3. Materials and Methods
3.1. Study Area

The Cerrado biome (Figure 1) occupies an area of 198.5 million hectares, i.e., about 23%
of the Brazilian territory and covers, partially or totally, 1434 municipalities in 12 states,
and the Federal District [29]. This biome corresponds to the world'’s richest tropical sa-
vanna in terms of biodiversity, is considered as one of the world’s hotspots for biodiversity
conservation [30], and encompasses eight headwaters of the twelve most important hydro-
graphic basins in Brazil [31]. Besides, the Cerrado plays an important role in the Brazilian
agriculture, with the annual crops cultivated in this biome representing 40% of the national
production [31]. In the last four decades, the annual crops that expanded mostly in the
Cerrado were soybean, corn, cotton, sugarcane, sorghum, and rice. Other crops such as
coffee, tomatoes, beans, garlic, peanuts, and potatoes also have expanded, reinforcing the
biome’s prominent agricultural position in the country [32].
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Figure 1. Location of the study area (Cerrado biome) in Brazil and the 1695 reference stations (Brazilian Institute of

Geography and Statistics’ (IBGE’s) polygonal stations and triangulation vertices).

Agricultural modernization, intensified after the 1970s, marked the beginning of the
fast process of Cerrado’s native vegetation conversion into areas for production of agri-
cultural commodities, which caused approximately 50% loss in its native vegetation [33].
Thus, it is necessary to understand its dynamics to protect its natural resources and to
guarantee environmentally sustainable exploitation of this ecosystem.

3.2. Planialtimetric Reference Data

Data from the polygonal stations and triangulation vertices, which compose the pla-
nialtimetric geodetic network of the SGB, were used as reference. We found 387 polygonal
stations and 1308 triangulation vertices with altitude data, resulting in 1695 stations with
orthometric altitude data referenced to the Imbituba vertical datum and SIRGAS 2000
horizontal datum, over the Cerrado biome (Figure 1).

3.3. Digital Elevation Models
3.3.1. NASADEM_HGT

NASADEM expanded the legacy of the SRTM by improving the accuracy of the DEM and
data coverage on a global scale. SRTM mission mapped the topography of continental areas of
the Earth between 60° N latitude and 56° S latitude using InSAR [3,34,35]. Three versions of
the SRTM were launched; the last one is the SRTM Global 1 arc second, version 3.0 (SRTM
Plus or SRTM NASA Version 3), which is void-filled using elevation data from ASTER
GDEM 2, USGS National Elevation Dataset, and USGS Global Multi-resolution Terrain
Elevation Data (GMTED) 2010 [36,37]. SRTM Plus was produced under the NASA’s Making
Earth System Data Records for Use in Research Environments (MEaSUREs) Program and,
in 2014, it was publicly announced with a resolution of 1 arc second (~ 30 m in the equator
line) [37]. The performance requirements for the worldwide SRTM data products need
to reach vertical absolute height errors below 16 m for 90% of the data (LE90) (RMSE of
9.73 m) [38—41] and circular absolute geolocation errors below 20 m for 90% of the data
(CE90) [40]. The LE9O for South America was reported by [41] as 6.2 m, which corresponds
to an RMSE of 3.8 m.
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Improvements have been made by reprocessing original SRTM raw signals data using
enhanced algorithms and by incorporating data derived primarily from the Ice, Cloud, and
Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) and ASTER
GDEMs. The LiDAR GLAS instruments of the ICESat mission and ASTER DEMs were not
available during the original SRTM processing [42,43]. The Land Processes Distributed Ac-
tive Archive Center (LP DAAC) is responsible for the archiving and distribution of NASA’s
MEaSURESs program. Five NASADEM products are made available to the academic and
scientific community, differing by type (Table 2).

Table 2. NASADEM products and their groupings.

. . Fill No Data Valid Scale
Product Description Data Type Units Value Value Range Factor
NASADEM_HGT: NASADEM Merged DEM Product Grouping
1 . meters (relative
het Void-filled 2—byte signed to the EGM9% N/A N/A —32,767 to N/A
DEM merge integer . 32,767
geoid)
Class: 1-255
NUM file (see “Reference
num associated with byte Data for N/A N/A 0 to 255 N/A
hgt file Number of
Scenes Layer”)
Updated SRTM Class: 0 for
swb water body byte land; 255 for N/A N/A 255 N/A
data water
NASADEM_SC: NASADEM Slope and Curvature Product Grouping
Slope derived 2-byte hundreds of
slope P unsigned degrees 0 NaN Non-negative See Units
from hgt .
integer (0 = water)
Hundreds of
Slope aspect 2-byte degrees
aspect angle derived unsigned clockwise from 0 NaN Non-negative See Units
from hgt integer North
(0 = water)
Plan curvature Inverse meters
plan (planc) derived from 4-byte real 0 NaN - N/A
(0 = water)
hgt
Profile
profile curvature E Inverse meters }
(profc) derived from 4-byte real (0 = water) 0 NaN N/A
hgt
Updated SRTM Class: 0 for
swbd (swb) water body byte land; 255 for N/A N/A 255 N/A
data water
NASADEM_SSP: NASADEM SRTM Subswath Product Grouping
2-byte correlation
tot.cor Radar t(?tal unsigned value x 10,000 0 N/A Non-negative See Units
correlation . .
integer (0 =void)
Radar 2-byte correlation
vol.cor volumetric unsigned value x 10,000 0 N/A Non-negative See Units
correlation integer (0 =void)
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Table 2. Cont.

Product Description Data Type Units Vlgllllie N\(,)a]ﬁlfa I:/: 1111gde Fsaccatl:r
DN + 128
Radar © zvmd)
img individual Byte fileValu'ee.’: 10 x 0 N/A - See Units
1mages log10(actualValue)
+128)
inci dRraldarn ] 2-byte hundreds of
Inc0 cidence angie unsigned degrees 0 N/A Non-negative See Units
(relative to integer (0 = void)
ellipsoid) & -
Radar 2-byte hundreds of
inc incidence angle unsigned degrees 0 N/A Non-negative See Units
(local) integer (0 = void)
NASADEM_SIM: NASADEM SRTM Image Mosaic Product Grouping
DN + 128
(0 = void)
Img_comb Rad.ar (i-e., fileValue = .
2 combined byte 0 N/A - See Units
(img) imaces 10 x log10
& (actualValue) +
128)
. Number of
img_comb_num assl(iliilz/e[zéliiith pixels averaged
18_commb_ . byte for each 0 N/A 0 to 10 N/A
(img.num) combined img_comb
1mages output pixel
NASADEM_SHHP: NASADEM SRTM-only Height and Height Precision Product Grouping
Het srtmOnl SRTM-only meters (relative
& (hgts) y floating-point 4-byte real to the WGS84 —32,768 N/A - N/A
& DEM ellipsoid)
. 2-byte 1
err Helgh't error unsigned m1111meter§ 32,769 N/A Non-negative N/A
(precision) integer (32,769 = void)

Source: [42]. N/A and NaN = No value.

In this study, we used the global NASADEM Merged DEM version 1 product (NASA-
DEM_HGT), distributed in 1° by 1° tiles with 1 arc second spatial resolution (~30 m in
Equator line), and referenced to the EGM96 geoid model. The layers included the DEM
itself, the number of scenes (NUM), and the SRTM-based water body mask (SWB). The
NUM layer indicates the number of DEM tiles that were processed for each pixel and the
source of the data [43]. As the NASADEM_HGT model is a new release and was made
available to the public recently (April 2020), there is little information in the literature
specifically for this DEM regarding its validation, for vertical and horizontal absolute and
relative errors.

3.3.2. AW3D30

The DEM called AW3D30 was launched by the Japan Aerospace Exploration Agency
(JAXA) with a spatial resolution of approximately 30 m in the equator line, resulting
from the resampling of the ALOS World 3D DEM (AW3D) data, with 0.15 arc second
(~ 5-meter spatial resolution). In five years of operation, ALOS produced approximately
6.5 million scenes covering the entire globe, with horizontal and vertical accuracy—5 m
(RMSE)—Dbeing reported only for the 5-m dataset [2,44] (Table 3). This DEM has orthometric
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altitudes referenced to the EGM96 geoid model [45]. In this study, we used the version
3.1, launched in April 2020. It has different pixel spacing for each latitude zone at high
latitudes, improved coastline and a new additional data for filling voids [46].

Table 3. Characteristics and global accuracy (90% of the data (CE90), 90% confidence of vertical accuracy (LE90), and root
mean square error (RMSE)) of the datasets used in this study.

. . . Horizontal .
Dataset Imaging System Wavelength Pixel Spacing Accuracy Vertical Accuracy
NASADEM_HGT SAR C-band 5.66 cm 30m 20 m (CE90) 16 m (LE90)
ALOS AW3D PRISM 0.52-0.77 pm 5m 5 m (RMSE) 5 m (RMSE)
Source: [2].

3.4. Validation

While the NASADEM_HGT product has 3601 x 3601 pixels per 1° x 1° grid with

overlapping in the borders, the AW3D30 has 3600 x 3600 pixels per 1° x 1° grid without
overlapping in the borders, resulting in a displacement of 1/2 pixel. Thus, it was necessary
to perform displacement to make the pixels coincident, which was done through a Python
language script using GDAL/OGR library [47].

In order to evaluate the DEMs, it was necessary to make them comparable to the

IBGE reference stations. Thus, the orthometric altitudes referenced to the EGM96 geoid
model was converted to the orthometric altitudes referenced to the Imbituba vertical datum
and SIRGAS 2000 horizontal datum. The following steps were performed, based on the
methodologies employed by [2,48,49].

Computation of the geoidal undulation of the EGM96 model from a 15’ grid file
provided by the National Geospatial Intelligence Agency (NGA). A 30-meter spatial
resolution grid was generated using the Spline interpolation method available in the
GRASS software [50].

Calculation of the ellipsoidal height (), obtained by the sum of the geoid undulation
(N) and the orthometric height H (h = H + N) [51]. H (datum: EGM96) was converted
into h (datum: WGS84) based on the addition of the EGM96 geoid undulation values
obtained in the previous step.

Computation of the geoidal undulation for the determination of orthometric altitude
(Imbituba vertical datum) using input grid of the MAPGEO2015 software (5’ interval).
This file was also interpolated to 30 m using the Spline interpolation method in the
GRASS software.

Conversion of the ellipsoidal altitude (W(GS84) into the orthometric altitude referenced
to the Imbituba vertical datum based on the subtraction of the geoidal undulation
values obtained in the previous step.

Conversion of the WGS84 horizontal datum to SIRGAS 2000 horizontal datum.

The same script was also used to obtain the altitudes of the resulting raster GRID
over the reference stations. These values were described in terms of mean, standard
deviation, quartiles, and coefficient of variation, as well as with the support of boxplots,
scatterplots, and histograms. We detected the presence of four outliers in the DEM
models and in the reference altitudes (Figure 2), indicating equivalence among these
outliers and corroborating the impression of high conformity among these datasets,
i.e., the distribution of these three datasets is practically the same.



Sensors 2021, 21, 2935 9 of 25

8 | [ . [}
Q
™
. : .
» [ ) L]
=] ! 1 1
{2 1 1 !
's] 1 | 1
= : i !
8 : : ]
(1] ! I 1
E o i i i
o ,8_' ! | |
2
<
| ]
o]
n 1 ] 1
o 4 S S
T T T
Reference Aftitude NASADEM AW3D30

Figure 2. Boxplots of reference altitude, the NASADEM Merged Digital Elevation Model Global 1
arc second (NASADEM_HGT), and the Advanced Land Observing Satellite Global Digital Surface
Model (ALOS AW3D30) datasets from the Cerrado biome.

The normality of the dataset was verified using the Shapiro-Wilk and Anderson—
Darling tests [52,53]. The data did not follow normal probability distribution, with p-values
0.05 (Table 4). Pearson’s correlation coefficients (r) were also calculated to check the level of
correlation among the data obtained by the two DEMs and the reference stations. Positional
errors were assessed according to the parameters recommended in the PEC-PCD regulated
by the Decree-Law No. 89817 of 20 June 1984, as well as in the technical specification
for the acquisition of vector geospatial data (ET-ADGV) and in the technical specification
for quality control of geospatial datasets products (ET-CQDG), complementary to the
Decree-Law (Table 1).

Table 4. Normality tests of reference altitudes and those obtained by the NASADEM_HGT and

AW3D30 models.
Parameter Test of Normality
Shapiro-Wilk Anderson-Darling
Reference altitude 0.001 0.001
NASADEM_HGT 0.001 0.001
AW3D30 0.001 0.001

The GeoPEC software [54] was used to classify DEMs according to accuracy measure-
ments such as mean square error (MSE), proposed by Gauss and known as (Equation (2)).

2 22 a Lin1 &
_ ) _ ~ = ]

MSE_E[(H—G)]—%—HJ > ==t 4 b )
where o2 represents the dispersion of the measurements (variance or uncertainty) and b
represents the tendency, error of estimator, or bias. In other words, ¢? and b represent
random and systematic errors, respectively. For large samples, the MSE corresponds to the

quadratic mean of the errors () [55,56].
Although this is a proposed measure of accuracy, a better way to evaluate it is in terms
of the independent parameters of tendency and precision (¢), which allows discrimination
between systematic and random errors. Since there is no tendency, accuracy and ¢ are
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confused. Mathematically, the tendency is the mean of the altimetric discrepancies—
difference between the observations (measured/estimated) and the known (or expected
reference) values [56,57]—and the ¢ is the standard deviation of errors. In this study, b
and o were calculated by Equation (3) and Equation (4), respectively. The accuracy was
calculated by the RMSE (Equation (5)).

N ..
b= Li;} €i 3)
N L 1\2
o= Bl ) @
2
RMSE = le\} ‘i )

In addition to these statistical measurements, Pearson’s correlation coefficient (r) was
employed to verify the correlation between DEMs’ altitudes and reference data and the
Willmott index of agreement (d) [58] was obtained.

3.5. Comparison of DEMs in Eight Municipalities with the Highest Grain Production in
the Cerrado

Eight municipalities with the highest agricultural production in the Cerrado biome [59]
were selected to compare the two DEMs original values with each other (Figure 3; Table 5).
The spatial distribution of these municipalities in the biome and their altitudes were also
taken into account to guarantee spatial representativeness of them in the biome. The
temporary and perennial crops mapped in 2018 by the MapBiomas Project [60] were used
as a mask. The altitudes were analyzed pixel by pixel within these areas (Figure 4). The
MapBiomas Project generates historical series of annual land use and land cover maps
from Brazil based on cloud processing and automated classifiers in the Google Earth
Engine platform.
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Figure 3. Eight selected municipalities in the Cerrado biome with the highest grain production.
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Table 5. Agricultural position and harvest area of soybean, corn, cotton, and sugarcane of chosen

municipalities.
s 1. Position in the Cerrado in
Municipality (State) Terms of Grain Production Harvested Area (ha)
Sapezal (MT) 2nd 663,198
Rio Verde (GO) 3rd 601,210
Sao Desidério (BA) 4th 559,763
Maracaju (MS) 5th 545,458
Formosa do Rio Preto (BA) 7th 489,137
Primavera do Leste (MT) 9th 410,000
Cristalina (GO) 13th 320,000
Balsas (MA) 14th 298,495
Source: [59].
Municipality: 13,624 km? (A) Municipality: 8387 km? (B) Municipality: 15,157 km? (C)

Croplands: 6632 km? (49%)
Position: 2nd

SAPEZAL

Croplands: 6012 km? (72%)
Position: 3rd

RIO VERDE

1Position: 4th

Croplands: 5598 km? (37%)

SAO DESIDERIO

MARACAJU

® City

FORMOSA DO RIO PRETO

0
— Highway

® City @ City @ City
— Highway : "f ; — Highway — Highway
-

0 20 40kmfol 0 20 40km 0 30 60km
[——— ) [—— ———
Municipality: 5398 km’ (D) Municipality: 15,634 km? (E) Municipality: 5482 km? (F)
Croplands: 5455 km? (101%) Croplands: 4891 km? (31%) Croplands: 4100 km? (75%)
Position: 5th Position: 7th Position: 9th
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PRIMAVERA DO LESTE

Figure 4. Cont.
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Municipality: 6164 km? (G) Municipality: 13,142 km? (H)
Croplands: 3200 km2 (52%) Croplands: 2985 km? (23%) .
Lo =) Position: 14th

BALSAS

® City

— Highway
0 25 50km

Figure 4. Areas with annual and perennial crops in 2018 (in red) in the municipalities of Sapezal, Mato Grosso State (A),
Rio Verde, Goias State (B), Sao Desidério, Bahia State (C), Maracaju, Mato Grosso do Sul State (D), Formosa do Rio Preto,
Bahia State (E), Primavera do Leste, Mato Grosso State (F), Cristalina, Goias State (G), and Balsas, Maranhao State (H).
Source: [59]. In the Maracaju municipality, the area of croplands is larger than the area of municipality probably because of

the double cropping system.

Initially, a script using Python language and GDAL/OGR library was written in order
to obtain the pixel values of the analyzed models [47]. Descriptive measurements of the
models were obtained for agricultural areas of each municipality in terms of boxplots,
histograms, and scatterplots. In addition, the corresponding r values were also calculated
to quantify the level of correlation between the models. After the descriptive analysis of
the data, the altitude measurements obtained through the models were compared with
each other. This comparison was made by calculating the differences between the average
altitudes through Cohen’s effect size (dc) [61].

4. Results
4.1. Descriptive Analysis of DEMs Against the Reference Stations

Descriptive statistical measures of the reference altitudes and DEMs are shown in
Table 6. The altitudes obtained for the NASADEM_HGT and AW3D30 were quite close
with the measures provided by the SGB. In Figure 5, it is also possible to note a strong linear
relationship between the reference altitudes and the estimations from NASADEM_HGT
and AW3D30, which is emphasized by the r values close to 1: 0.99960 and 0.99979 for
NASADEM_HGT and AW3D30, respectively. The Willmott index of agreement (d) was
also very close to 1: 0.99978 for the NASADEM; and 0.99989 for the ALOS AW3D30.

Table 6. Quantitative measurements of reference altitude (m) and those obtained by the NASA-
DEM_HGT and AW3D30 models. Total number of samples: 1695. Min = minimum altitude;
Max = maximum altitude; SD = standard deviation. Q1 = first quartile; Q2 = second quartile;
Q3 = third quartile; and CV (%) = coefficient of variation in percentage.

Variable Min Max Mean SD Q1 Q2 Q3 CV (%)

Reference 3537 206176 71648 29778 476.66 721.81 93628  41.56
altitude

NASADEM_HGT 31.77 2056.24 713.58 29744 47136 71832 933.38 41.68
AW3D30 36.77 2061.24 71717  297.37 47451 719.04 936.16 41.46
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Figure 5. Relation between reference altitudes and those estimated by the NASADEM_HGT (a) and AW3D30 (b) models.

Figure 6 shows the histograms of the reference altitudes and the NASADEM_HGT
and AW3D30 models. It is possible to infer that the distributions of the altitudes measured
by the NASADEM_HGT and AW3D30 are practically identical to the distribution of the
reference altitudes, indicating high conformity of the models.

o
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Figure 6. Histograms of altitudes from reference (a), from NASADEM_HGT (b), and AW3D30 (c)
digital elevation models.

4.2. Classification of DEMs Considering PEC-PCD

The evaluation of the PEC-PCD was conducted in two steps. First, the RMSE was
calculated for each DEM in order to compare them to the EP as a function of the scale. The
RMSEs of the models were 8.87783 m and 6.14927 m for NASADEM_HGT and AW3D30,
respectively. The EP for the 1:100,000 scale and class A is 8.33 m and for the 1:100,000
scale and class B is 16.66 m (Table 7). According to this criterion, the NASADEM_HGT
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meets the 1:250,000 scale and class A, and 1:100,000 scale and class B. The AW3D30 meets
the 1:100,000 scale and class A, and 1:50,000 scale and class B. At least 90% of the points
presented altitude errors equal or lower than the PEC values shown in this table. In this step,
the two DEMs met the 1:100,000 scale and class A. However, when analyzing both criteria
together, considering the class A, it was possible to conclude that the NASADEM_HGT
meets 1:250,000 scales while AW3D30 meets the 1:100,000 and lower scales, considering
the class B, NASADEM_HGT meets the 1:100,000 scale while AW3D30 meets 1:50,000 and
lower scales.

Table 7. Percentage of points that presented discrepancies lower than the Cartographic Accuracy
Standard (PEC) (m).

Scale Class Standard Error PEC (m) Percentage (%)
EP (m)
NASADEM_HGTAW3D30
1:25,000 A 1.67 2.70 49 60
1:25,000 B 3.33 5.00 69 85
1:50,000 A 3.33 5.50 72 87
1:50,000 B 6.66 10.00 86 96
1:100,000 A 8.33 13.70 92 99
1:100,000 B 16.66 25.00 98 100
1:250,000 A 16.67 27.00 99 100
1:250,000 B 33.33 50.00 100 100

The positional accuracy of the two models was also verified through the GeoPEC
software which analyzes whether the discrepancies are equal or lower than the PEC and
if RMSE < EP, according to the assumptions of Decree-Law No. 89817 of 20 June 1984
and the specifications of ET-CQDG. The same results and classifications described in the
previous paragraphs were obtained. The normality of altitude discrepancies was verified
using the Shapiro-Wilk and Anderson-Darling tests. The data did not follow a normal
distribution, according to the p-values (0.05) (Table 8).

Table 8. Tests of normality of the altitude discrepancies.

. Test of Normality
Variable
Shapiro-Wilk Anderson-Darling
NASADEM_HGT errors 0.001 0.001
AW3D30 errors 0.001 0.001

Table 9 presents the results of the statistical analyzes in relation to the altitude dis-
crepancies. Overall, AW3D30 presented better results, though with very close values
regarding the minimum and maximum errors, while the maximum errors were the same
in both models.

Table 9. Statistics of altitude discrepancies.

Parameters NASADEM_HGT AW3D30
Minimum error —109.72 —108.72
Maximum error 96.80 97.80

Mean error or bias (tendency) —2.90 0.69
Standard deviation (precision) 8.39 6.11

Root mean square error

(RMSE) (accuracy) 8.88 6.15

The mean error or bias, representing the tendency, was —2.90 m for NASADEM_HGT
and 0.69 m for AW3D30, indicating that the AW3D30 data presents smaller systematic
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error than the NASADEM_HGT data, and the altitude values represented in the NASA-
DEM_HGT model are underestimated in relation to the reference and overestimated in
relation to the AW3D30. The result for AW3D30 is close to the ideal (zero), and for NASA-
DEM_HGT is low considering the spatial resolution and the appropriate scales for the
models. The standard deviation (precision) was lower for the AW3D30, indicating that
the discrepancies for this model are closer to the average of the discrepancies. The pre-
cision of this model (6.11 m) is 1.37 times greater than the NASADEM_HGT precision
(8.39 m), which means that altitude errors are less scattered in the AW3D30 than in the
NASADEM_HGT. The histograms referring to the errors for the altimetric component of
the DEMs are presented in Figure 7.
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Figure 7. Histograms of altitude discrepancies for NASADEM_HGT (a) and AW3D30 (b).

The RMSE for the AW3D30 was 6.15 m and for the NASADEM_HGT was 8.88 m.
In relation to the RMSE, understanding accuracy as a reflection of the tendency and
precision measures and, as the tendency value in AW3D30 was very close to 0 and low in
NASADEM_HGT, the accuracy value (in this study represented by the RMSE) tends to be
similar to the precision values (represented by standard deviation in this study).

4.3. Descriptive Analysis of DEMs in the Municipalities with the Highest Grain Production in
the Cerrado

Table 10 presents the descriptive measures for each municipality with the highest
harvested area in the Cerrado biome. Considering the values of means, standard de-
viations, quartiles, and coefficients of variation, the values are very close between the
NASADEM_HGT and AW3D30 models; so, the initial impression is that the DEMs have
very similar altitudes, with homogenous data according to the coefficient of variation
(CV (%)). Figure 8 shows the boxplots for agricultural areas in each municipality, with
NASADEM_HGT represented in blue and AW3D3(0 in green. Analyzing them, it is possible
to realize that the distributions of the measurements of each model are very similar, a fact
that is common for each municipality analyzed.
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Table 10. Quantitative measurements of altitude (m) extracted from NASADEM_HGT and AW3D30 over eight municipalities of the Cerrado with highest grain production. Min. =
minimum altitude (m); Max. = maximum; SD = standard deviation; DEM = digital elevation model; Q1 = first quartile; Q2 = second quartile; Q3 = third quartile; and CV = coefficient

of variation.

e e 1 . Min. Max. Mean SD Q1 Q2 Q3 o
Municipality DEM Number of Pixels (m) (m) (m) (@) (m) (m) (m) CV (%)

Sapezal NASADEM 4,691,742 250 663 533.19 59.40 500 542 574 11.14

AW3D30 4,691,742 252 724 533.60 59.86 500 543 575 11.22

) NASADEM 5,341,106 481 1031 786.07 103.38 715 791 862 13.15

Rio Verde AW3D30 5,341,106 480 1053 788.03 103.56 717 792 864 13.14

B o NASADEM 6,222,247 472 1035 838.44 72.49 773 835 889 8.65

Sao Desideério AW3D30 6,222,247 472 1079 839.45 72.11 775 836 890 8.59

Maracaju NASADEM 3,603,927 254 644 478.66 70.95 423 487 534 14.82

AW3D30 3,603,927 253 646 479.71 71.14 424 488 535 14.83

Formosa do Rio NASADEM 5,696,443 465 901 794.13 35.74 767 791 813 4.50

Preto AW3D30 5,696,443 472 957 794.43 36.09 767 791 814 454

Primavera do NASADEM 3,511,471 450 883 649.37 53.43 611 645 684 8.23

Leste AW3D30 3,511,471 451 881 649.06 53.35 610 645 684 8.22

o NASADEM 3,039,881 737 1225 930.38 69.26 880 923 970 7.44

Cristalina AW3D30 3,039,881 738 1226 931.26 68.99 882 924 971 7.41

NASADEM 2,774,848 229 655 48322 91.99 404 524 549 19.04

Balsas AW3D30 2,774,848 229 658 484.29 91.71 405 524 550 18.94
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Figure 8. Boxplots of the NASADEM_HGT and AW3D30 digital elevation models for the agricultural areas of Sapezal (a),
Rio Verde (b), Sao Desidério (c), Maracaju (d), Formosa do Rio Preto (e), Primavera do Leste (f), Cristalina (g), and Balsas

(h) municipalities.

Figure 9 shows the violin plots, which combine boxplots and histograms in the same
graphical output of chosen municipalities. It appears that the distributions of measurements
inherent to the NASADEM_HGT and AW3D30 are very similar. Such graphs confirm the
initial impression that the models tend to present values of very close altitudes. Overall
shape and distribution are similar for both models, with quartiles very close to each other,
where it is possible to observe the correspondence of outliers.
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Figure 9. Violin plots of the NASADEM_HGT and AW3D30 digital elevation models for the agricultural areas of Sapezal
(a), Rio Verde (b), Sao Desidério (c), Maracaju (d), Formosa do Rio Preto (e), Primavera do Leste (f), Cristalina (g), and

Balsas (h) municipalities.

Figure 10 shows the scatterplots for each municipality in order to assess the degree of
association between the altitudes of each model. It is possible to note that there is a linear rela-
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tion between the variables analyzed and values very close to 1 (r 0.99), indicating a correlation

quasi-perfect between the altitudes of the two models for all municipalities analyzed.
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Figure 10. Relation between NASADEM_HGT and AW3D30 for the agricultural areas of Sapezal (a), Rio Verde (b), Sao
Desidério (c), Maracaju (d), Formosa do Rio Preto (e), Primavera do Leste (f), Cristalina (g), and Balsas (h) municipalities.

4.4. Comparison of DEMs in Agricultural Areas of Municipalities with the Highest Grain
Production in the Cerrado Using the Size of Cohen Effect (dc)

In this subsection, the results of the comparison between the altitudes of the NASA-
DEM_HGT and AW3D30 models, performed by measuring the size of the Cohen effect
(dc), are presented. The interpretations of the results were performed according to Table 11,
while the measurements of size effects for each municipality are shown in Table 12. It is
possible to notice that all values for the size of the Cohen effect (dc) were less than 0.19.
Thus, it can be said that the effect of the difference between the altitude measurements of
the NASADEM_HGT and AW3D30 models is insignificant for all the analyzed municipali-
ties. These results, combined with the descriptive analysis, allow us to conclude that the
two DEMs tend to provide very similar altitude measurements.

Table 11. Interpretation of the Cohen effect size measurements.

Cohen Effect Interpretation
>1.30 Very high
0.80-1.29 High
0.50-0.79 Medium
0.20-0.49 Low
<0.19 Not significant

Source: [62].

Table 12. Size measurements of the Cohen effect size per municipality.

Mean Altitud .

Municipality ean Attude Mean Difference Cohen Effect Interpretation
NASADEM_HGT AW3D30

Sapezal 533.19 533.60 0.40 0.00678507 Not significant
Rio Verde 786.07 788.03 1.95 0.01889108 Not significant
Sao Desidério 838.44 839.45 1.00 0.01388478 Not significant
Maracaju 478.66 479.71 1.05 0.01472942 Not significant
Formgiztio Rio 794.13 794.43 0.29 0.008158326 Not significant
Primavera do Leste 649.37 649.06 0.31 0.005793891 Not significant
Cristalina 930.38 931.26 0.89 0.01281434 Not significant
Balsas 483.22 484.29 1.07 0.01164616 Not significant




Sensors 2021, 21, 2935

22 of 25

5. Discussion

The adopted methodology allowed us to conclude that the vertical accuracy of the
AW3D30 (RMSE of 6.15 m) is close to that specified for the original ALOS World 3D (~5 m
of spatial resolution) (RMSE of 5 m). The vertical accuracy of the NASADEM_HGT (RMSE
of 8.88 m) is in accordance with the vertical accuracy requirements for the overall product
of SRTM mission, from where its data is derived, 16 m (LE90), which corresponds to an
RMSE of 9.76 m.

The tendency (bias) of the two models was —2.90 m and 0.69 m for NASADEM_HGT
and AW3D30, respectively, which means that they have low and very low systematic
underestimation and overestimation errors, considering the nature of the biophysical
variable under analysis (altitude) and the scales compatible with the models. The r and d
values between the altitudes of the DEMs and the reference altitudes were very close to 1,
that is, an almost perfect correlation and agreement.

For the Cerrado biome, more than 90% of the altitude discrepancies between IBGE
data and the NASADEM_HGT and the AW3D30 models were less than 13.7 m. However,
the AW3D30 presented lower RMSE, fitting in the class B of 1:50,000 scale and in the class
A of 1:100,000 scale, and smaller. The NASADEM_HGT is aligned with the class B of the
1:100,000 scale and, for class A, it meets the 1:250,000 scale. A similar classification was
found by [63] when AW3D30 DEM was analyzed considering the PEC-PCD in different
regions of Brazil.

It is important to take into account the scales of each model pointed out through
the classification based on the PEC-PCD carried out in this study and the non-use of the
DEMs in scales larger than those pointed out, as they are not compatible. The AW3D30
presented lower values of RMSE (higher accuracy), standard deviation (higher precision),
and bias. Therefore, it is more accurate and precise than the NASADEM_HGT considering
the methodology and dataset adopted in this study. Previous authors comparing datasets
from SRTM and AW3D30 with reference points surveyed in the field [49,63] and with more
accurate DEMs [2] also found similar results in relation to accuracy. Uuemaa et al. [11]
compared vertical accuracy of freely available global DEMs: ASTER, AW3D30, MERIT,
TanDEM-X, SRTM, and NASADEM in Estonia, Norway, New Zealand, and China and
concluded that the AW3D30 was the most robust and presented the most stable perfor-
mance in most of the tests employed. It is, therefore, the best choice for a global analysis.
According to these authors, the NASADEM model, as a successor of SRTM, showed only
slight improvement in comparison to SRTM. These studies presented RMSE similar to
those found in the present study for NASADEM and AW3D30.

When analyzing the DEMs with each other in different municipalities, it was possible
to conclude that the two models present measurements of similar altitudes. The r values
were very close to 1 for all eight municipalities analyzed and the effect of the difference
in mean altitudes of the NASADEM_HGT and AW3D30 models, measured by the Cohen
effect (dc), was insignificant, which corroborates that statement.

It is important to highlight the importance of the process of converting the elevations of
the DEMs adopted in this study. Originally, the orthometric values referenced to the geoid
model EGM96 and horizontal datum WGS 84 were transformed to ellipsoidal altitudes
referenced to the ellipsoid WGS 84. Next, the transformation to orthometric altitudes
referenced to the Imbituba vertical datum and SIRGAS 2000 horizontal datum, the same
system of reference IBGE points, was done. This process allowed the comparison of the
same type of measure in the same reference system.

As the data distributions used in this study did not show normal distribution, it would
be interesting to consider, in the future, the classification of models according to standards
that contemplate the situation of non-normal distribution for discrepancy in altimetric data
such as the ASPRS standards [64]. It is also worth emphasizing the relevance of carrying
out studies on regional scales such as the one adopted in this work, which brings a broader
scope of analysis. This study is a precursor to NASADEM_HGT’s accuracy analysis for a
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regional scale, given its recent launch. The most recent version (3.1) of global DEM ALOS
AW3D30 was also employed in this study.

6. Conclusions

In the Cerrado biome, the NASADEM_HGT and AW3D30 DEMs show statistically
insignificant difference, according to the Cohen effect size and the correlation coefficient
data. However, when analyzed by the PEC-PCD criterion, the AW3D30 data show better
altimetric quality. NASADEM_HGT meets the 1:250,000 scale and class A (tolerance error
of 16.67 m), and 1:100,000 scale and class B (tolerance error of 16.66 m). The AW3D30
meets the 1:100,000 scale and class A (tolerance error of 8.33 m), and 1:50,000 scale and
class B (tolerance error of 6.66 m). Bias effects are found for both products, expressed
by the vertical shift component. This effect is lower for the AW3D30 data than for the
NASADEM_HGT data.
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