
REGIONAL SCALE LAND USE/LAND COVER CLASSIFICATION USING TEMPORAL 

SERIES OF MODIS DATA 
 

 

M. Jonathan a, *, M. S. P. Meirelles a, b, J-P. Berroir c, I. Herlin c 

 
a
 Dept. of Computer Engineering – Geomatics, State University of Rio de Janeiro (UERJ), 20550-900, Rio de Janeiro, 

RJ, Brazil - mjonathan@mail.com 
b
 National Center for Soil Research – Brazilian Agricultural Research Corporation (Embrapa-CNPS), 22460-000 , Rio 

de Janeiro, RJ, Brazil - margaret@cnps.embrapa.br 
c
 The French National Institute for Research in Computer Science and Control (INRIA), BP105 - 78153 - Le Chesnay, 

France – {jean-paul.berroir, isabelle.herlin}@inria.fr 
 

 

KEY WORDS:  remote sensing, multitemporal image processing, land use classification, land use change detection, MODIS 

 

 

ABSTRACT: 

 

This paper describes a methodology for systematic land use/land cover classification on a regional scale, with emphasis on a low cost 

and highly automatized approach. This methodology is based on multitemporal analyses of surface reflectance data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS), which is located on board NASA’s Terra and Aqua satellites and 

features high temporal frequency, extensive coverage, and extremely low costs for data acquisition. A sequence of automatized 

procedures were developed for MODIS data pre-processing, as well as for the training and execution of a supervised classification 

algorithm, where temporal profiles are fitted to smooth polynomial curves and intelligent curve features are then computed in order 

to reduce data dimensionality and improve profile interpretability, thus providing a more robust classification approach. A case study 

was performed in the High Taquari Basin, in the states of Mato Grosso do Sul and Mato Grosso, Brazil, which showed that the 

method was indeed capable of generalizing well over the entire region of study (over 25,000km2), effectively discriminating between 

areas of agriculture, pasture, and savannah. The methodology was also seen to be quite successful in identifying areas of 

deforestation, which is of particular interest for the monitoring of land use and land use change in the region. 

 

 

1. INTRODUCTION 

It has already been widely recognized that land use and land 

cover (LULC) changes play a very important role on regional to 

global scales, with impacts over ecosystem functioning, 

ecosystem services, and biophysical and human variables such 

as climate and government policies (Meyer and Turner, 1994).  

However, even though LULC assessments using high-resolution 

remotely sensed images have been quite successful over the last 

years, it has become clear that using this approach to analyze 

large areas on a regular basis ends up yielding prohibitive 

computational and financial costs. 

 

As an alternative, several authors have proposed the 

exploitation of the rich temporal information contained in 

sequences of freely available coarse resolution satellite data 

(Holben and Shimabukuro, 1993; Bouzidi et al., 2000; 

Meirelles et al., 2004).  Traditionally, many of these approaches 

have employed data from NOAA’s AVHRR sensor (1.1km 

resolution), but nowadays data from NASA’s MODIS sensor is 

also available, featuring better spatial resolution (up to 250m) 

and superior standards of calibration, georeferencing and 

atmospheric correction, as well as detailed per-pixel data quality 

information. 

 

As such, a number of researchers have started to apply this kind 

of data for land cover assessments (Strahler et al., 1999; Lobell 

and Asner, 2004; Wessels et al., 2004).  In this work, a 

methodology for supervised LULC classification on a regional 

scale is proposed, with specific application to the Cerrado 

tropical savannah biome in mid-western Brazil.  Additionally, 

the particular use of the methodology for detecting areas of 

deforestation is also evaluated, in view of the fact that this 

corresponds to the most critical land cover change process in 

the region. 

 

 

2. STUDY AREA 

The study area used in this work corresponded to the High 

Taquari Basin, which is almost entirely contained within the 

state of Mato Grosso do Sul, in mid-western Brazil (Figure 1).  

A small portion in the northern part of the basin is located in the 

neighboring state of Mato Grosso.  According to the definition 

given in (Silva, 2003), the High Taquari Basin is limited by the 

coordinates (17o10’S, 53o10’W) and (19o45’S, 55o10’W), and 

comprehends a total area of 28,046 km2. 

 

  
 

Figure 1. Location of the High Taquari Basin, the study area 

for this work, in mid-western Brazil 

 

The Taquari river itself is a very important tributary of the 

Paraguai river and plays an essential role within the Pantanal 



 

ecosystem, an area that was designated a UNESCO World 

Biosphere Reserve in 2000 due to its extremely rich and unique 

biodiversity.  Unfortunately, however, the river has been 

suffering a severe silting-up process due to uncontrolled land 

use expansion in the High Taquari Basin, leading to an increase 

in soil erosion processes that were seen to have grown 

exponentially over the last 25 years (Godoy et al., 1999).  As 

such, this phenomenon is already being considered the cause of 

the most important environmental and socio-economical 

problems within the Pantanal region, leading to such 

consequences as inundations, reduction of natural pasture areas, 

and impacts over animal and vegetal life cycles. 

 

For these reasons, the monitoring of land use and land cover in 

the region can be seen to be an extremely important and urgent 

issue.  Nevertheless, the surveillance of the entire basin 

corresponds to an expensive and complex effort, and it is thus 

not currently viable on an operational basis.  Additionally, the 

basin has already been the subject of numerous studies (e.g.: 

Godoy et al., 1999; Bueno et al., 2003; Silva et al., 2003), and 

therefore it can be considered particularly suitable as a pilot 

area for research. 

 

 

3. MATERIALS 

In order to perform this work, daily Terra/MODIS 

atmospherically corrected surface reflectance data were 

acquired (product MOD09GQK, containing red and near-

infrared bands and corresponding metadata at 250m resolution).  

Images were obtained so as to cover the High Taquari Basin 

during a one-year period from August 2000 to July 2001, a 

period that corresponds to the local annual vegetative cycle.  In 

addition to that, 1km resolution quality metadata (product 

MOD09GST) were also acquired for the same period, which 

uses information from several other MODIS bands in order to 

infer more detailed information regarding cloud cover, aerosols, 

and other special conditions. 

 

Other than that, a detailed LULC classification for the entire 

basin was obtained for the year 2000, which was based on 

LANDSAT TM imagery from July 2000 and extensive field 

trips (Silva, 2003). This classification was to be used as 

“ground truth”, so as to provide means to train and then test the 

methodology described in this paper. It contained 14 classes: 

agriculture, water bodies, eucalyptus, open savannah, close 

savannah, dense savannah, lower montane forest, alluvial forest, 

4 mixed natural vegetation classes, pasture, and urban areas. 

 

 

4. METHODOLOGY 

4.1 Data Pre-processing 

Once all data were available, the daily MODIS images and 

metadata were processed in order to select the best quality data 

and filter out areas contaminated by clouds, cirrus, shadow and 

high levels of aerosol.  For this purpose, the detailed 1km 

metadata were used to screen out images that did not meet 

minimum clear-sky and average observation coverage 

conditions (a measure related to viewing angle), leading to a 

selection of 71 better quality images.  Then, for these remaining 

images, each pixel was evaluated by combining the detailed 

1km metadata with the 250m quality and coverage metadata.  

As such, a correction algorithm was implemented so that pixels 

rejected by the evaluation process were replaced using linear 

temporal interpolation.  Finally, it was also necessary to register 

the resulting MODIS image sequences to the available 

classification image for the year 2000. 

 

Indeed, it was observed that the MODIS images did present 

good georeferencing properties, but, on the other hand, some 

limited problems related to cloud and shadow detection were 

also noticed.  These made it necessary to develop and apply a 

number of filtering processes in order to achieve more 

trustworthy temporal data sequences.  After that, temporal 

profiles for the red and near-infrared bands were computed, as 

well as temporal profiles for the Normalized Differential 

Vegetative Index (NDVI).  This index, which is based on a ratio 

of the red and near-infrared bands, is given by: 
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where: 

− NIR corresponds to the reflectance value in the near-

infrared band 

− R corresponds to the reflectance value in the red band 

 

In fact, it has been shown (Sellers et al., 1992) that NDVI is 

directly related to the amount of photosynthetically-active 

radiation intercepted by the vegetation canopy, and thus it is 

widely used for differentiating areas that contain healthy 

vegetation.  In addition to that, it also displays interesting 

properties of being relatively robust to atmospheric interference, 

slope, illumination variations, and other effects that influence 

both bands (Lillesand and Kiefer, 2000).  Therefore, being 

simple to compute, easy to interpret, and relatively robust, it is 

one of the most common measures used for LULC assessment.  

For these reasons, it will be used extensively throughout this 

work. 

 

At this point, the study area was arbitrarily divided in two 

halves (north and south) so that the classes were well 

represented in both of them.  As such, the southern part was to 

serve as a general area of training and testing, while the 

northern part was kept aside to be used exclusively for 

validation purposes.  Such a sharp cut was more interesting than 

a random selection of points, since distinct areas may present 

variations in spectral response due to different geographical and 

meteorological status.  Thus, this approach would help to test 

the ability of the methodology in dealing with larger regions, 

where differences in climate and local conditions may become 

more important. 

 

Finally, it was also observed that, given the 250m spatial 

resolution of the MODIS data, approximately 70% of the pixels 

within the area of study were seen to cover only one single class 

(i.e., to be “pure” pixels).  This way, it was decided that using 

only pure pixels would be an interesting approach for many of 

the analyses to be subsequently performed. 

 

4.2 Adaptation of the Original Classification Information 

for MODIS Data 

After that, a process of class merging and splitting needed to be 

performed on the original classification data, so as to define a 

set of meaningful classes effectively discernible with MODIS 

temporal reflectance information.  This procedure was 

performed in two steps: first, NDVI temporal profile means and 

variances were analyzed in order to assess class separability, 



 

and classes considered to be non-separable were merged 

together; after that, a clustering process was performed on the 

observed temporal profiles for the training data using a k-means 

clustering algorithm, in order to identify whether the original 

classes included more than one sub-class with respect to the 

MODIS temporal profiles.  Indeed, this phenomenon was 

observed for the agriculture class, which could be successfully 

subdivided into distinct agriculture practices, and for the 

savannah classes, where deforestation behavior could be 

identified (Figure 2).  As such, after this merge/splitting 

process, the original 14 classes were finally grouped into 7 

classes considered to be discernible with MODIS red and near-

infrared temporal data: 3 distinct agriculture practices, 

savannah, pasture, urban areas, and deforestation.  The original 

lower montane forest class did indeed present a distinct 

reflectance profile, but it was considered to be too insignificant 

at a spatial resolution of 250m in order to be considered as a 

separate class for assessments with MODIS in the region.  

Finally, it should be noted that, in this area of study, the 

temporal reflectance profiles for class urban areas simply 

reflect severe lack of vegetation and are thus equivalent to 

profiles for areas of bare soil. 

 
 

 
 

Figure 2. Sub-classes identified by clustering the original 

classification training data.  Splitting the original 

classes for agriculture and savannah, it was possible 

to detect a) distinct agriculture practices and b) areas 

of savannah that suffered deforestation during the 

period of analysis 

 

4.3 Feature Computation and Selection 

The first step in this procedure consisted of modeling the NDVI 

temporal profiles by fitting a smooth curve to the previously 

computed data.  As such, this curve fitting process would 

provide a reduction of dimensionality that should prove to be 

very important for the classification algorithm (it should be 

noted that the original profiles have dimension 71, which 

corresponds to the number of better quality images selected for 

the sequence).  Moreover, the fitting would also help to 

minimize the residual noise and to increase profile 

interpretability.  More specifically, the idea was that the 

resulting curves would be used as a basis for computing several 

curve features that should provide more intelligent and compact 

information about the profiles, thus helping the classification 

process.  Thus, the profile features computed were to include 

attributes such as curve mean, slope measures, number of 

modes, and date of maximum value, among others (Figure 3). 

 

 
 

Figure 3. Examples of profile features computed for a 

temporal profile 

 

Once these several profile features were computed, a feature 

selection process was performed so as to determine the subset of 

features most appropriate for discriminating between the 7 

classes defined before (section 4.2).  For this purpose, the 

Correlation-based Feature Selection strategy (CFS) was 

employed, which corresponds to an information theory 

approach based on two steps: a search strategy (e.g., best first 

search or genetic algorithms), and a measure of merit/fitness of 

a subset of features (Hall, 1999).  This measure is actually based 

on the mean correlation between each feature i (independent 

variables) and the classification (dependent variable), as well as 

on the inter-correlations between each pair of features i and j, 

correlations of which are all computed using entropy and 

information gain approaches. 

 

This way, in the end of all this process, a subset of 12 features 

was selected to be used for subsequent temporal profile 

classifications, namely: NDVI mean, NDVI minimum, date of 

maximum NDVI, beginning NDVI, global NDVI amplitude (max 

– min), global NDVI gain (end – begin), 150-day NDVI gain 

(mean of the first 215 days – mean of the last 150 days), 

number of modes, mean of the absolute slope values, standard 

deviation of the unfitted data values, date of the peak of the 

main mode, width (in days) of the main mode. 

 

Therefore, it was possible to drastically reduce the 

dimensionality of the input data (from 71 to 12) and also make 

it more robust to slight profile variations due to intra-class 

variability and noise, thus facilitating the classification process 

as a whole. 

 

4.4 Classification 

At this point, the process of regional scale classification could 

begin.  Recalling that approximately 70% of the 250m MODIS 

pixels turned out to be pure with respect to the original 

classification, it was assumed that assigning a single class to 



 

each pixel  (i.e., performing a “hard” classification) would be 

appropriate for most part of the basin.  Moreover, considering 

the elaborate process of profile feature computation and 

selection, it was expected that at this point the data would be 

well treated and able to provide good separability between the 

classes.  As such, any well-established classification approach 

should then be capable of achieving satisfactory results.  

Therefore, it was decided that the maximum likelihood 

classification algorithm (ML) would be an appropriate choice, 

since it is an extremely simple and easily implemented 

algorithm, but that at the same time is very well known and has 

already been successfully applied to a broad range of remote 

sensing problems (Lillesand and Kiefer, 2000). 

 

The basic ML algorithm is a purely statistical approach based 

on Bayes’ formula, which assumes that the variables (i.e., the 

features) are continuous and follow a multi-dimensional 

gaussian or normal distribution.  However, in the particular case 

of this work, one of the features selected for classification 

turned out to be actually a discrete variable (the number of 

modes in the temporal profile).  Therefore, it was important to 

modify the basic algorithm in order to treat this variable 

appropriately, since it would make the procedure more 

consistent and also allow for the existence of classes with 

variance zero for this feature (e.g., classes whose profiles never 

have a mode).  The model was thus extended so as to admit one 

discrete variable, so that the posterior probability P(wj|x) for a 

class wj given an input set of features x is given by: 
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where: 

− xcont  corresponds to all continuous variables 

− xdisc  corresponds to the discrete variable 

− P(wj) corresponds to the prior probability for class wj 

− P(xdisc|wj) corresponds to the conditional probability 

mass function of the discrete variable, given class wj 

− p(xcont|wj,xdisc) corresponds to the probability density 

function of the continuous variables, given class wj 

and a value of the discrete variable xdisc 

 

As stated earlier, a pure-pixel or “hard” classification approach 

such as this one was considered to be appropriate for about 70% 

of the area of study.  However, this algorithm can be expected 

to face serious difficulties when confronting pixels covering 

more than a single LULC class (i.e., “mixed” pixels).  In this 

context, it was reasoned that, since the posterior probability 

given by the ML algorithm is a good measure of the confidence 

of the classification, this measure could be used in order to 

separate easily classifiable, well-behaved (probably pure) pixels 

from the more problematic ones.  As such, it was decided that 

pixels with low posterior probabilities (e.g., under 95%) should 

not be assigned the class selected by the ML algorithm.  Instead, 

a proportion estimation was carried out for each pixel left 

unclassified, considering only those classes found within a local 

window of arbitrary size (this way, the procedure would also be 

able to take advantage of the well-known spatial correlation 

properties of remotely sensed data).  In order to do this, 

characteristic red and near-infrared reflectance profiles for each 

class were estimated using pure pixels from the training data, 

and then a linear mixture model (Holben and Shimabukuro, 

1993; Bouzidi et al., 2000) was used in order to estimate the 

proportions of each class within each MODIS pixel to be re-

evaluated.  This model considers that the final observed 

reflectance Ri of a given pixel i is the result of a linear 

combination of the reflectances Rj of each class j (learned 

before) and their proportion ρij within the pixel.  As such, class 

proportions within each pixel were estimated by computing the 

set of values that minimized the distance between the observed 

and modeled reflectances for each date and for each band.  At 

last, each re-evaluated pixel was assigned the class with the 

highest estimated proportion, thus completing the classification 

procedure. 

 

 

5. RESULTS AND DISCUSSION 

5.1 Classification Results 

For validation purposes, the methodology described above was 

applied to the northern part of the area of study, based on the 

training classification data with 7 classes computed in section 

4.2.  Then, the results obtained were compared to the original 

classification information (section 2) for the northern part, 

which would thus serve as a “ground truth” for evaluating the 

performance of the algorithm.  In this context, it should be 

noted that none of the sub-classes identified during the 

clustering process (section 4.2) could be evaluated 

quantitatively, since there was no corresponding ground truth in 

the reference data.  Therefore, a final set of 4 classes was finally 

used for performance assessment of the methodology, namely: 

agriculture, savannah, pasture and urban areas.  The results 

obtained are displayed in the confusion matrix below (Table 1): 

 

 Reference Data 
 

 

 Agriculture Savannah Pasture Urban  Total 

Usr. 

Acc. 

Results 

Agriculture 10,239 674 980 2  11,895 86.08% 

Savannah 305 87,811 18,372 10 106,498 82.45% 

Pasture 2,756 13,149 105,523 163 121,591 86.79% 

Urban 0 3 44 12 59 20.34% 

Total 13,300 101,637 124,919 187 240,043  

Prod.  Acc. 76.98% 86.40% 84.47% 6.42% 
 

 

Overall Accuracy: 84.81% Kappa Coefficient: 0.7217 

 

Table 1. Confusion matrix and accuracies for classification in 

the validation area (northern part of the basin) 

 

These results show that the performance of the classification 

methodology was in general quite good, reaching an overall 

accuracy of 85%.  Indeed, it could be seen that the algorithm 

was capable of generalizing very well for the agriculture, 

savannah and pasture classes.  In addition to that, it is also 

important to note that some of the discrepancies observed 

between the computed results and the reference data can in fact 

be associated with differences between the land use information 

in the reference data and the actual land cover verified during 

the period of analysis.  As such, it was particularly relevant to 

observe from the temporal profiles that significant areas labelled 

as agriculture actually showed no sign of crop activity during 

this particular year, suggesting that these areas were indeed 

assigned for pasture use during this period (Figure 4). 
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Figure 4. Differences between the reference data (top left) and 

the classification result (top right) in certain 

agricultural areas, due to lack of crop activity during 

the period of analysis (as verified by the observed 

temporal profile, typical of pasture use).  Orange 

stands for pasture, green for savannah, and purple 

for agriculture. 

 

5.2 Deforestation Assessment 

Since there was no ground truth information available for 

evaluating deforestation, it was necessary to develop a 

methodology in order to assess the accuracy of this detection, 

which was given as one of the sub-classes identified in section 

4.2.  As such, it must first be recalled that the available 

reference data referred to July 2000 (section 2), which 

corresponded to the beginning of the temporal profiles 

evaluated with MODIS data.  Thus, it became reasonable to 

admit that areas identified as deforestation were supposed to be 

labelled as savannah in the reference data, otherwise one could 

safely considerer such an identification to be incorrect.  In 

addition to that, the areas that did correspond to savannah were 

further analyzed by inspecting LANDSAT images from before 

and after the period of analysis, in order to visually verify the 

disappearance of a forested area (see Figure 5 below). 

 

In this manner, the results for the classification procedure 

showed that the identification of deforested areas was indeed 

quite good.  First of all, it was observed that 75% of the areas 

identified did correspond to pixels labelled as savannah by the 

reference data.  In fact, the remaining 25% corresponded almost 

entirely to areas of pasture use, which reflects the fact that 

pasture fields left “resting” (i.e., unused in order to recover) 

often resemble areas of open savannah. Thus, when the 

landowner finally cleans the field, the apparent effect may then 

be confused with that of a deforestation phenomenon.  In any 

case, for the 75% correctly identified, it could be readily 

verified from the LANDSAT images that all the regions 

detected did correspond to real deforested areas.  Additionally, 

it was also possible to infer the actual date of the deforestation 

from the temporal profiles, as seen in Figure 5. 
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Figure 5. Assessment of deforestation detection.  Looking at 

LANDSAT images, it could be seen that pixels 

classified as deforestation (top left) corresponded to 

areas that were covered by forest before (top center) 

but that were observed to be altered afterwards (top 

right).  The very date of the deforestation event can 

be inferred from the corresponding temporal profile 

(beginning of April in this case). 

 

As such, it can be considered that, with prior knowledge of the 

regions originally covered by forests, it is perfectly viable to use 

the methodology proposed here in order to reliably detect the 

occurrence of deforestation.  Finally, it was also possible to 

compute an estimate of the total area of deforestation for the 

entire basin during the period of analysis, which was seen to 

correspond to 102.37 km2.  It should be stressed, though, that 

omission errors have not been considered in this assessment, 

and also that deforestation area estimates based on MODIS data 

have already been shown to underestimate the actual values, 

given that small deforestation activities cannot be reliably 

detected (Morton, 2005).  Therefore, this estimate should be 

considered as a conservative value for the actual deforestation 

verified in the region during the period of analysis. 

 

 

6. CONCLUSIONS 

First of all, it can be stated that the results of this work confirm 

that MODIS 250m red and near-infrared surface reflectance 

data are indeed appropriate for performing regional scale LULC 

assessments, due to its moderate spatial resolution and excellent 

overall quality.  In addition to that, it could also be observed 

that the methodology presented in this paper was capable of 

generalizing quite well over the entire High Taquari Basin, an 

area of 28,046 km2, accurately identifying areas of agriculture, 

pasture and savannah, and providing a very high level of 

automation.  Moreover, it was seen that the assessment of 

different crop types was also possible, which was used to 

facilitate the classification of agriculture areas.  Finally, it was 

also shown that the method was capable of successfully 

identifying large areas of deforestation, and it may thus serve as 

the basis of an alert system for environmental monitoring 

applications. 

 



 

Regarding future work, subsequent research will focus in the 

incorporation of pluri-annual data into the methodology, so as 

to extend the one-year period of analysis investigated in this 

paper.  As such, the consideration of 2 to 4 years of data should 

provide a much more comprehensive view of land use in the 

region, thus helping the algorithm to differentiate between 

natural vegetation and unused pasture, as well as significantly 

improving its capability to understand the land use dynamics 

associated with agricultural practices.  In addition to that, the 

possibilities of long-term monitoring based almost exclusively 

on MODIS data should also be investigated in the future.  As 

such, it is expected that it will become possible to monitor the 

High Taquari Basin and its adjacencies in an affordable and 

effective way, thus enabling researchers to more easily assess 

land use and land use change in the area over time, particularly 

in regard of the conversion of natural vegetation to agriculture 

and pasture use. 
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