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Abstract
In vitro techniques are essential to assess the antioxidant potential of foods, although methods with different action mecha-
nisms make troublesome data analysis. This article describes the use of artificial neural network (ANN) to associate phenolic 
compounds with antioxidant activity in vitro (AOX) of grape juices. A multilayer perceptron (MLP) ANN was obtained 
with 28 phenolics quantified, as input layers, and AOX measuring by DPPH, ABTS, FRAP,  H2O2, and β-carotene/linoleic 
acid bleaching assay (βCLA) methods, as output layers. To improve discussion in food sciences, the ANN results were 
compared with Pearson’s correlation and principal component analysis (PCA), methods largely used in food studies. Pear-
son’s technique showed correlations between antioxidant methods and some of the phenolic compounds, but with limita-
tions. PCA proved to be a more powerful method than Pearson’s correlation, as it positively associated 13 phenolics with 
four out of five antioxidant methods. The MLP-ANN allowed simultaneous association of 19 individual phenolics, while 
a single hidden layer predicted 15 phenolics with simultaneous action in all AOX methods. The power of association was: 
ANN > PCA > Pearson. It was evidenced that ANN is a powerful tool for screening antioxidants in different AOX systems, 
which is applicable in health interests.
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Introduction

Grape juice is one of the most consumed fruit juices in the 
world, given its sensory quality and worldwide acceptance, 
along with its functional properties such as beneficial health 

effects related to antioxidant, anti-inflammatory, anticarci-
nogenic, and antibacterial activities (Mcgill et al. 2013; 
Camargo et al. 2014; Toaldo et al. 2016; Granato et al. 2016; 
Corredor et al. 2016; Toscano et al. 2017). The in vitro anti-
oxidant activity (AOX) is the most studied activity of grape 
juice and is often associated with broad classes of phenolic 
compounds, such as flavonoids, phenolic acids, and stil-
benes, among others (Camargo et al. 2014; Lima et al. 2014; 
Toaldo et al. 2015; Granato et al. 2015, 2016; Moreno-
Montoro et al. 2015; Margraf et al. 2016; Beara et al. 2017; 
Dutra et al. 2018; Silva et al. 2019). The potential beneficial 
effects of non-nutrient substances such as polyphenols are 
studied using a variety of methods that include in vitro or/
and in vivo protocols. Most of those are generally evaluated 
separately, and their outcomes are assessed in terms of dis-
tinct variables. However, the attempt to associate in vitro and 
in vivo antioxidant methods has generated current debates 
and controversial opinions among researchers (Granato 
et al. 2018a).

The strict validation of antioxidant properties of a food or 
biological matrix when using quantitative literature methods 
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is nowadays a challenging task, especially when compounds’ 
heterogeneity and matrix complexity are considered. Meas-
urements to determine the AOX of grape juices have been 
based extensively on free radical scavenging methods using 
2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis 
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric 
reducing antioxidant power (FRAP), hydrogen peroxide 
scavenging activity (H2O2), cupric ion reducing antioxidant 
capacity (CUPRAC), and oxygen radical absorbance capac-
ity (ORAC) assays (Lima et al. 2015; Granato et al. 2015, 
2016; Silva et al. 2015; Moreno-Montoro et al. 2015; Lopes 
et al. 2016; Margraf et al. 2016; Beara et al. 2017; Dutra 
et al. 2018). For Harnly (2017), methods of measuring AOX 
using DPPH or ABTS, or by FRAP, CUPRAC, or ORAC, are 
not suitable for measuring the antioxidant activity of foods 
because they cannot be compared to each other and besides 
fail to estimate the real effect in vivo. On the one hand, it has 
become evident that complex physiological, chemical, and 
enzymatic mechanisms are involved in the outcome of the 
antioxidant activity derived from foods or biological systems 
and that the antioxidant activity is dependent on numerous 
factors related to the presence of antioxidants, their com-
pound structures, and to food/biological matrix interactions 
(Pandey and Rizi 2009; Granato et al. 2018a). On the other 
hand, before setting up study designs and ethical in vivo 
protocols to study dietary polyphenols, the knowledge of a 
potential antioxidant source through chemical in vitro tech-
niques has been proven essential as preliminary evidence for 
further assessment of health interests. In vitro/in vivo studies 
have positively correlated phenolic compounds with the anti-
oxidant activity of grape juices that showed direct effects on 
consumers’ health such as decreases in oxidative stress bio-
markers (Toaldo et al. 2015), decreased levels of biomarkers 
of DNA damage in renal patients undergoing hemodialysis 
(Corredor et al. 2016), and improvement of cardiometabolic 
status in adults who exercise (Toscano et al. 2017).

The main ways of associating individual phenolic com-
pounds from grape juices with antioxidant activities in vitro 
are essentially through linear mathematical models such as 
Pearson’s correlation, and multivariate statistics, mainly 
principal component analysis (PCA) (Camargo et al. 2014; 
Lima et al. 2014; Toaldo et al. 2015; Granato et al. 2015; 
Margraf et al. 2016; Beara et al. 2017; Silva et al. 2019; 
Dutra et al. 2018; da Silva et al. 2019; Dutra et al. 2021). 
In these types of analysis, statistical association between 
a specific phenolic compound and antioxidant activity is 
generated from direct mathematical relationships between 
the variables, which, for a complex antioxidant system such 
as the human body, where several chemical reactions occur 
simultaneously, do not always apply. Another approach to 
associating data from two groups of variables in a non-lin-
ear manner is using an artificial neural network (ANN), a 
technique that simulates data processing in a way similar to 

a biological neuron. This mathematical algorithm has the 
ability to relate input and output parameters, learning from 
examples, and using interactions that do not require prior 
knowledge about the relationships between process variables 
(Dębska and Guzowska-Świder 2011).

The most widely used artificial neural network in food 
data analysis is the multilayer perceptron (MLP) trained by 
the reverse propagation algorithm. In this ANN, the neuron 
layers are linked together in a feedforward network (Dębska 
and Guzowska-Świder 2011; Granato et al. 2018b). The 
MLP-type ANN has allowed prediction of grape variety, 
vintage, and wine producer by using parameters such as the 
total content of flavonoids, anthocyanins, and in vitro anti-
oxidant activity as input (neurons) layers (Hosu et al. 2014). 
A typical MLP consists of an input layer, one or more hidden 
layers, and an output layer; these can form, for example, the 
configuration “phenolic compounds  hidden layers  grape 
variety”. The number of neurons in the hidden layers as well 
as the number of hidden layers depends on the complexity of 
the intended classification and the amount of data (Dębska 
and Guzowska-Świder 2011).

In an MLP, the hidden and output neurons are connected 
to all nodes by an associated numerical weight called “con-
nection weight” or “synaptic weight” (Bhotmange and Shas-
tri 2011). Mapping of the input/output ratio of each node 
in the network is obtained with a mathematical activation 
function, and each neuron also has a threshold value called 
“bias”. When the network is used, the input variables are 
placed in the input neurons, and in sequence, hidden and 
output layer neurons are executed progressively. Each neu-
ron calculates its activation value to produce neuron’s output 
(Dębska and Guzowska-Świder 2011). Reverse propagation 
is mainly used as a learning algorithm, which through nega-
tive synaptic weights (synaptic weight < 0) helps to predict 
the relationship between input and output variables, with 
activation values   being important for interpreting the rel-
evance of connections (Dębska and Guzowska-Świder 2011; 
Granato et al. 2018b). Based on the above and considering 
the constant use of multimethod approaches to research bio-
active polyphenols, this work aimed to investigate associa-
tions between phenolic compounds and AOX of Brazilian 
grape juices using a multilayer perceptual artificial neural 
network. The network was proposed with the individual 
phenolic compounds quantified by RP-HPLC/DAD as input 
layers and the AOX as measured by DPPH, ABTS, FRAP, 
 H2O2, and β-carotene/linoleic acid bleaching assay (βCLA) 
as output layers. For comparison purposes, the association 
between phenolic compounds and antioxidant activity was 
also obtained by Pearson’s correlation and PCA techniques. 
Notwithstanding, this is the first report using ANN to unveil 
associations and contributions of grape juice polyphenols, 
which are one of the most substantially used polyphenols in 
food, nutrition, biological, and pharmaceutical applications. 
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The approach presented in this study can contribute substan-
tially to future researches with grape polyphenols in these 
areas.

Materials and methods

Reagents and HPLC standards

TPTZ (2,4,6-Tri(2-pyridyl)-s-triazine), β-carotene, Tween 
40, chloroform, Trolox (6-hydroxy-2,5,7,8-tetramethylchro-
man-2-carboxylic acid), linoleic acid, 2,2-azino-bis (3-eth-
ylbenzothiazoline-6 sulfonic acid) (ABTS), 2,2-diphenyl-
1-picrylhydrazyl (DPPH), and ferric chloride hexahydrate 
were obtained from Sigma-Aldrich (St. Louis, MO, USA). 
Ethyl alcohol, potassium persulfate, ferrous sulfate, phos-
phoric acid, hydrogen peroxide, and potassium phosphate 
monobasic were purchased from Merck (Darmstadt, Ger-
many). Methanol HPLC grade was obtained from J.T. Baker 
(Phillipsburg, NJ, USA). Ultrapure water was generated by 
purification in a Marte Científica System (São Paulo, SP, 
Brazil). External standards of gallic acid, caffeic acid, p-cou-
maric acid, chlorogenic acid, syringic acid, trans-caftaric 
acid, hesperidin, procyanidin B1, catechin, epicatechin, 
naringenin, procyanidin B2, cyanidin-3,5-diglucoside, mal-
vidin-3,5-diglucoside, and pelargonidin-3,5-diglucoside 
were from Sigma-Aldrich. Procyanidin A2, epigallocatechin 
gallate, epicatechin gallate, quercetin 3-rutinoside (rutin), 
kaempferol 3-glucoside, quercetin 3-glucoside, myricetin, 
malvidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glu-
coside, petunidin-3-glucoside, delphinidin-3-glucoside, and 
pelargonidin-3-glucoside were from Extrasynthese (Genay, 
France). The isomers cis-resveratrol and trans-resveratrol 
were obtained from Cayman Chemical Company (Michigan, 
EUA).

Grape juice samples

Samples of five commercial grape juices (CJ) were obtained 
directly from five producing industries located in the North-
east Region of Brazil, Petrolina, Pernambuco (09º 09′ S; 
40º 22′ W). In addition, varietal grape juices were produced 
in laboratory scale by hot pressing method (Gomes-Silva 
et al. 2019) with selected Brazilian grapes from the varieties 
“Isabel Precoce”, “BRS Cora”, “BRS Violeta”, and “BRS 
Magna” and used as samples. The commercial and varietal 
grape juices were produced and analyzed in triplicates.

In vitro antioxidant capacity methods

The in  vitro antioxidant activity of grape juices was 
evaluated using the methods of free radical scaveng-
ing by DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS 

2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) follow-
ing the methodologies described by Kim et al. (2002) and 
Re et al. (1999), respectively. The ferric reducing antioxi-
dant power (FRAP) was determined as described by Rufino 
et al. (2006), and the hydrogen peroxide scavenging activity 
 (H2O2) was assayed according to Ruch et al. (1989). The 
β-carotene/linoleic acid bleaching assay (βCLA) (Miller, 
1971) was also performed. Trolox was used to construct the 
calibration curves, except in the FRAP method, where fer-
rous sulfate was used. The results were expressed as Trolox 
equivalents per liter of grape juice (mmol TE  L−1) and mmol 
of  Fe2+ per liter of juice (mmol  Fe2+  L−1). Absorbance meas-
urements were performed on a UV–Vis 2000A spectropho-
tometer (Instrutherm, São Paulo, Brazil). The methods pro-
cedures are described below.

The  ABTS•+ radical was formed by the reaction of 
7 mmol ABTS solution with 140 mmol potassium persulfate, 
incubated at 25 °C without light incidence for 16 h. The radi-
cal was diluted in ethanol to the absorbance of 0.70 ± 0.05 
at 734 nm. Then, a 300 μL aliquot of the sample was mixed 
with 2700 μL of the radical, kept in dark, and absorbance 
was taken after 6 min.

In DPPH method, a solution of DPPH radical (1 mmol 
 L−1) was prepared in ethanol and diluted to an absorbance 
of 0.900 ± 0.050 (100 µmol  L−1). An aliquot of 2900 μL of 
the radical was mixed with 100 μL of sample and kept in 
the dark for 30 min. Absorbance measurements were taken 
before and after the addition of grape juice. The antioxidant 
activity of samples was then assayed through the rate of 
decay in absorbance at 517 nm.

The FRAP reagent was prepared in 300 mmol  L−1 ace-
tate buffer (pH 3.6), with 10 mmol  L−1 TPTZ (2,4,6-Tri(2-
pyridyl)-s-triazine) in a solution of HCl 40 mmol  L−1 and 
20 mmol  L−1  FeCl3. Grape juice samples (90 μL) were 
mixed with 270 μL of distilled water and 2.7 mL of FRAP 
reagent and incubated at 37°for 30 min in a thermodigester 
block for tubes (Bioplus IT-2002, Barueri, SP, Brazil). After 
incubation, absorbance measurements were taken at 595 nm.

A solution of hydrogen peroxide (4 mmol) prepared in 
phosphate buffer (pH 7.4) was used in the  H2O2 method. In 
the procedure, the samples (0.4 mL) were mixed with the 
hydrogen peroxide solution (0.6 mL), with the final volume 
adjusted to 3 mL using the phosphate buffer. Absorbances 
were determined spectrophotometrically at 230 nm after 
10 min. Phosphate buffer was taken as blank sample.

In the βCLA method, an emulsion was obtained by mix-
ing 20 µL of linoleic acid, 530 µL of Tween 40, 50 µL of 
β-carotene (20 mg  mL−1), and 1000 µL of chloroform. The 
mixture was rotaevaporated at 40 °C to remove chloroform, 
and the residue was taken up into ultrapure water saturated 
with oxygen until absorbance at 450 nm was between 0.600 
and 0.700. In a test tube, 5 mL of the emulsion was mixed 
with 50 µL of grape juice. A control was obtained by mixing 
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5 mL of the emulsion and 50 µL of ethanol. The mixture was 
incubated at 45 °C in a thermodigester block, and absorb-
ances were taken at time t = 0 min and t = 120 min. All anal-
yses were carried out in triplicate.

Chromatographic analysis by RP‑HPLC/DAD

Individual phenolic compounds of grape juices were deter-
mined using the methodology of Dutra et al. (2018). The 
analyses were performed on an Agilent 1260 Infinity LC 
liquid chromatograph system (Agilent Technologies, Santa 
Clara, CA, USA). The column and pre-column used were a 
Zorbax Eclipse Plus RP-C18 (100 × 4.6 mm, 3.5 μm) and 
a Zorbax C18 (12.6 × 4.6 mm, 5 μm), respectively (Agi-
lent Technologies). Before sample injection, grape juices 
were diluted 1:2 with mobile phase A and filtered through a 
0.45 μm membrane (Millex Millipore, Barueri, SP, Brazil). 
Solvent A was a solution of phosphoric acid 0.1 mol  L−1 
(pH 2.0), and solvent B was methanol acidified with 0.5% 
 H3PO4. The elution gradient was as follows: 0 to 5 min: 5% 
B; 5 to 14 min: 23% B; 14 to 30 min: 50% B; and 30–33 min: 
80% B. The injection volume was 20 μL, and detection was 
set at 220, 280, 320, 360, and 520 nm. Quantification of 
individual polyphenols was performed by comparison with 
external standards. Data processing was on OpenLAB CDS 
ChemStation Edition software (Agilent Technologies). 
Additionally, peaks spectral purity was verified using the 
tool threshold to ensure the accuracy of the identification of 
each compound, according to Padilha et al. (2017).

Statistical analysis

Data was analyzed using the SPSS statistics software ver-
sion 20.0 (IBM, NY, USA). The data was tabulated and pre-
sented as mean ± standard deviation. Pearson’s correlation 
analysis (p < 0.05), principal component analysis (PCA), 
and a multilayer perceptron artificial neural network were 
used to assess the associations between individual phenolic 
compounds and AOX of grape juices. For the use of multi-
variate analysis, a high number of data was required in the 
experiments, in order to guarantee the minimization of type I 
errors. To guarantee the robustness of the statistical enquiry 
used in this study, twenty-nine phenolic variables and five 
methods of antioxidant activity were analyzed in 9 commer-
cial and varietal grape juices, collected or produced in three 
repetitions, where each repetition corresponded to an inde-
pendent batch produced (totalizing 27 grape juice samples), 
which resulted in 918 data points. The neural network was 
obtained using the MLP technique using 29 variables such 
as the phenolic compounds as input layers (input neurons) 
and 5 methods of measuring antioxidant activity as output 
layers (output neurons).

Results and discussion

Polyphenols profile in HPLC–DAD and AOX of grape 
juices

The individual phenolic profile of grape juice samples 
obtained by HPLC–DAD is presented in Table 1. The 
detection and quantification limits for all analyzed phe-
nolics were LOD < 0.17 mg  L−1 and LOQ < 1.41 mg  L−1, 
respectively. All calibration curves show good linear 
regression (r2 > 0.998), and a typical chromatogram rep-
resenting the separation and identification of phenolic in 
the grape juice sample is shown in Fig. 1.

Total polyphenols quantified by HPLC varied from 
454.3 to 1651.4 mg  L−1 in grape juices. Among the sam-
ples, the monovarietal juices made from Brazilian hybrid 
grapes (V. vinifera x V. labrusca) BRS Cora (1651.4 mg 
 L−1), BRS Violeta (1615.7  mg  L−1), and BRS Magna 
(1006.7 mg  L−1) showed the highest concentrations   of 
bioactive phenolic compounds. The concentration of 
polyphenols in commercial juices varied from 454.3 to 
754.6 mg  L−1. Among the polyphenolic substances ana-
lyzed in samples, phenolic acids and anthocyanins were 
the most abundant. The main phenolic acids quantified 
were trans-caftaric and chlorogenic acids at concentra-
tions ranging from 111.8 to 285.6 mg  L−1 and 15.5 to 
35.8 mg  L−1, respectively. A diversity of anthocyanin com-
pounds was found at a varying range of concentrations: 
malvidin 3,5-diglucoside (4.2–139.3 mg  L−1), petunidin 
3-glucoside (3.0–489.9 mg  L−1), malvidin 3-glucoside 
(0–44.7 mg  L−1), cyanidin 3,5-diglucoside (0–84.4 mg 
 L−1), and delphinidin 3-glucoside (0.1–40.8 mg  L−1). The 
mono- and diglucoside forms of malvidin were the most 
abundant anthocyanins in commercial grape juices, while 
malvidin 3,5-diglucoside and petunidin 3-glucoside were 
predominant in juices of hybrid grapes. The latter can be 
pointed out here as a marker phenolic compound for red 
grape juices of BRS Cora, BRS Violeta, and BRS Magna 
grapes, since it was easily distinguishable from the com-
mercial juices. This is corroborated by the fact that petu-
nidin 3-glucoside is not generally abundant or commonly 
identified in Vitis labrusca (Andersen and Markham 2006; 
Toaldo et al. 2015; Haas et al. 2018). The identification 
of phenolic markers is important because it can assist to 
predict botanical and geographic origins, as well as the 
“terroir”, the sensory characteristics and quality of grape 
products (Margraf et al. 2016; Granato et al. 2016).

Procyanidin B1, catechin, and procyanidin A2 were 
the main flavanols in samples. Levels of flavanols ranged 
from 26.1 to 214.6 mg  L−1 in commercial and varietal 
grape juices, respectively. Concentrations of procyani-
din B1 were up to 112.9 mg  L−1 in varietal juices, while 
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Table 1  Chromatographic phenolic profiles of commercial and varietal Brazilian grape juices

Results expressed as mean ± standard deviation (n = 3). CJ commercial grape juices (1–5). Varietal juices: IP Isabel Precoce, BC BRS Cora, BV 
BRS Violeta; and MG BRS Magna

Phenolic compounds mg 
 L−1

Grape juices

CJ1 CJ2 CJ3 CJ4 CJ5 IP BC BV MG

Phenolic acids
Gallic acid 7.9 ± 0.2 8.6 ± 0.3 ND ND ND ND ND ND ND
Caffeic acid 1.5 ± 0.1 1.4 ± 0.2 1.1 ± 0.1 1.3 ± 0.1 2.4 ± 0.2 1.0 ± 0.2 1.5 ± 0.2 ND ND
Syringic acid ND 4.56 1.30 4.0 ± 0.2 ND 1.3 ± 0.1 2.3 ± 0.1 ND 5.1 ± 0.3
p-Coumaric acid ND ND ND ND ND ND ND ND ND
Chlorogenic acid 20.8 ± 0.3 35.8 ± 1.2 15.5 ± 1.4 14.2 ± 0.7 21.5 ± 0.9 19.9 ± 1.0 36.5 ± 1.0 31.5 ± 0.8 27.8 ± 0.9
trans-caftaric acid 255.2 ± 2.5 285.5 ± 1.4 188.9 ± 3.5 138.4 ± 2.1 251.2 ± 1.0 245.6 ± 2.1 428.5 ± 7 237.8 ± 4.2 111.7 ± 5
Σ Phenolic acids 285.4 ± 1.4 336 ± 2.4 206.8 ± 4.2 157.9 ± 1.4 275.2 ± 4 267.8 ± 3.1 468.8 ± 1.4 269.3 ± 6 144.7 ± 2.1
Flavanols
Catechin 13.2 ± 0.4 9.5 ± 0.8 12.7 ± 1.1 5.6 ± 1.4 27.4 ± 2.4 18.3 ± 1.3 66.3 ± 2.1 18.4 ± 2 16.2 ± 1.2
Epicatechin ND 1.5 ± 0.4 ND 2.3 ± 0.4 ND ND ND ND ND
Epicatechin gallate ND ND ND ND ND 0.70 11.48 ND ND
Epigallocatechin gallate ND ND 2.68 ND 5.80 ND 9.82 19.73 ND
Procyanidin A2 5.4 ± 1 4.9 ± 0.5 5.9 ± 0.6 5.0 ± 1.1 7.7 ± 1.4 6.3 ± 0.4 11 ± 0.7 7.8 ± 1.0 5.9 ± 0.6
Procyanidin B1 8.2 ± 1.4 10.3 ± 1.5 12.5 ± 0.8 16.7 ± 1.2 25.6 ± 2 7.9 ± 0.8 112.9 ± 2.4 88.5 ± 3.4 29.0 ± 3.4
Procyanidin B2 ND ND ND 1.3 ± 0.1 1.8 ± 0.3 ND 3.0 ± 0.4 7.1 ± 0.8 7.4 ± 0.5
Σ Flavanols 26.8 26.1 33.8 30.9 68.4 33.2 214.6 141.5 58.5
Flavonols
Quercetin 3-glucoside 5.3 ± 1.4 4.4 ± 0.8 0.5 ± 0.8 2.5 ± 1.1 3.0 ± 0.6 2.6 ± 0.5 3.8 ± 0.5 3.2 ± 0.4 1.1 ± 0.4
Rutin 0.3 ± 0.1 0.4 ± 0.1 0.5 ± 0.2 0.3 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 2.7 ± 0.3 1.0 ± 0.1 0.5 ± 0.1
Kaempferol 3-glucoside 0.7 ± 0.2 0.8 ± 0.1 0.9 ± 0.3 1.7 ± 0.2 2.6 ± 0.3 0.6 ± 0.1 3.9 ± 0.3 9.5 ± 0.3 9.3 ± 0.5
Myricetin 11.2 ± 0.8 27.4 ± 2 21.4 ± 3.2 30.5 ± 3.4 44.9 ± 1.8 14.9 ± 1.1 90.5 ± 2.1 156 ± 3.1 45.1 ± 1.4
Σ Flavonols 17.42 32.95 23.31 35.04 50.92 18.55 100.88 169.59 56.07
Anthocyanins
Malvidin 3-glucoside 24.1 ± 2.4 1.6 ± 0.3 32.2 ± 0.9 2.7 ± 0.1 20.8 ± 0.5 44.7 ± 3.2 ND 5.7 ± 1 ND
Cyanidin 3-glucoside ND ND ND 1.0 ± 0.2 ND ND 19 ± 0.8 2.6 ± 0.4 4.5 ± 0.3
Petunidin 3-glucoside 6.9 ± 0.5 8.8 ± 0.5 31.4 ± 1.2 50.8 ± 1.4 87.1 ± 2.8 3.0 ± 0.4 484.9 ± 2.2 335.1 ± 4.2 418.2 ± 3.4
Delphinidin 3-glucoside 1.8 ± 0.2 0.1 ± 0.1 4.3 ± 0.3 2.5 ± 0.2 6.0 ± 0.8 3.2 ± 0.2 40.9 ± 1.1 16.5 ± 1.2 5.9 ± 0.2
Pelargonidin 3-glucoside 4.4 ± 0.3 0.5 ± 0.1 4.5 ± 0.5 1.2 ± 0.2 2.8 ± 0.2 5.4 ± 0.1 ND 2.5 ± 0.1 ND
Peonidin 3-glucoside 3.5 ± 0.2 0.4 ± 0.1 4.7 ± 0.2 0.7 ± 0.1 2.5 ± 0.3 5.4 ± 0.2 1.3 ± 0.1 1.4 ± 0.1 ND
Malvidin 3,5-diglucoside 20.9 ± 1.8 5.7 ± 0.2 18.5 ± 0.4 55.3 ± 0.4 105.1 ± 2.2 41.4 ± 1.8 4.0 ± 0.2 313.5 ± 9.3 139.3 ± 4.5
Cyanidin 3,5-diglucoside 2.0 ± 0.2 ND 6.4 ± 0.2 12.8 ± 1.2 22.9 ± 2.2 ND 57.3 ± 1.2 84.7 ± 4.2 11.5 ± 0.8
Pelargonidin 3,5-digluco-

side
ND ND ND ND ND ND ND ND ND

Σ Anthocyanins 63.6 17.0 101.9 126.9 247.2 103.1 599.4 762 579.4
Stilbenes
trans-Resveratrol 0.88 ± 0.02 0.78 ± 0.1 0.71 ± 0.08 0.46 ± 0.03 0.52 ± 0.06 0.45 ± 0.04 0.40 ± 0.01 0.70 ± 0.03 0.47 ± 0.06
cis-Resveratrol ND ND 1.3 ± 0.2 5.4 ± 0.8 9.7 ± 1.1 ND ND 39.7 ± 1.2 45 ± 2
Σ Stilbenes 0.9 0.8 2.0 5.9 10.2 0.5 0.4 40.4 45.5
Flavanones
Hesperidin ND ND 1.4 ± 0.2 ND ND ND 24.3 ± 1.2 3.7 ± 0.5 ND
Naringenin ND ND 1.7 ± 0.2 1.0 ± 0.1 3.1 ± 0.3 ND 44.2 ± 1.2 11.6 ± 1.2 2.6 ± 0.2
Σ Flavanones ND ND 3.1 1.0 3.1 ND 68.5 15.2 2.6
Total phenolics quantified 502.2 612.8 454.3 448.9 757.6 502.7 1651.8 1615.8 1006.7
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Fig. 1  Chromatogram representing the separation and identification of phenolic in the grape juice samples
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concentrations of catechin reached 66.3 mg  L−1 in the 
same grape juice (BRS Cora). The flavanol epicatechin 
was not found in the varietal samples, while its gallate 
form was not detected in commercial juices. It is important 
to highlight that although it is not known which grape vari-
eties were used to produce the commercial juices, some 
particular differences in the polyphenolic profiles of vari-
etal and commercial grape juices can assist in character-
izing their origins and phytochemical composition, which 
can thus allow differentiating their antioxidant activity 
and bioactive potential. The concentrations of flavonols 
in grape juices samples varied from 17.42 mg  L−1 in the 
commercial juice CJ1 to 169.59 mg  L−1 in the BRS Vio-
leta juice. The main flavanol found was myricetin that 
showed concentrations up to 90.5 mg  L−1. The stilbene 
trans-resveratrol was quantified in all juice samples, in 
values   ranging from 0.4 to 0.88 mg  L−1, while its isomer 
cis-resveratrol showed the highest values in the monova-
rietal juices BRS Magna (45 mg  L−1) and BRS Violeta 
(39.7 mg  L−1), followed by commercial juices CJ5 (9.7 mg 
 L−1) and CJ4 (5.4 mg  L−1). The flavanones hesperidin and 
naringenin were found in some of the grape juices. The 
polyphenol naringenin was present at higher concentra-
tions, up to 44.2 mg  L−1, particularly in the varietal juices. 
In general, concentrations of individual polyphenols were 
much higher in the varietal juices. This was observed for 
phenolic acids, flavanols, flavonols, and flavanones com-
pounds, but most particularly for anthocyanins, which 
are important and predominant polyphenols in red grape 
juices. It is known that the presence and the diversity of 
polyphenols are widely associated with the antioxidant 
capacity of vegetable matrices (Hosu et al. 2014; Haas 
et  al.  2018) and that phenolic compounds have spe-
cific contributions to the antioxidant properties (Petruk 
et al. 2017; Yang et al. 2018). The AOX of grape juice 

samples and associations between the phenolic profiles 
and the AOX of grape juices was then further evaluated 
in this study.

The AOX of grape juices varies indistinctly in samples and 
among the antioxidant methods, as shown in Table 2. Taken 
together, the antioxidant activity measured by the applied 
methods ranged from 1.07 ± 0.02 to 124.63 ± 4.41 mM TE 
 L−1 when using βCLA and  H2O2 methods, respectively. The 
AOX values obtained by free radical scavenging methods 
ranged from 4.7 ± 0.27 to 15.94 ± 0.32 mM TE  L−1 (DPPH) 
and from 5.47 ± 0.14 to 23.61 ± 0.89 mM TE  L−1 (ABTS). In 
the  H2O2 inhibition method, AOX   ranged from 50.54 ± 2.79 
to 124.63 ± 4.41 mM TE  L−1. The AOX of grape juice 
samples varied between 1.07 ± 0.02 to 2.09 ± 0.33  mM 
TE  L−1 in the βCLA method and between 12.86 ± 1.30 to 
69.21 ± 2.95 mM  FeSO4

2+  L−1 in the FRAP method. The 
grape juice samples that showed the highest values   of poly-
phenols quantified by HPLC (BRS Violeta, BRS Cora and 
BRS Magna, in Table 1) were also the ones that showed the 
highest antioxidant activity when evaluated by the five meth-
ods studied. Concentrations of polyphenols and values of 
antioxidant activity (DPPH, ABTS, and  H2O2) are in agree-
ment with other previous studies which characterized com-
mercial and monovarietal grape juices from the same region 
of origin of the studied juice samples (Camargo et al. 2014; 
Lima et al. 2014; Silva et al. 2015; Padilha et al. 2017; Dutra 
et al. 2018; Dutra et al. 2021). To the best of our knowledge, 
studies evaluating the AOX of grape juices from the same 
region of this study using FRAP or βCLA methods were 
not performed.

In all methods, the AOX was higher in juices of the 
hybrid grapes, with the exception of Isabel Precoce juices. 
The highest AOX was observed for the BRS Magna juice 
in the  H2O2 method and the juice had also the highest value 
of AOX (2.09 ± 0.33 mM TE  L−1) when the βCLA method 

Table 2  In vitro antioxidant 
activity of grape juice samples

Results expressed as mean ± standard deviation (n = 3). CJ commercial grape juices (1–5). Varietal juices: 
IP Isabel Precoce, BC BRS Cora, BV BRS Violeta, and MG BRS Magna. DPPH, ABTS,  H2O2 e βCLA: 
antioxidant activity expressed as Trolox equivalents (TE) mM/L. FRAP: antioxidant activity expressed as 
ferrous sulfate mM/L

Grape juices In vitro antioxidant methods

DPPH ABTS H2O2 FRAP βCLA

CJ1 5.93 ± 1.06 9.60 ± 0.34 65.42 ± 3.14 29.28 ± 4.39 1.58 ± 0.04
CJ2 9.29 ± 0.06 12.10 ± 0.28 59.42 ± 0.04 37.49 ± 2.26 1.48 ± 0.19
CJ3 4.70 ± 0.27 8.50 ± 1.58 51.24 ± 1.42 15.82 ± 0.06 1.51 ± 0.02
CJ4 5.50 ± 0.10 9.29 ± 1.08 50.54 ± 2.79 24.44 ± 0.90 1.35 ± 0.20
CJ5 6.77 ± 0.24 9.81 ± 0.04 53.88 ± 2.27 30.26 ± 0.50 1.07 ± 0.02
IP 4.95 ± 0.21 5.47 ± 0.14 53.89 ± 0.58 12.86 ± 1.30 1.42 ± 0.14
BC 15.59 ± 0.32 18.55 ± 0.34 116.82 ± 0.92 40.99 ± 0.95 2.00 ± 0.13
BV 15.94 ± 0.32 23.61 ± 0.89 106.99 ± 5.74 69.21 ± 2.95 1.58 ± 0.01
MG 12.08 ± 0.11 13.87 ± 0.36 124.63 ± 4.41 43.97 ± 0.79 2.09 ± 0.33
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was used. When considering this sample, the same was not 
observed when using FRAP, ABTS, and DPPH methods. 
This tendency was observed for some of the other juice sam-
ples, which suggests discrepancies in terms of effectiveness 
of measurement, the real antioxidant activity of the sample, 
and methods capability. Indeed, this is a common issue when 
using in vitro antioxidant methods and may be explained 
by different method principles, analytical system, reagent 
specificity, and sample interferences in a given performance 
system (Granato et al. 2018a). This is why the complexity 
of the experimental results obtained in this study warranted 
a more attentive statistical evaluation in order to determine, 
with certain reliability, the link between polyphenolic com-
position and AOX of grape juices.

Statistical evaluation of the association 
between individual phenolic compounds and AOX

Pearson’s correlations

The results of Pearson’s correlation analysis are shown in 
Table 3. For analysis and discussion purposes, only positive 
values   of Pearson’s correlation coefficients greater than 0.80 
(r ≥ 0.80) and significant (p < 0.01) were considered, follow-
ing the criteria adopted by Dutra et al. (2018) for strong 
associations between phenolic compounds and antioxidant 
activity of grape juices. The methods DPPH and ABTS 
showed positive correlation with the largest number of 
individual compounds and were associated with chlorogenic 
acid, procyanidin B2, myricetin, cyanidin 3,5-diglucoside, 
and epigallocatechin gallate. Similarly, but to a lesser extent, 
AOX values measured by the FRAP method showed a posi-
tive correlation with myricetin and cyanidin 3,5-diglucoside, 
and the AOX found in the  H2O2 method was only correlated 
with chlorogenic acid, when considering our study criteria. 
The βCLA method did not show a positive correlation with 
any individual phenolic. In general, the compounds corre-
lated with the AOX of juices samples were the same, with 
emphasis on myricetin and cyanidin 3,5-diglucoside, associ-
ated with DPPH, ABTS, and FRAP.

To evaluate these results, we can consider that Pearson’s 
correlations show the degree of association between two var-
iables (X and Y), being positive and strong when the values   
of the two variables increase proportionally in a direct man-
ner (X↑ and Y↑) (Granato et al. 2014). Phenolic compounds 
that presented r ≥ 0.80 (chlorogenic acid, procyanidin B2, 
myricetin, cyanidin 3,5-diglucoside and epigallocatechin 
gallate) represent here only the compounds that showed the 
highest concentrations   in grape juices with the largest AOX, 
such as juice samples BC, BV, and MG (Tables 1 and 2). 
Based on this, it is evident that the use of Pearson’s correla-
tions has limitations to demonstrate all the phenolic com-
pounds that were responsible for the AOX of grape juices. 

Table 3  Pearson’s correlations between phenolic compounds and 
in vitro antioxidant activity

DPPH ABTS H2O2 FRAP βCLA

Phenolic acids
Gallic acid  − 0.011  − 0.071 0.419 0.025 0.215
Syringic acid 0.104  − 0.089 0.143 0.165 0.010
trans-Caftaric acid 0.515 0.363 0.691a 0.221 0.635
Chlorogenic acid 0.899a 0.706a 0.917a 0.741a 0.566
Caffeic acid  − 0.325  − 0.393  − 0.043  − 0.437  − 0.090
Flavanols
Catechin 0.521 0.379 0.423 0.194 0.532
Epicatechin  − 0.090  − 0.106 0.061 0.100  − 0.030
Epicatechin gallate 0.513 0.361 0.486 0.142 0.738a

Epigallocatechin 
gallate

0.737a 0.870a 0.447 0.784a 0.287

Procyanidin A2 0.602 0.644 0.156 0.706a 0.013
Procyanidin B1 0.596 0.527 0.397 0.350 0.441
Procyanidin B2 0.843a 0.840a 0.579 0.684a 0.617
Flavonols
Quercetin 3-glu-

coside
0.289 0.230 0.544 0.259 0.377

Rutin 0.684a 0.576 0.580 0.365 0.749a

Kaempferol 3-glu-
coside

0.610 0.667 0.173 0.725a 0.012

Myricetin 0.842a 0.935a 0.508 0.885a 0.342
Stilbenes
trans-Resveratrol  − 0.303  − 0.125  − 0.104  − 0.008  − 0.333
cis-Resveratrol 0.404 0.487  − 0.014 0.612  − 0.229
Flavanones
Hesperidin 0.607 0.500 0.539 0.269 0.776a

Naringenin 0.637a 0.581 0.551 0.366 0.738
Anthocyanins
Cyanidin 3,5-diglu-

coside
0.801a 0.904a 0.457 0.818a 0.360

Malvidin 3,5-diglu-
coside

0.446 0.617 0.046 0.720a  − 0.246

Delphinidin 3-glu-
coside

0.698a 0.631 0.519 0.420 0.689

Cyanidin 3-gluco-
side

0.618 0.484 0.489 0.289 0.724a

Pelargonidin 3-glu-
coside

 − 0.615  − 0.648  − 0.511 0.508 0.397

Peonidin 3-gluco-
side

 − 0.602  − 0.531  − 0.470  − 0.636  − 0.226

Malvidin 3-gluco-
side

 − 0.685  − 0.639  − 0.552  − 0.671  − 0.446

Petunidin 3-glu-
coside

0.735a 0.681a 0.380 0.601 0.423

Total phenolics 
quantified

0.885a 0.908a 0.943a 0.346 0.705a

In vitro antioxidant activity
DPPH 1 0.929a 0.857a 0.908a 0.608
ABTS 0.929a 1 0.718a 0.943a 0.553
H2O2 0.857a 0.718a 1 0.705a 0.717
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This can be confirmed by the observation that polyphenols 
that did not show positive correlations with the AOX of juice 
samples, such as trans-caftaric acid, catechin, procyanidin 
B1, and malvidin 3,5-diglucoside, or even negative correla-
tion, like malvidin 3-glucoside, are known to be antioxidants 
in vitro (Muselík et al. 2007; Mudnic et al. 2010; Tabart 
et al. 2009) and were, in fact, present at high concentrations 
in the grape juices (Table 1).

Principal component analysis (PCA)

Figure 2 shows the PCA obtained for polyphenolic pro-
file and AOX of grape juices as measured by the differ-
ent methods. The PCA plot was constructed by plotting 

the variables and factor loadings. The main components 
1 and 2 (PC1 and PC2) explained together 78.1% of the 
total experimental variance, where PC1 corresponded to 
most of the variance with 54.7%. The associations between 
phenolic compounds and antioxidant activity occurred in 
PC1, where the antioxidant methods were grouped in the 
positive part of the component (PC1 > 0). The PC2 seemed 
to associate grape juice samples and phenolic compounds 
based on their antioxidant activity, as corroborated by the 
inclusion and association of all antioxidant methods in 
this component. This may be an indicative of the AOX 
potential of individual phenolic compounds, particularly 
those grouped in the positive quadrant of PC2. However, 
PC2 account for only 23.4% of the data variability. PC2 > 0 
separated BV and MG samples due to higher values of 
procyanidin A2, cis-resveratrol, malvidin 3,5-diglucoside, 
and kaempferol 3-glucoside. PC1 clearly separated com-
mercial and varietal grape juices by phenolic profile and 
antioxidant activity. In addition, it can be observed that the 
majority of individual phenolic compounds are grouped 
in PC1, and this component accounted for most of the 
data variability. This is important because it shows that, 
mostly, grape botanical or varietal factors and a particular 
phenolic composition contribute to a greater extent to the 
distinction or association of grape juices, rather than the 
antioxidant activity alone or the methods used to deter-
mine or compare its values.

The analysis factor (component loading > 0.70) directly 
correlated 13 compounds: trans-caftaric acid, catechin, epi-
catechin gallate, epigallocatechin gallate, procyanidin B1, 
procyanidin B2, naringenin, hesperidin, cyanidin-3-gluco-
side, petunidin-3-glucoside, cyanidin-3,5-diglucoside, rutin, 
myricetin, and the total phenolics quantified, with DPPH, 
ABTS,  H2O2, and βCLA methods, as can be seen in the sup-
plementary material (Table S1). By the value of the analysis 
factor (loading < 0.70), we did not consider the associations 
between phenolic compounds and the FRAP method in 
PC1 > 0. The polyphenols malvidin-3-glucoside and trans-
resveratrol showed inverse correlations (PC1 < 0) with the 
AOX. Conversely, its isomer cis-resveratrol was strongly 
correlated (0.947) with the AOX of grape juices in the PC2.

The PCA proved to be a more powerful method of asso-
ciation between phenolic compounds and AOX than Pear-
son’s correlations since a greater number of compounds 
was positively associated (n = 13) with four antioxidant 
methods (DPPH, ABTS,  H2O2, and βCLA). However, it 
presented some limitations due to the negative correlations 
obtained for malvidin 3-glucoside, which was one of the 
main anthocyanins quantified in the studied samples. The 
PCA also showed no correlations between AOX and peo-
nidin 3-glucoside and pelargonidin 3-glucoside. The weak 
positive correlations between individual phenolics and the 
FRAP method also hinder a possible integrated analysis of 

Table 3  (continued)

DPPH ABTS H2O2 FRAP βCLA

FRAP 0.908a 0.943a 0.705 1 0.346

a Significant at 1% probability error

Fig. 2  Principal components analysis (PCA) using the results of phe-
nolic profiles and in vitro antioxidant activity. DPPH, ABTS, FRAP, 
 H2O2 e βCLA, antioxidant methods; TPQ, total phenolics quantified 
by HPLC; Gac, gallic acid; Cfc, caffeic acid; Cfa, trans caftaric acid; 
Sra, syringic acid; Chl, chlorogenic acid; cRe, cis-resveratrol; tRe, 
trans-resveratrol; Cat, catechin; Epc, epicatechin; EpG, epicatechin 
gallate; EgG, epigallocatechin gallate; PA2, procyanidin A2; PB1, 
procyanidin B1; PB2, procyanidin B2; Que, quercetin 3-glucoside; 
Rut, rutin; Myr, myricetin; Kae, kaempferol 3-O-glucoside; Nar, nar-
ingenin; Hes, hesperidin; Mal, malvidin 3-O-glucoside; MaD, mal-
vidin 3,5-diglucoside; Del, delphinidin 3-O-glucoside; Peo, peonidin 
3-O-glucoside; CyD, cyanidin 3,5-diglucoside; Pel, pelargonidin 
3,5-diglucoside; Pet, petunidin 3-glucoside; CJ, commercial grape 
juices (1–5); varietal juices: IP-Isabel Precoce; BC-BRS Cora; BV-
BRS Violeta; MG-BRS Magna
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phenolic compounds that exerted simultaneous AOX in the 
five methods used.

Artificial neural network (ANN)

The summary of data processing showed values of 88.9% 
for training and 11.1% for testing (100% valid model, 
SSE = 0.042). Eleven hidden layers were generated, where 
the function used was the hyperbolic tangent. The output 
layer was obtained with the activation function being the 
identity function. The generated artificial neural network 
model (29–11-5) is shown in supplementary material (Fig-
ure S1). The learning algorithm (reverse propagation) repre-
sented by the negatives synaptic weight (synaptic weight < 0) 
predicted the relationships between phenolic compounds and 
AOX. For interpretation purposes, we considered only the 
hidden layers that presented the highest negative activation 
values (synaptic weight <  − 0.100) of reverse propagation 
for the largest number of antioxidant methods, considering 
the bias adjustment. Bias is an extra entry added to neurons 
that allows a representation of phenomena with thresholds 
(Faria-Silva et al. 2015).

The ANN parameters obtained are shown in Table 4. The 
two layers that showed the highest negative synaptic weight 
values   for phenolic compounds associated simultaneously 
with the largest number of antioxidant methods were the hid-
den layers H (1:3) (five AOX methods) > H (1:7) (three AOX 

methods). The H layer (1:3) (bias =  − 0.465) presented the 
highest activation values   for the phenolic compounds vari-
ables (n = 15) related simultaneously with the five methods 
studied (DPPH, ABTS, FRAP,  H2O2, and βCLA). Layer H 
(1:3) activated reverse propagation for gallic acid, syringic 
acid, chlorogenic acid, trans-caftaric acid, catechin, epicat-
echin, procyanidin B1, procyanidin B2, naringenin, hesperi-
din, cyanidin 3,5-diglucoside, trans-resveratrol, kaempferol 
3-glucoside, and rutin, including total phenolics quanti-
fied by HPLC (TPQ). Layer H (1: 7) (bias =  − 0.179) acti-
vated the reverse propagation of 10 phenolic compounds 
with three antioxidant methods (DPPH, ABTS, and  H2O2), 
among them epicatechin gallate, epigallocatechin gallate, 
quercetin 3-glucoside, cyanidin 3-glucoside, and malvidin 
3,5-diglucoside.

Considering only the hidden layer H (1:3), a strong asso-
ciation was evidenced of 14 individual phenolics, among 
the 28 compounds quantified simultaneously, with the five 
antioxidant methods studied (DPPH, ABTS, FRAP,  H2O2, 
and βCLA). When we take together the H (1: 3) and H (1: 
7) layers, there is a simultaneous association of 19 indi-
vidual phenolics with at least three AOX methods (DPPH, 
ABTS, and  H2O2). If we consider the 11 hidden layers of 
ANN in the analysis, 27 out of the 28 individual phenolic 
compounds would be associated with all the methods of 
antioxidant activity; however, the threshold of the connec-
tions would need to be evaluated by the synaptic weight and 

Table 4  Estimation of artificial neural network parameters
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bias of the methods. This analysis would make it possible to 
screen the selectivity of AOX methods for individual phe-
nolic compounds.

The polyphenols peonidin 3-glucoside and pelargoni-
din 3-glucoside were the only compounds not associated 
by ANN with the AOX by any of the antioxidant methods, 
just like in the PCA analysis. Considering the phenolic pro-
files of all analyzed juices (Table 1), these two anthocyanins 
had approximate values   in all grape juice samples, which 
can hinder analysis of correlations regardless of the chosen 
technique. When analyzing the three statistical tools used in 
this study, the power of association of individual phenolic 
compounds with the AOX of grape juices followed the fol-
lowing order: ANN > PCA > Pearson’s correlation. Based on 
the results, it is evident that the use of Pearson’s correlations 
alone is insufficient to associate individual phenolics with 
AOX. The PCA produced good results, approaching ANN, 
which was the most powerful technique to demonstrate the 
association of phenolics with AOX, as well as to study the 
possible selectivity of these in vitro methods.

Based on ANN and the analysis factor, our study showed 
that the compounds gallic acid, syringic acid, chlorogenic 
acid, trans-caftaric acid, catechin, epicatechin, procyani-
din B1, procyanidin B2, naringenin, hesperidin, cyanidin 
3,5-diglucoside, trans-resveratrol, kaempferol 3-glucoside, 
rutin, epicatechin gallate, epigallocatechin gallate, quercetin 
3-glucoside, cyanidin 3-glucoside, and malvidin 3,5-diglu-
coside were the polyphenols associated with the antioxidant 
activity of grape juices in at least 3 out of 5 antioxidant 
methods evaluated in the study. Studies that measured the 
antioxidant activity of several polyphenols standards showed 
that the compounds that were associated here by the ANN 
with the AOX of juice samples (hidden layers H (1:3) and 
H (1:7) have simultaneous antioxidant activity as meas-
ured by the methods of DPPH, ABTS, and FRAP (Muselík 
et al. 2007; Tabart et al. 2009; Mudnic et al. 2010), which 
corroborates the results predicted by the neural network.

Oxidative stress caused by reactive oxygen species (ROS) 
plays a crucial role in the pathophysiology associated with 
diseases such as heart diseases, neoplasia, atherosclerosis, 
and neurodegenerative diseases. The chemical structure of 
an antioxidant determines its intrinsic reactivity in the neu-
tralization of free radicals and other ROS and, therefore, 
its antioxidant potential. Currently, antioxidants are sought 
with different modes of action on oxidative systems, so that 
it can increase their effectiveness in the treatment of diseases 
(Shahidi and Zhong 2015; Shahidi and Ambigaipalan 2015). 
According to Granato et al. (2018b), in bioactivity studies 
that take measurements of AOX, it is necessary to make use 
of methods that simulate different mechanisms of action, 
such as single electron transfer, transition metal chelat-
ing capacity, and hydrogen atom transfer and to associate 
with those the profile of bioactive compounds quantified by 

techniques such as HPLC, LC–MS, or other refined instru-
mental techniques. In the light of these observations, it has 
become evident the need for approaches that allow to iden-
tify or associate individual polyphenols with the ability to 
act simultaneously in different oxidative processes in vitro, 
so it can make it possible to screen potential substances or 
foods with potential bioactivity in vivo. In fact, chemomet-
rics and network statistics seem to represent the state of the 
art regarding food evaluations and bioactive polyphenols 
(Camargo et al. 2014; Granato et al. 2014; Dutra et al. 2018; 
Granato et al. 2018b; Pavlić et al. 2019).

Studies to optimize the extraction of quality compo-
nents such as essential oils by different methods have used 
response surface methodology to assess the extraction 
kinetics (Bahmania et al. 2018a; Shaterabadi et al. 2020). 
However, ANN with reverse propagation algorithm has 
obtained good results (Bahmania et al. 2018b). In the study 
of Dębska and Guzowska-Świder (2011), artificial neural 
networks were used to classify 28 beer samples using 12 
physical–chemical and sensory variables as input variables. 
In the study of Faria-Silva et al. (2015)(2015, ANN was 
used to assess the stability of 36 olive oil samples using the 
variables free fatty acids, peroxide value, specific extinction 
coefficient, chlorophyll content, tocopherol, total phenolic 
compounds by Folin-Ciocalteu, color, and dissolved oxygen.

The study findings demonstrated that ANN is a powerful 
tool in associating phenolic compounds and AOX and can 
contribute to the characterization of grape juice polyphenols 
and their respective bioactive potential. This contributes to 
grape juice typicity and valorization. The ANN was able 
to predict potential compounds associated with simultane-
ous antioxidant activity in different systems, as well as to 
measure the selectivity of in vitro methods in relation to 
substances of different chemical nature.

Conclusions

The power of association of three statistical tools used in this 
study to associate individual phenolic compounds with the 
AOX of grape juices followed the order: ANN > PCA > Pear-
son’s correlation. The phenolic profiles of red grape juices 
were easily distinguishable between commercial and varietal 
juices when compound concentrations and AOX values were 
considered. The monovarietal juices of BRS Cora, BRS Vio-
leta. and BRS Magna showed higher concentrations of most 
polyphenols found in samples and had the highest AOX. The 
use of Pearson’s correlations had limitations in identifying 
the phenolics responsible for the AOX of commercial and 
varietal juices. PCA proved to be a more powerful method 
than Pearson’s correlation, as it positively associated 13 phe-
nolic compounds with four out of five antioxidant methods 
(DPPH, ABTS,  H2O2, and βCLA). However, it presented 
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some limitations due to the negative correlations showed for 
malvidin 3-glucoside, one of the main anthocyanins quanti-
fied in grape juices, and weak correlations with the FRAP 
method. The ANN generated 11 hidden layers, where a sin-
gle layer (H (1:3)) predicted a strong simultaneous associa-
tion of 14 individual phenolics, among the 29 quantified, 
with five antioxidant methods (DPPH, ABTS, FRAP,  H2O2, 
and βCLA), proving to be a powerful tool in the study of the 
association of polyphenols and AOX. It was evidenced that 
ANN is a promising tool for screening phenolic antioxidants 
simultaneously in different in vitro systems with great poten-
tial for application in bioactivity studies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12161- 021- 02144-8.
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