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Abstract
Timely spatially explicit warning of areas with high fire occurrence probability
is an important component of strategic plans to prevent andmonitor fires within
South American (SA) Protected Areas (PAs). In this study, we present a five-level
alert system, which combines both climatological and anthropogenic factors, the
two main drivers of fires in SA. The alert levels are: High Alert, Alert, Attention,
Observation and LowProbability. The trend in the number of active fires over the
past three years and the accumulated number of active fires over the same period
were used as indicators of intensification of human use of fire in that region, pos-
sibly associated with ongoing land use/land cover change (LULCC). An ensem-
ble of temperature and precipitation gridded output from the GloSea5 Seasonal
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Forecast System was used to indicate an enhanced probability of hot and dry
weather conditions that combined with LULCC favour fire occurrences. Alerts
from this system were first issued in August 2020, for the period ranging from
August to October (ASO) 2020. Overall, 50% of all fires observed during the ASO
2017–2019 period and 40% of the ASO 2020 fires occurred in only 29 PAs were all
categorized in the top two alert levels. In categories mapped as High Alert level,
34% of the PAs experienced an increase in fires compared with the 2017–2019 ref-
erence period, and 81% of the High Alert false alarm registered fire occurrence
above the median. Initial feedback from stakeholders indicates that these alerts
were used to inform resource management in some PAs. We expect that these
forecasts can provide continuous information aiming at changing societal per-
ceptions of fire use and consequently subsidize strategic planning andmitigatory
actions, focusing on timely responses to a disaster riskmanagement strategy. Fur-
ther research must focus on the model improvement and knowledge translation
to stakeholders.

KEYWORDS
conservation, disaster risk reduction, mitigation, wildfires

1 INTRODUCTION

Wildfires lead to severe negative impacts on people, ecosys-
tems and climate. The impacts on people include threat
to lives, loss of goods such as homes, agricultural pro-
duction, forest products, infrastructure (communication,
energy and road networks), disruption of the transport sys-
tem, and increased incidence of diseases associated with
increased air pollution, among other economic losses (Butt
et al., 2020; Campanharo et al., 2019). It has been esti-
mated that fires associated with deforestation in the Ama-
zon cause approximately 3000 premature deaths annu-
ally (Reddington et al., 2015). The impacts on ecosystems
are related to the loss of biodiversity, reduction of car-
bon stocks, wildlife mortality, soil and forest degradation,
as well as effects on other services such as maintenance
of local temperature and the recycling of water to the
atmosphere (Martins et al., 2012; Silva et al., 2020; Xaud
et al., 2013). Climate impacts are directly associated with
fire-mediated carbon emissions to the atmosphere, which
could lead to more extreme weather conditions, such as
increased frequency of droughts and prolonged dry sea-
sons (Jiang et al., 2021).
The year 2020 was marked by massive wildfires world-

wide. In the first six months of 2020, Australian bush-
fires, which started at the end of 2019, burnt more than
∼97,000 km2, threatening many species under risk of
extinction (Ward et al., 2020). In Sichuan province in
southwest China, 19 people died fighting the bushfires, and

up to June, largewildfires were reported in the Indian state
of Kerala, in south Jersey, the Florida Panhandle and Ari-
zona in theUnited States, in Poland’s biggest national park,
Biebrza, in Turkey’s Aegean province of Manisa, in North-
ern Cyprus and in Scotland, with the total socio-economic
and environmental impacts yet to be accounted for. Dur-
ing the period from July to October 2020, the fire outbreaks
in the BrazilianAmazon and Pantanal wetlands, and along
the US West Coast have attracted international attention
not only due to their scale but also due to the political con-
text of how they were managed.
At the continental level, in South America, the high-

est number of fire occurrences since 2011 were observed
in 2020 between February and June and again between
August and October (ASO). During March, April and May
of 2020, the number of temperature anomalies detected
by satellites, also known as ‘hot pixel’ or ‘active fires’
data, processed by the Center for Weather Forecasting
and Climate Studies/National Institute for Space Research
(CPTEC/INPE) were 21%, 49% and 10% higher, respec-
tively, than previously registered peaks in the same period
since 1998. In ASO of 2020 fires were 3.5%, 9.3% and 17%
higher, respectively, than the previous peak in 2011 (INPE,
2021). Moreover, during the 2020 COVID-19 pandemic,
smoke from fires aggravated the health of thousands in
South America, increasing not only the pressure upon
health systems but also the population exposure to the
coronavirus when seeking care in the urban centres (de
Oliveira et al., 2020; Morello, 2021).
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The Sendai Framework for Disaster Risk Reduction
adopted in 2015 at the Third United Nations World Con-
ference has recognized the need for increasing the num-
ber of countries with national and local disaster risk reduc-
tion strategies by 2020, and the availability and access to
multi-hazard earlywarning systems and disaster risk infor-
mation and assessments by 2030, as two of the main tar-
gets. The high fire occurrence in 2020 demonstrates that
effective strategies and investment for prevention, mon-
itoring, combating and planning actions to manage and
combat fire are urgently needed. Currently, in SouthAmer-
ica at the regional scale, there are a limited number of
early warning systems for monitoring and forecasting fire
occurrence. For example, the Programa Queimadas from
INPE/CPTEC covers the entire South American continent
with real-time fire occurrence and a three-day fire proba-
bility forecast, to support response actions (http://sigma.
cptec.inpe.br/queimadas/index_old.php). This works by
integrating meteorological forecasts and a vegetation map
with other variables such as the number of previous days
without rainfall. The University of California-Irvine (UC-
I) fire severity season for the Amazon has information
at the state/departmental level, based on the sea surface
temperatures (SSTs) in the tropical Pacific Ocean and
North Atlantic Ocean, updated annually using data avail-
able at the end ofMay (www.ess.uci.edu/∼amazonfirerisk/
ForecastWeb/SAMFSS2019.html#fire). The firecast, devel-
oped by Conservation International, provides both daily
flammability risk forecasts for the entire Amazon and the
UC-I fire season severity forecasts for Peru at the coun-
try scale, and at the state level for the Amazonia states
of Bolivia and Brazil (https://firecast.conservation.org/
DataMaps/FireSeasonSeverity). The Global Forest Watch
Fires Programme allows country-level, ecoregion or basin-
level real-time monitoring of fire occurrence, depict-
ing a fire alert level by comparing the number of fire
alerts over selected time intervals with the available
historic data (https://www.globalforestwatch.org/topics/
fires). The Global Wildfire Information System (GWIS)
provides forecast maps of fire danger levels for one to
nine days ahead (https://gwis.jrc.ec.europa.eu/apps/gwis_
current_situation/index.html). All these systems greatly
contribute towards monitoring and providing information
for response teams to act during fire events. However,
given the need to improve preparedness and to reduce the
likelihood of fire occurrences, forecasts covering longer
timescales, with improved spatial prioritization and with
longer lead times are needed. Therefore, a seasonal fore-
cast of fire probability can provide information for priority
areas at a temporal scale which allows planning and fire
mitigation actions ahead of the fire event.
Protected areas (PAs) across South America are regions

of particular relevance for fire management activities.

PAs are geographical spaces where long-term conserva-
tion of nature, ecosystems services and cultural values
are recognized, following the definition by the Interna-
tional Union for Conservation of Nature (IUCN, 2021). As
recognized areas by law at different governmental levels,
those areas have an institutional structure, legal frame-
work and, in most cases, a management plan that allows
the use of fire forecast information to guide actions on
the ground. Although PAs have been effective in con-
taining the advance of deforestation (Nelson & Chomitz,
2011; NEPSTAD et al., 2006) and fire in some locations
(Armenteras et al., 2013), these areas are vulnerable to
degradation in other ways, which can threaten its conser-
vation efforts (Armenteras et al., 2019; Nogueira et al., 2018;
Schulze et al., 2018; Walker et al., 2020).
In this paper, we present the development of an inte-

grated method aiming to build an alert system based
on a novel seasonal fire probability forecast for South
American PAs. By combining measures accounting for
anthropogenic drivers of fire occurrence with probabilistic
seasonal forecasts of rainfall and temperature, we have cat-
egorized the PAs fire threat into five alert levels, to support
the management of prioritized PAs. This study emerged
from the Climate Science for Service Partnership (CSSP)
Brazil project, where one of the main goals is to inform
decision-making and contribute to disaster risk reduction.
In this context, two technical reports to inform decision-
makers were prepared during 2020. The first report was
issued inAugust 2020 and forecast the ASO period (Ander-
son et al., 2020a), and the second was issued in December
2020, for the December 2020 to February 2021 period
(Anderson et al., 2020b). The methods used to produce
the fire alerts were revised between these two reports. We
present here the most up-to-date version of the method,
and used as a study period ASO 2020. It is expected that
new technical reports and an online tool will be developed
during 2021, contributing to disseminating disaster risk
management information. This effort aims at increasing
the societal awareness related to the fire risk and the
conservation of critical environmental benefits delivered
to the human population and all life forms by PAs.

2 MATERIALS ANDMETHODS

2.1 South American Protected Areas
and fire diagnostic

The analyses were performed based on data from the
World Database on Protected Areas (WDPA), compiled
by the International Union for the Conservation of
Nature (IUCN; UNEP-WCMC, 2021).11 TheWDPA collates
official information on PAs around the world, which is

http://sigma.cptec.inpe.br/queimadas/index_old.php
http://sigma.cptec.inpe.br/queimadas/index_old.php
https://firecast.conservation.org/DataMaps/FireSeasonSeverity
https://firecast.conservation.org/DataMaps/FireSeasonSeverity
https://www.globalforestwatch.org/topics/fires
https://www.globalforestwatch.org/topics/fires
https://gwis.jrc.ec.europa.eu/apps/gwis_current_situation/index.html
https://gwis.jrc.ec.europa.eu/apps/gwis_current_situation/index.html
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F IGURE 1 Number, size and fraction of PAs in each South
American country

continually updated, including the spatial distribution
and management attributes, such as categories, status,
creation year and others. We only consider regions des-
ignated PAs within South America. We excluded marine
and international PAs, as well as duplicate areas with
different category designations. The final data comprised
4568 PAs, with almost half of the area under protection –
2.5 million km2 – located in Brazil (34% of the country’s
area), followed by 503,233 km2 in Venezuela (55% of the
country’s area), and the same share of protection area in
French Guiana (Figure 1).

2.2 Fire probability categories

Wildfires can result from a combination of human activ-
ities, such as the use and management of the land, with
climatic conditions related to temperature and precipita-
tion patterns. Our forecasting of fire probability in each
South American Protected Area combines observed trends
of recent anthropogenic activity with seasonal forecasts of
the coming meteorological conditions, with three months
in advance.
We considered five variables that represent the anthro-

pogenic and climatological conditions that increase the
probability of fire occurrence. The anthropogenic compo-
nents of the forecast are the (i) trend in the number of
active fires over the past three years and (ii) accumulated
number of active fires over the same period. The number of
active fires and their trend can be measured using the ‘hot
pixels’ in satellite-based data sets, described below. A posi-
tive trend in the number of hot pixels can be interpreted as
a recent increase in the use of fire in that region, which can
be associated with ongoing land use/land cover change.
Fire is the main tool used for eliminating biomass either
after a forest clear cut or for land management activities.
These are considered intentional fires, while native vege-
tation uncontrolled fires can be considered unintentional

since these start either accidentally or for arson. The accu-
mulated number of hot pixelswas used to identify the areas
with high fire occurrence in the period analysed. The cli-
matological conditions thatwe selected for the forecast are:
(i) the length and duration of the dry season for the period
studied, and probabilistic forecasts of (ii) below-average
rainfall and (iii) above-average temperature. These latter
two variables were prioritized due to an adequate skill on
the probabilistic forecasts. The focus period of the study,
ASO, was chosen as it represents the time of year with
the highest fire occurrence in South America’s Southern
Hemisphere. A summary of the data used is presented in
Table 1, and more details are provided in next sections.

2.2.1 Anthropogenic factors

We used the Visible Infrared Imaging Radiometer Suite
(VIIRS) Standard (Science Quality) active fire product
from the VIIRS sensor aboard the Suomi National Polar-
orbiting Partnership (SuomiNPP) satellite as observational
data to calculate the trend and accumulated hot pixels for
each PA (Figure 2a). The VIIRS product has a high spatial
resolution of 375mandprovides a better response over fires
of relatively small areas (Schroeder et al., 2014). The time
series for this study covers the months from ASO, from
2017 to 2020. This period has been selected to capture the
recent local fire use, rather than natural fires (those occur-
ring due to lightning) or the long-term pattern, which may
be more variable or influenced by other climatic extremes,
such as extreme droughts or wet years. For instance, most
of the fires associated with deforestation occur in the same
year or the subsequent year (Alencar et al., 2020; Aragão
et al., 2008; Silveira et al., 2020), while agricultural fires
occur yearly or bi-annually (Chen et al., 2013; Eloy et al.,
2018; Fidelis et al., 2018; Jakimow et al., 2018). Similarly,
fire return intervals in savanna areas of South America,
associated with biomass recovery after fires, are between
one and four years (Bilbao et al., 2010; Pereira et al., 2014),
and natural fires occur in a longer time interval (Durigan&
Ratter, 2016; Pivello, 2011). Therefore, by accounting for a
period of three years, we ensure that we are looking in the
time-window most relevant to track the presence of igni-
tion source and are able to generate a trend line with a sta-
tistical assessment.
A positive fire trend, therefore, means that the use of

fire in ASO increased from 2017 to 2019, and thus ignition
sources are likely to be present in the year 2020. On the
other hand, a negative fire trend from2017 to 2019 indicates
that less fire has been used year by year, and thus it is less
likely to have fire occurrences in that location in 2020. The
fire trend was calculated using the hot pixel accumulation
in each ASO in 2017–2019, for every PA (Figure 2b). The
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TABLE 1 Classification summary of the individual factors that go towards defining the fire alert level. Each of the five variables is
classified into two or three categories. The combination of different categories determines the alert level (Supporting Information Figure S2).
The variables associated with increased fire probability are highlighted in red. Each factor is described in the main text

Anthropogenic variables Climatic variables
Accumulated
hot pixels

Hot pixel
occurrence trend Drought condition

Temperature above
median probability

Precipitation below
median probability

> 75% Positive (+) 0 = Out of the dry season. > 60% > 60%
< 75% Negative (-) 1 = During dry season, outside the

critical period.
< 60% < 60 %

0 2 = During critical period: last two
months of the dry season or first
month of the rainy season.

F IGURE 2 (a) Accumulated hot pixels occurring in the ASO period from 2017 to 2019. The colour categories correspond to the quartiles
of the distribution over all PAs. (b) ASO fire occurrence trend over 2017–2019 in each protected area. Coloured areas refer to the PAs

slope of the trend regression, b, is defined as (Equation (1))

𝑏 =

∑
(𝑥 − 𝑥)(𝑦 − 𝑦)
∑
(𝑥 − 𝑥)

2
, (1)

where x corresponds to the specific year (independent vari-
able), x̅ is the average of all years, y is the number of hot
pixels (dependent variable) for the specific year x, and y ̅ is
the average of hot pixels between all years.
In addition to the fire trend, we considered the distri-

bution of the total accumulated hot pixels in ASO over all
PAs in 2017–2019. Each PA can be categorized using the

quartiles of the distribution over all PAs; thus, the areas in
which 50% or 75% of all South American PA fires occurred
during the analysed period can be highlighted and used to
stratify the fire probability.

2.2.2 Climatological conditions

Three datasets were used as an input for the climatologi-
cal conditions. The first, rainfall observations from the Cli-
mate Hazards Group InfraRed Precipitation with Station
data (CHIRPS; Funk et al., 2015)were used to assess the dry
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F IGURE 3 (a) Long-term (1981–2019) dry season onset and (b) end for South America. The dry season onset is defined as when rainfall
is lower than 100 mm. (c) The fire probability region according to the dry season category for the ASO period (see text for details)

season length and duration. For the probabilities of rainfall
and temperature, seasonal forecasts from the GloSea5 sys-
tem were used (MacLachlan et al., 2015). More details are
presented below.
To investigate the spatio-temporal variability of the dry

season, we used the 39-year monthly time series (1981–
2019) from CHIRPS. These data are available with a spatial
resolution of 0.05◦, and were resampled to 0.5◦ using bilin-
ear interpolation, in order to match the GloSea5 product
used in this study. Themeanmonthly precipitation of each
grid cell was calculated, assuming a 100-mm threshold to
define the dry season (Da Rocha et al., 2004; von Randow
et al., 2004) (Figure 3). Note that the Northwestern Ama-
zon and the extreme south of Brazil have no dry season
according to this definition. The regions with the longest
dry season duration are concentrated in the south of the
continent and in the northeast of Brazil. In both cases, all
months of the year have rainfall below 100mm on average.
In general, the peak in fire occurrences is three months
after the driest month in South America (Chen et al.,
2013).
However, since the fringes of the Amazon present the

highest fire density, we stratified the rainfall-related fire
probability categories according to the ASO drought con-
dition (Carvalho et al., submitted):

1. Low probability: grid cells where August, September
and/or October are not included in the dry season or
in the first month of the rainy season.

2. Medium probability: grid cells where August, Septem-
ber and/or October are included in the dry season, but
do not correspond to the last two months of the dry
season.

3. High probability: grid cells where August, September
and/orOctober correspond to the last twomonths of the
dry season and/or the first month of the rainy season.

The probabilistic seasonal forecasts of ASO mean rain-
fall and temperature are based on data from the GloSea5
seasonal forecasting system, produced by the Met Office
Hadley Centre. GloSea5 is based on the Global Coupled 2
configuration of the HadGEM3 climate model (Williams
et al., 2015), and is run operationally, producing two fore-
cast realizations per day.A 42-member forecast ensemble is
produced by collating the forecasts initialized over the pre-
ceding three weeks. To produce the forecasts for the ASO
period, we used the forecasts available up to 10 July 2020.
To assessmodel skill and correct forecast biases, a hindcast
is also produced operationally, covering the period 1993–
2016. Seven hindcast ensemble members are produced on
four dates each month, and the nearest hindcast dates to
each daily forecast are collated to make a model ensem-
ble climatology (see MacLachlan et al., 2015, for details).
The forecast ensemble is used to assess the probability
of above-median temperatures and below-median rain-
fall, with respect to the hindcast climatology (Support-
ing Information Figure S1). We use a threshold of 60%
of model ensemble members to mark increased fire risk
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(i.e. increased probability of above-median temperatures
and below-median rainfall) in both cases. This threshold of
60% of members was chosen as an indication of enhanced
probability compared with normal, but not an extreme
level of confidence, which would not be robust. Although
we have not calibrated the forecast probabilities from the
model, we will refer to our indicative choice of 60% of
members as ‘60% probability’ for brevity. The use of rela-
tive humidity was also considered (as in, for example, Bett
et al., 2020), but there was insufficient skill for the ASO
season.

2.2.3 Data integration

The fire trend and the accumulated hot pixels in each
fire season (ASO 2017–2019) were calculated for all the
PAs in South America. The climatological conditions,
defined here as the probability of temperature being above
the climatological median, and rainfall being below the
median, for ASO 2020, were obtained by area-weighted
averaging of the grid cells in each PA. The onset and dry
season length was also included as one criterion to identify
the likelihood of fire occurrence. A drought condition
value for each PAwas assigned based on themost frequent
pixel value in each area. All the variable combinations
that determine the alert levels are supplied in Supporting
Information Figure S2.
We used five Alert categories: High Alert, Alert, Atten-

tion, Observation and Low Probability. These categories
correspond to the probability of an increased occurrence
of fire events, based on the number of variables associ-
ated with increased fire probability (Supporting Informa-
tion Figure S2).
The description of each category is as follows:
High Alert: All five variables indicate increased proba-

bility;
Alert: Four variables, including at least one of the tem-

perature and rainfall conditions, indicate increased proba-
bility;
Attention: Three variables indicate increased probabil-

ity; or, all variables except accumulated hot pixels indicate
increased probability;
Observation: Two variables indicate increased proba-

bility of fire occurrences;
Low Probability: One or no variables indicate

increased probability of fire occurrences.

2.2.4 Meteorological forecast verification
and skill assessment

To assess the performance of the meteorological forecasts
for temperature and precipitation in ASO 2020, we com-
pare the model with ERA5 re-analysis data (Hersbach

et al., 2020) as a proxy for observations, over the same
period as the hindcast (1993–2016). As described above,
we are using a fixed probability threshold for both tem-
perature and rainfall to indicate enhanced probability of
fires. We can therefore evaluate the forecast performance
in broad terms by looking at where these forecasts of
enhanced probability resulted in the ‘hot’, ‘dry’ or ‘hot and
dry’ conditions indicated. We can assign the standard con-
tingency table categories of a hit, miss, false alarm and cor-
rect rejection (e.g. Wilkis, 2019) according to whether the
enhanced probability matches the observed situation. To
use temperature as an example, where the model shows
a probability of at least 60% of being above the median
in ASO 2020, and the observations show that tempera-
ture was indeed above the climatological median, then we
label the forecast as a hit. If the model shows a proba-
bility of at least 60% of being above the median but the
observed temperature was below the median, then the
forecastwould have been a false alarm.As described above,
there are three types of event that we consider to lead
to increased fire probability: above-median temperatures,
below-median precipitation and both occurring simulta-
neously. The forecast performance for each of these three
types of event is assessed separately.
This verification method also informs about how well

the forecast performed in 2020. To understand how skil-
ful the forecast system is, generally, we also compare the
model hindcast against observations year to year, using the
same baseline period of 1993–2016. For each of the 24 years
of the hindcast, we find when >60% of the 21-member
ensemble were forecasting above-median temperature, or
below-median precipitation, where the median is calcu-
lated from the other 23 years of the hindcast. We use the
same categories of ‘hit’, ‘miss’, ‘false alarm’ and ‘correct
rejection’, and calculate the hit rate (HR) and false alarm
rate (FAR) according to the standard definitions:
HR = Nhits / (Nhits + Nmisses),
FAR = Nfalsealarm / (Nfalsealarm + Ncorrectreject),
where N refers to the number of years in that category,

calculated separately for each grid cell.
In addition to calculating the HR and FAR for hot con-

ditions, dry conditions and the combination of hot and dry
conditions, we also calculated the rates forwhen themodel
forecasts hot conditions, and the observed conditions are
hot and dry. Similarly, we calculated the rates for when
the model forecasts dry conditions and the observed con-
ditions are hot and dry. This givesmore information on the
skill of each variable. The results are shown in Section 3.2.

2.2.5 Fire trend assessment

Four analyses were carried out to assess the fire fore-
cast probability. First, a general evaluation of the spatial
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TABLE 2 Summary of the main combinations to assess the fire
trend. The # symbol is used to summarize the other combinations
(mixtures of zero and non-zero values)

Fire trend Difference of hot pixel Assessment
0 0 Null
< 0 < 0 Correct rejection
< 0 > 0 Miss
> 0 < 0 False alarm
> 0 > 0 Hit
# # Other

dynamics of fires in South America was executed, assess-
ing the extent to which a positive or negative fire trend
over 2017–2019 was followed by an increase in the number
of fires in 2020 compared with the 2017–2019 mean. This
analysis was carried out on a grid with 100 km spatial res-
olution, by assessing the 2017–2019 fire trend alongside the
difference in accumulated fires between ASO 2020 and the
meanASO accumulation over 2017–2019, for each grid cell.
In this assessment, five main combinations were consid-
ered: if the fire trend and difference in hot pixels are not
statistically different from zero (p < 0.05), it is classified
as ‘Null’. The ‘Correct rejection’ class refers to a negative
fire trend and a negative difference in hot pixels (i.e. the
2020 fire accumulation was less than the 2017–2019mean).
The ‘miss’ class refers to a negative fire trend and a positive
difference in hot pixels. ‘False alarms’ were identified in
areas with positive fire trend and negative difference in hot
pixels. Finally, the ‘hits’ class was identified when positive
fire trends and greater than zero differences were detected
(Table 4). This evaluation provides a spatial representation
of the trend pattern of fires for each grid cell.
The second analysis aimed to investigate whether the

fire trend for each PA was confirmed. Therefore, we com-
pared the fire trendwith the difference of fire pixels, which
was calculated by the accumulated fires in the period from
ASO 2020 minus the average of accumulated fires in ASO
2017–2019 per PA (Table 2). For better understanding, the
results were stratified by each fire probability category.
This evaluation provides a spatial representation of the
trend pattern of fires during the last years in South Amer-
ica for each PA. To test whether there was a significant dif-
ference in the number of hot pixels observed in 2020 for
the different alert categories of PAs, we used the Kruskal–
Wallis non-parametric statistical test. To eliminate the size
effect, we normalized the number of hot pixels observed
in 2020 by the area of each PA. The Kruskal–Wallis test is
equivalent to analysis of variance (ANOVA), which com-
pares three or more groups to test the hypothesis that they
have the same distribution (Bonnini et al., 2014; Gibbons
& Chakraborti, 2011; Hettmansperger & McKean, 2010).
To identify how the fire trend probability categories differ
from each other, the paired Dunn post hoc test was per-

TABLE 3 Summary of the main combinations to identify
changes in fire trend between fire trend of ASO 2017–2019 and
ASO 2017–2020. The # symbol is used to summarize the other
combinations

Fire trend
(2017–2019)

Fire trend
(2017–2020) Assessment

# # It has remained null or
has become null

< 0 < 0 It has remained negative
< 0 > 0 It has become positive
> 0 < 0 It has become negative
> 0 > 0 It has remained positive

formed. In the Kruskal–Wallis test, we use the ‘agricolae’
R package (de Mendiburu, 2021; R Core Team, 2021). For
all of the tests, a significance level of 95% (p < 0.05) was
adopted.
The third assessment aimed to identify whether or not

there was a change in the sign of fire trend (positive to neg-
ative or negative to positive) for eachPA. For this analysis, a
fire trend for the periodASO2017–2020was comparedwith
the original data (fire trend ASO, 2017–2019). Five main
possible combinations were quantified: PA where at least
one of fire trends were null, PAwhere both periods present
negative or positive fire trends, and the two possible combi-
nations with one period with positive and one period with
negative fire trend (Table 3).
Finally, an integrated analysis between the anthro-

pogenic factors and climatological conditions were carried
out to assess the High Alert fire probability, which allows
the identification of the most critical category, where all
five variables except for the fire trend were related to
increased probability.

3 RESULTS

3.1 Verification of the seasonal forecast

Comparing the forecast to the observed temperature for the
ASO 2020 period (Supporting Information Figure S3), the
model correctly predicts higher than average temperature
(occurring when the probability of forecast is>60%) across
the majority of the continent, particularly the north, east
and far south. Two areas in the centre and south of the
continent are shown as a ‘miss’, where hot conditions in
the observations were forecast to be less likely than 60%.
The areas of ‘correct rejection’ and ‘false alarm’ are smaller,
mainly concentrated in the southeast and east of the con-
tinent, respectively.
For precipitation, most of the continent experienced

drier than average conditions over ASO. Some of these
areas were correctly forecast (i.e. with probability >60%),
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across central and eastern regions, and the far south,
but dry areas across the north and south were predicted
with lower probabilities (‘miss’). There were several areas
classed as ‘correct rejections’, where conditions were fore-
cast as likely to be wetter than average, which is also an
important consideration for forecasting reduced likelihood
of fire.
The forecast performedworsewhen showing ahigh like-

lihood of hot and dry conditions together. Again, the fore-
cast ‘misses’ the hot and dry conditions that occur across
the north and south, which we can see is mainly limited by
the performance of the precipitation forecast. Several areas
around the coastlines are categorized as ‘correct rejection’,
i.e. correctly giving a low probability of hot and dry con-
ditions. From Supporting Information Figure S3, many of
the PAs that are in the Alert and High Alert categories fall
within the areas correctly forecast as likely to be hot and
dry, where the model predictions had the greatest success.
We can understand the performance of the 2020 fore-

casts by comparing them against the skill of the forecast
systemmore generally, based on themodel hindcasts. This
is shown in terms of the hit rate and false alarm rate of
different conditions in SI Figure S4. The hit rate for tem-
perature is highest across the north and east of the conti-
nent, as well as some regions in the far west across Peru
and southeast in Argentina (Supporting Information Fig-
ure S4a). For precipitation, the main area of skill (in terms
of the hit rate) is along the northeast coast, with some areas
in central and southern regions also showing skill (Sup-
porting InformationFigure S4b). For both the precipitation
and temperature forecast, the false alarm rate is low across
most of the continent (Supporting Information Figure S4f
and g).
When considering simultaneous hot and dry conditions,

the region with the highest hit rate, and therefore where
there is the highest confidence in the forecast year to year,
is along the northeast coast. However, just using the tem-
perature forecast (labelled ‘M = hot’; Supporting Informa-
tion Figure S4d) gives a much higher level of predictability
for hot and dry conditions across the north, northeast and
south. This implies that the lower skill of the precipitation
forecasts is largely serving to add noise in these regions,
degrading the quality of the forecasts. Temperature is a bet-
ter predictor of dry conditions than themodel precipitation
itself in this case.

3.2 Spatial explicit assessment of the
fire trends

The South America grid evaluation indicated that ‘hit’ was
the class with the highest percentage (33.7%), indicating
therewas an increase in fires in 2020 compared to the 2017–

TABLE 4 Summary of fire trend vs 2020 occurrence category
in each grid cell in South America. (Compare with Table 5 for the
category definitions.)

Assessment Frequency %
Null 48 3
Correct rejection 256 17
Miss 430 28
False alarm 252 16
Hit 517 34
Other 33 2

2019 mean, as well as a positive trend over the 2017–2019
period. The second most frequent combination was ‘miss’
(28%),when the 2017–2019 trend indicated a decrease in the
fire occurrences, while an increase was observed in 2020.
In this case, if the other variableswere indicating increased
fire probability, it was classified as Alert level. These areas
are especially important because they point to an increase
in fires where it was not expected, which can be linked to
several reasons, such as increased deforestation, increase
in spatial coverage of agriculture and livestock, land con-
flict, loss of control of intentional fires, hotter and drier
conditions, among others. The ‘Correct rejection’ class, i.e.
areas that showed a negative 2017–2019 trend and a lower
number of fires in ASO 2020, occurred in 16.7% of the grid
cells. Finally, ‘false alarm’ cases, where therewas a positive
2017–2019 trend but a reduction in fires in ASO 2020 than
in the 2017–2019 average, covered 16.4% of the grid cells.
Table 4 presents the summary of the main combinations
to assess the fire trend and 2020 occurrence in each grid
cell. Overall, approximately 61.7% (‘miss’ and ‘hit’ classes)
of the grid cells showed an increase in the number of fires
in 2020 compared with the average from 2017 to 2019.
In terms of countries, only Chile, Colombia and

Venezuela had their territory with lower numbers of fires
in 2020 than the average in ASO 2017 to 2019, while the
other countries presented inmore than 50%of the grid cells
the classes ‘miss’ and ‘hit’ (Table 5; Supporting Information
Figure S5). Brazil and Argentina present the highest fre-
quency of the ‘miss’ (negative recent trend and observed
increase in the number of fires) and ‘hit’ categories (posi-
tive recent trend and observed increase in the number of
fires). It is interesting to note that in Uruguay, a higher fire
occurrence inASO2020 coincidedwith anupward trend in
the preceding years (the ‘hit’ category) over practically the
whole country (Supporting Information Figure S5). The
results in Bolivia and Peru are also largely in the ‘miss’ and
‘hit’ classes, i.e. an increase in the number of fires.
There were, in total, 969 grid cells with more fires in

ASO 2020 than in the ASO 2017–2019 average (63%), 510
grid cells (33.2%) with fewer fires, and approximately 3.7%
of pixels with no difference. Spatially, large regions with
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TABLE 5 Assessment of fire trend for the period ASO 2017 to 2019 in relation to the fire occurrences in 2020, in each country

Country Null %
Correct
rejection % Miss %

False
alarm % Hit % Other %

Argentina 15 5 35 13 50 18 53 19 119 43 8 3
Bolivia 0 0 10 11 27 29 19 20 36 38 2 2
Brazil 5 1 138 19 271 38 85 12 203 29 8 1
Chile 18 24 6 8 12 16 12 16 22 29 5 7
Colombia 2 2 17 19 17 19 34 38 15 17 4 4
Ecuador 0 0 1 5 5 25 6 30 7 35 1 5
French Guiana 1 17 0 0 1 17 2 33 2 33 0 0
Guyana 1 6 4 24 4 24 0 0 7 41 1 6
Paraguay 0 0 4 13 14 44 5 16 9 28 0 0
Peru 0 0 10 9 14 13 14 13 64 60 4 4
Suriname 0 0 2 14 3 21 3 21 6 43 0 0
Uruguay 0 0 0 0 1 6 0 0 17 94 0 0
Venezuela 6 8 29 39 11 15 19 25 10 13 0 0

a high number of fires in 2020 are observed in part of
Argentina and on the border with Paraguay, in southern
Mato Grosso state in Brazil and the north and south of
Bolivia, and Pará state, over the central-eastern Brazilian
Amazon (Supporting Information Figure S5). The infor-
mation in each country is available as Supplementary
Information in Supporting Information Table S1.

3.3 Assessment of fire trends and alerts
in protected areas

Overall, in terms of extent in km2, 59.4% of the fire prob-
abilities were correct, covering an area of 3,111,846 km2

and 34.2% were incorrect, covering 1,796,385 km2. Among
the 13 countries analysed, in nine of them the correct
forecast was provided above 50% and in 6 it was above
70%. The best performances were achieved in Suriname,
Uruguay and Guyana, with 94%, 90% and 79% correct-
ness of the areas, in km2, while the worst performance
occurred in Bolivia, French Guiana and Paraguay, with
39%, 26% and 16%, respectively (Supporting Information
Table S2).
In relation to the number of PA, among all of them, 6%

were classified as ‘hit’, which means that the fire trend in
the ASO 2017–2019 period was positive, and the observed
fire pixel count in ASO 2020 was higher than the ASO
2017–2019 average. In another 6%, classified as ‘miss’, the
PAs were predicted a negative trend in fire occurrence, but
the fire pixel count in ASO 2020 was higher than in the
ASO 2017–2019 average, depicting a change in the local fire
use. These PAwere locatedmainly in the Brazilian central-
western Amazon (Figure 4). For 9% of all PAs, we obtained
‘false alarm’ results, whichmeans that we estimated a pos-

itive fire occurrence trend, but the hot pixel count dur-
ing ASO 2020 was lower than the ASO 2017–2019 average.
However, 9% of the PAwith ‘false alarms’ had accumulated
fire pixels in the upper quartile, compared with other PA
in the ASO 2020 period (≥ 113 fire pixels). If we consider
the median (>18 fire pixels), this number increases to 33%.
This shows that even with a decrease in ASO 2020 fire pix-
els compared with the 2017–2019 average, the occurrence
of fire in many of these areas was still high compared with
other areas, which does notmischaracterize the alert of fire
probability (Table 5).
Among the five Alert categories, the High Alert pre-

sented 34% of ‘hit’ and 64% ‘false alarm’, indicating that in
37 PAs the high fire probability occurrence may be consid-
ered overestimated. Nonetheless, among these 37 PAs, 38%
registered a high occurrence of fire (> 113 fire pixels), and
81% of them registered fire occurrence above the median
(> 18 fire pixels), depicting the local presence of the igni-
tion source, and thus wildfire probability, in its territory.
In two cases, the PA showed precipitation and temperature
observed during ASO 2020 higher and below the average,
respectively, and in six others, only one climatic variable
that increased fire was observed. In 18 of them, although
fire occurrences were high during ASO 2020, they were
below the ASO 2017–2019 average.
Under the Alert category, 30% (65 PAs) presented ‘hit’

and 29% of the PA were ‘correct reject’, with both the trend
and ASO 2020 fire occurrence confirming the probability
forecast. In addition, 18% of the Alert level PAs were clas-
sified as ‘miss’, indicating that these areas may be under
an increasing threat of fires. The Observation alert level
presented 188 PAs (32%) classified as ‘correct rejection’
result, and under the Low Probability alert status, 87% and
5% were classified as ‘null’ (fire trend and difference in hot
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F IGURE 4 (a) Accumulated hot pixels during the period ASO 2020 in each PAs. The percentages indicate the quartiles used to classify
the map. In dark red are all PAs that presented an accumulated hot pixel greater than the third quartile (> 113) during ASO 2020. (b) Fire
occurrence trend assessment (i.e. ‘hit’ is where the fire trend in the ASO 2017–2019 period was positive and the observed ASO 2020 fire pixel
count was higher than in the ASO 2017–2019 average)

pixels equals zero) and ‘correct reject’, respectively
(Table 6). The category with the highest percentage of
true results was Alert with 59% correctness being equally
distributed between positive and negative.
Considering the area instead of the PA number, Atten-

tionwas the alert status that presented the highest percent-
age of false results (56%). Observation presented the high-
est percentage of true results with 62%, of which 53% are
‘correct rejection’ (Table 6).
Comparing the ASO 2017–2020 fire trend with the ASO

2017–2019 trend demonstrated that, in 26% of the PAs, the
trend kept the same sign (positive or negative, not includ-
ing PA with a null trend). This corresponds to 60% of the
area protected. Interestingly, in 16% of the PA territory,
the fire trend changed from negative to positive (Table 7).
In 11% of PA territory, a positive fire trend became nega-
tive. The spatial distribution of the PA where the trend has
changed from negative to positive largely agrees with the
ones that presented ‘miss’ results (Supporting Information
Figure S6). In the High Alert category, the trend of 28% of
PAs has changed from positive to negative. However, this
represents only 13% of the area under protection. In terms
of area, 83% of the PAs under High Alert have continued to
have a positive fire occurrence trend.

Finally, the Kruskal–Wallis test showed a significant dif-
ference (KW = 2185.181 and p < 0.05) between the occur-
rence of hot pixels in 2020 for the different alert categories
(Supporting Information Table S3). While a lower density
of hot pixels was observed for the Low Probability category
(0.038 ± 0.378 hot pixels km−2), the highest density was
observed for the Alert category (0.402 ± 0.841 hot pixels
km−2). In addition, the paired Dunn post hoc test showed
that the pixel density observed for the Alert category did
not differ from the High Alert category (0.303 ± 0.423 hot
pixels km2).

3.4 Protected areas alert levels

We identified 58 PAs under High Alert, with 62% of them
(36 PAs) located in Brazil, followed by 33% (19 PAs) in
Bolivia, covering an area ofmore than 195,000 km2.Within
the Alert level, there were 216 PA, of which 75% (161 PAs)
were located in Brazil, and 17 PAs in each of Bolivia and
Paraguay. Argentina showed a similar number with 7%
(15 PAs). The lowest numbers in the Alert level occurred
in Ecuador (1), French Guiana (1), Peru (2) and Venezuela
(2), totalling over one million km2 (Figure 5). A total of



12 ANDERSON et al

TABLE 6 Number and area of PAs per fire alert status in each validation output

Null
Correct
rejection Miss False alarm Hit Other Total

Hight Alert
Frequency (N) 37 20 1 58

64% 34% 2% 100%
Area (km2) 80,395 114,594 60 195,049

41% 59% 0% 100%
Alert
Frequency (N) 62 39 50 65 216

29% 18% 23% 30% 100%
Area (km2) 269,234 258,321 206,080 351,888 1,085,523

25% 24% 19% 32% 100%
Attention
Frequency (N) 1 108 88 211 125 34 567

0% 19% 16% 37% 22% 6% 100%
Area (km2) 173 278,753 322,281 367,802 229,134 41,665 1,239,808

0% 22% 26% 30% 18% 3% 100%
Observation
Frequency (N) 1 188 111 119 64 97 580

0% 32% 19% 21% 11% 17% 100%
Area (km2) 39 698,001 239,890 166,645 118,986 104,592 1,328,153

0% 53% 18% 13% 9% 8% 100%
Low Probability
Frequency (N) 2735 156 54 10 13 179 3147

87% 5% 2% 0% 0% 6% 100%
Area (km2) 615,398 424,748 142,992 11,979 10,889 186,685 1,392,691

44% 30% 10% 1% 1% 13% 100%
Total
Frequency (N) 2737 514 292 427 287 311 4568

60% 11% 6% 9% 6% 7% 100%
Area (km2) 615,610 1,670,735 963,484 832,901 825,492 333,002 5,241,225

12% 32% 18% 16% 16% 6% 100%

576 PAs were classified under the Attention level, with the
majority in Brazil (430 PAs - 74%), Peru (30 PAs, – 6%),
Bolivia (28 PAs – 5%) and Colombia (22 PAs – 4%). The
Observation (580 PAs) and Low Probability (3147 PAs) lev-
els were mostly located in Brazil (336 PA – 58%) and Brazil
and Colombia (1221 PAs; 1100 PAs – 38% and 34%, respec-
tively) (Figures 5 and 6).
In total, 3% of the territory in PAs was under High Alert,

followed by an almost equal share, in terms of area, of the
other alert levels, varying from 20% in theAlert level to 26%
in the Low Probability level (Figure 6). These results sug-
gest that if resources were limited, the Alert categories can
be used to guide strategic decisions, allowing prioritization
in areas at higher risk.
Most of the PAs under High Alert and Alert levels were

located in the central area of South America, covering

the southern parts of the Amazon, Cerrado and Chaco-
Pantanal, while the PAs under the other three alert levels
weremore present in the northern and southern regions of
South America (Figure 7).

4 DISCUSSION AND SUMMARY

Globally, from2001 to 2018, 4.1% of the protected forest area
globally experienced increased forest loss, with South and
Central America responsible for the largest proportion,
32% (Wade et al., 2020). In their study, a peak was identi-
fied in 2016, related to forest fires, highlighting the vulner-
ability of these areas to fire, threatening their conservation.
Moreover, it has been identified that 42% of South America
PAs can be exposed to the highest risk from future climate
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TABLE 7 Number and area of PAs per fire alert status in each possible fire occurrence trend change direction

It has remained
null or has
become null

It has
remained
negative

It has
remained
positive

It has
become
negative

It has
become
positive Total

Hight Alert
Frequency (N) 1 41 16 58

2% 71% 28% 100%
Area (km2) 77 161,533 33,439 195,049

0% 83% 17% 100%
Alert
Frequency (N) 1 73 94 21 27 216

0% 34% 44% 10% 13% 100%
Area (km2) 1,652 338,707 463,645 94,323 187,196 1,085,523

0% 31% 43% 9% 17% 100%
Attention
Frequency (N) 12 142 265 84 64 567

2% 25% 47% 15% 11% 100%
Area (km2) 41,613 371,017 353,691 237,966 235,521 1,239,808

3% 30% 29% 19% 19% 100%
Observation
Frequency (N) 16 235 138 94 97 580

3% 41% 24% 16% 17% 100%
Area (km2) 36,243 772,654 215,908 101,830 201,517 1,328,153

3% 58% 16% 8% 15% 100%
Low Probability
Frequency (N) 2,742 178 20 55 152 3,147

87% 6% 1% 2% 5% 100%
Area (km2) 624,870 455,591 14,426 88,756 209,049 1,392,691

45% 33% 1% 6% 15% 100%
Total
Frequency (N) 2,772 628 558 270 340 4,568

61% 14% 12% 6% 7% 100%
Area (km2) 704,456 1,937,969 1,209,203 556,314 833,283 5,241,225

13% 37% 23% 11% 16% 100%

patterns by 2050 (Tabor et al., 2018). In the work of Fon-
seca et al. (2019), projections of fire probability showed an
increase of 10.6% and 73.2%, by 2100 for theAmazon, under
their Sustainability scenario (involvingmaintenance of the
PA network, among other factors), and their Fragmenta-
tion scenario (involving a decrease in the extension and
level of protection of the PAs, among other factors), respec-
tively. Here, we identified that 63% of the grid cells in South
America presented more fires during ASO 2020 than the
2017–2019 ASO average, and in 16% of the PAs, the fire
trend over ASO 2017–2020 became positive in comparison
with ASO 2017–2019.
The diagnostic, methods, tools and forecast monitoring

platforms under development can and should be used to
the benefit of the society and the environment as a key ele-

ment for improving societal preparedness in PAs. While
weather forecasts (5–10 days) have already achieved a high
degree of confidence and are known by the majority of the
population, the temporal scale of sub-seasonal to seasonal
forecasting (one to sixmonths) is an emerging topic (Vitart
& Robertson, 2018). There are a number of initiatives
looking at fire forecasting on seasonal time scales. In the
United States, there is the National Significant Wildland
Fire Potential Outlook (NIFC, 2021), where the fire poten-
tial is spatially represented as above, below and normal
categories; in Canada, there is the Wildland Fire Informa-
tion System (CWFIS), which accounts for the effects of fuel
moisture and wind on fire behaviour, rate of fire spread,
fuel available for combustion, and the frontal fire inten-
sity probabilistic forecast for the next four months. For
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F IGURE 5 Summary of alert levels in PAs in South America, for each country, for ASO 2020

F IGURE 6 Summary of the South American PAs in each fire
probability category in ASO 2020

the Amazon region, there is the fire season severity fore-
casts (Chen et al., 2011), at the state-level political bound-
aries spatial resolution, indicating below and above aver-
age predictions of fire activity. At the global scale, Chen
et al. (2020) propose a seasonal fire outlook, which com-
bines endogenous and exogenous predictors with a one
month forecast lead time, explaining 52% of the variabil-
ity in the global fire emissions anomaly. In our research,
by combining fire dynamics and trends, dry season length
and seasonal forecasts of temperature and rainfall, strat-
ified alert levels were generated, which allows for priori-
tization and guiding strategic planning. Despite the avail-
ability of such information, itmust be recognized thatmost
agencies and organizations are better prepared to deal with
response actions (Musinsky et al., 2018), and fire suppres-
sion, for example, is the largest item in the Brazilian federal
fire policy budget (Fonseca-Morello et al., 2017). The bud-
get for fire suppression in Brazil is even higher than the
budget to perform strategic planning and carrying mitiga-
tion actions. Investments can be further limited particu-
larly during periods of economic, political, environmental
and health crises faced by many South American coun-
tries in recent years (ASCEMA, 2020; Barlow et al., 2020;

Caetano, 2021; de Oliveira et al., 2020; Hope, 2021; Levis
et al., 2020; Schmidt &Eloy, 2020; Suarez et al., 2018; Vilani
& Leal Filho, 2020).
Fire is the thirdmost commonly reported threat globally

to PAs (Schulze et al., 2018). A large-scale survey analysis
with institutions and organizations involved in the man-
agement andmonitoring of PAs has identified a great num-
ber of challenges for using fire monitoring data in their
work (Musinsky et al., 2018), which can also be consid-
ered a barrier for sub-seasonal and seasonal fire probabil-
ity information. The twomain difficulties reported in their
study included limited internet access and difficulties in
communicating the information to other stakeholders.
Although an online system is not yet operational, the

results for the protected area fire probabilities generated in
ASO 2020 and December–February 2020/2021 developed
by this team of scientists were sent as a report to many
agencies in South America, in addition to being shared on
social media as factsheet summaries, in Portuguese, Span-
ish and English. This effort was aimed at increasing the
visibility of the information generated, and the accessibil-
ity to a larger non-specialist group (Hargittai et al., 2018).
This may be a particularly appropriate strategy, given that,
driven by the COVID-19 pandemic, the use of WhatsApp
and other social media platforms has increased, not only
for social networking but also as a working communica-
tion tool. Nevertheless, the use of the information in the
reports to increase awareness and catalyse wildfire mitiga-
tion actions must be appropriately assessed.
It also has to be acknowledged that, despite the informa-

tion availability, institutions responsible for the manage-
ment of PAs also face lack of sufficient resources to support
field staff such as forest patrols and trainers. This has been
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F IGURE 7 Spatial distribution of the protected areas categorized according to the fire alert status

reported since the study of Mares (1986) and is still a lim-
iting factor (Musinsky et al., 2018). In addition, for many
PAs, the accessibility of and communication with the pop-
ulation that live inside or around the boundaries of these
areas are difficult, restricted and limited, which poses fur-
ther challenges to communicate, plan and develop mitiga-
tion actions to prevent wildfires.
The four main categories of PAs assessed in our study

are parks, indigenous lands, management areas and
reserves, which represent 70% of the areas in the dataset,
andwe can consider these separately. Looking at the parks,
we have observed that 230 out of 650 presented at least
one fire pixel between 2017 and 2019. Indigenous lands
presented fires in 85% of cases (418 areas from 503 in total).
Management areas exhibited fires in 35%, and reserves
presented fires in 10% of cases. This pattern is expected,
because fire is used as a tool, and may be a way to ensure
food security by many traditional populations, such as

those living in sustainable use reserves or indigenous
areas (Mistry et al., 2016; Nóbrega et al., 2020). However,
it is remarkable that 50% of all fires observed during the
ASO 2017–2019 period, and 40% of the ASO 2020 fires,
occurred in only 29 PAs, all under the High Alert and Alert
categories: four located in Bolivia, one in Paraguay and
the remaining in Brazil, representing just 0.63% of all PAs.
This concentration in the occurrence of fire indicates not
only the vulnerability of these areas to this phenomenon,
but also the institutional fragility of these areas in view of
the weakening of public environmental policies (Andrade
et al., 2021; Vale et al., 2021). Nevertheless, this concen-
tration makes monitoring and combating illegal actions
within PAs restricted to a few critical areas due to financial
and human resources limitations.
Finally, it is important to acknowledge current uncer-

tainties and potential future improvements. First, the spa-
tial heterogeneity of the clouds distribution during any



16 ANDERSON et al

analysed period may impact the fire pixels detection, and
thus result in a larger number of ‘false negatives’ in cloudy
areas when compared with fires in less cloudy areas.
For example, Martins et al. (2018) have quantified that
north-western Amazonia presents persistent cloud cov-
erage above 80% throughout the year, while the south-
ern Amazon presents up to 20% cloud coverage. Although
using a three-month time scale and a cell-by-cell spatial
analysis for the fire pixel data reduce this problem, one pos-
sible update to the current model would be to use the fire
pixel data from all satellites currently available, and thus
increase the likelihood of fire activity detection. Second,
fire pixels located close to a PA boundary may be occur-
ring either inside or outside of the PA, leading to false neg-
atives or false positives in the current model. For exam-
ple, fires on edges of PAs classified as inside the PAs would
lead to false positives. Nonetheless, inmany cases, the fires
that affect a PA come from the surrounding areas (Nep-
stad et al., 2006), increasing the threat and occurrence of
wildfires inside the PA. In Brazil, by Law, PA buffer zones
should also be targeted by public policies to reduce fire
incidence in these areas (Laws and Decrees in Brazil: Law
n◦ 9.985,2000;Decree n◦ 4.340, 2002;Decree n◦ 5.746, 2006;
Decree n◦ 5.758, 2006). Therefore, one possible improve-
ment in the model would be to include a buffer zone for
the PA, since fires in these areas can be considered a haz-
ard to the conservation.
According to Chen et al. (2013), in South America, the

three months immediately before the fire peak month are
often the driest months. Thus, an important next step is
to include the dry season onset and length assessment in
relation to the threshold used, in this case rainfall below
100 mm, which can be overestimated in drier biomes and
in subtropical regions of the continent. Moreover, the rela-
tionship of both metrics to the seasonality of fire in South
America must be further investigated and incorporated
into our method if possible. For example, the inclusion of
relative humidity as a predictor from the climate model
forecasts was also considered (following Bett et al., 2020),
but there was insufficient skill for the ASO season.
Other potential improvements focusing on more

regional patterns could also be implemented in the model.
One example is the well-established relationship between
deforestation and fires in the Amazon. Silveira et al. (2020)
have demonstrated that about 25% of fires in the Brazilian
Amazon occur in up to 500 m of new deforestation, and
up to 80% of the fires occur up to 5 km of these areas.
Therefore, by coupling a regional spatial analysis in
the probabilistic model could potentially improve the
anticipated alert.
In this study, we presented a method and its assessment

for a seasonal fire probability forecast for South Ameri-
can PAs. We combined empirical fire knowledge with cli-

mate forecast to produce a five-level alert system.Although
future development in our method is planned, the current
results encourage the use of the alert system for guiding
strategic planning by the PA stakeholders. One of the great-
est challenges will be the information dissemination and
assessment of both its use and how the probability forecast
information may have impacted the local fire dynamics.
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