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Abstract: The near-real-time detection of selective logging in tropical forests is essential to support
actions for reducing CO2 emissions and for monitoring timber extraction from forest concessions in
tropical regions. Current operating systems rely on optical data that are constrained by persistent
cloud-cover conditions in tropical regions. Synthetic aperture radar data represent an alternative to
this technical constraint. This study aimed to evaluate the performance of three machine learning
algorithms applied to multitemporal pairs of COSMO-SkyMed images to detect timber exploitation
in a forest concession located in the Jamari National Forest, Rondônia State, Brazilian Amazon. The
studied algorithms included random forest (RF), AdaBoost (AB), and multilayer perceptron artificial
neural network (MLP-ANN). The geographical coordinates (latitude and longitude) of logged trees
and the LiDAR point clouds before and after selective logging were used as ground truths. The
best results were obtained when the MLP-ANN was applied with 50 neurons in the hidden layer,
using the ReLu activation function and SGD weight optimizer, presenting 88% accuracy both for
the pair of images used for training (images acquired in June and October) of the network and in
the generalization test, applied on a second dataset (images acquired in January and June). This
study showed that X-band SAR images processed by applying machine learning techniques can be
accurately used for detecting selective logging activities in the Brazilian Amazon.

Keywords: synthetic aperture radar; machine learning; random forest; AdaBoost; multilayer perceptron

1. Introduction

Anthropogenic activities are responsible for the current global temperature increase
of about 1.0 ◦C and for an expected increase of 1.5 ◦C sometime between 2030 and 2052.
Potential impacts and risks associated with increasing temperature include elevation of the
sea level, higher frequency and intensity of extreme temperatures, storms, and droughts,
loss of biodiversity, reduction in oxygen concentration in the oceans, and shortage of food
production [1]. A reduction in anthropogenic CO2 emissions is mandatory to control the
global rise in temperature. Deforestation and forest degradation are the second largest
anthropogenic sources of CO2 emissions into the atmosphere, since they are related to the
combustion of forest biomass, as well as to the decomposition of remaining plant materials.
Approximately 65% of Brazilian CO2 emissions in 2019 came from deforestation and forest
degradation [2]. According to Qin et al. [3], forest degradation contributes three times more
to the aboveground gross biomass loss than deforestation in the Brazilian Amazon. This is
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because the areal extent of degradation exceeds that of deforestation, indicating that forest
degradation is the most important process driving carbon loss in this region [4].

Selective logging is an important economic activity in the Brazilian Amazon and often
progresses into clear-cut deforestation, especially if exploitation is unsustainable [4–6].
Nevertheless, the establishment of environmentally sustainable timber extraction can
assist the social and economic development of this region without causing irreversible
environmental degradation [7]. However, the growing predatory exploitation, in addition
to the reduced competitiveness of companies intending to operate legally, is having a
negative impact on the forest [5,7].

As a limited number of marketable tree species are targeted in selective logging
activities, causing point-based and spatially diffuse forest degradation, remote sensing
monitoring systems, to some extent, are limited in detecting those impacted forests [4,6,8].
On the other hand, field inspections for monitoring those activities are unrealistic because
of the large territorial extension of the Brazilian Amazon and because of security issues [9].
Thus, monitoring selective logging using remotely sensed data and geoprocessing tech-
niques remains the best alternative approach.

Several authors have used optical remotely sensed data to monitor vegetation sup-
pression in tropical forests [10–14], although the use of optical images is limited because of
the persistent cloud-cover conditions, mainly in the wet season [15]. The use of synthetic
aperture radar (SAR) data can overcome such a limitation since SAR systems can operate in
most weather conditions. The main drawback is the higher complexity of image processing
and interpretation [16]. The analysis of the potential of X-band SAR data to detect forest
degradation by selective logging in the Brazilian Amazon is still limited despite their
relatively good availability from the COSMO-SkyMed [17], Iceye [18], and TanDEM-X
and TerraSAR-X [19] twin satellites. Although large-wave L-band SAR data have been
intensively used for biomass estimation [20–22], previous studies have shown that short-
wave X- and C-band SAR data present good potential for this purpose [23–25] and for
forest disturbance mapping using interferometric techniques [26,27], combination with
L-band [28] and texture attributes [29]. However, extracting information from SAR images
is not a trivial task because of the presence of speckle, the sensor’s side-viewing geometry,
and different backscattering processes, demanding specific and complex approaches of
data processing and interpretation [16].

One of the first steps of SAR image processing for forest change detection is the applica-
tion of spatial filters to reduce speckle. Several authors have explored different methodolog-
ical approaches to reduce speckle without losing information [30–33]. Change detection
based on machine learning techniques applied in SAR images has shown promising re-
sults [34–37]. Examples of these techniques are random forest [38–40], AdaBoost [41,42],
multilayer perceptron artificial neural network (MLP-ANN) [43,44], and convolutional
neural network (CNN) [45–48].

This study aimed to compare the performance of the machine-learning-based random
forest, AdaBoost, and MLP-ANN classification techniques in identifying selective logging
activities in a forest concession site located in the Jamari National Forest, Rondônia State,
Brazil. The study was based on the multitemporal, 3 m spatial resolution, HH-polarized
SAR images acquired by the COSMO-SkyMed constellation.

2. Materials and Methods
2.1. Study Area

The study area is spatially located in the Jamari National Forest, Rondônia State,
southwestern portion of the Brazilian Legal Amazon (Figure 1). The typical vegetation
observed in the study site is dense rainforest with patches of open rainforest and dominant
palm trees and lianas [49]. The Jamari National Forest has an area of approximately
220,000 hectares, of which an area of 96,000 hectares has been managed and used as forest
concessions since 2008 [50]. Three companies were selected by the Brazilian Forest Service
(SFB) under the Ministry of Agriculture, Livestock, and Food Supply to implement forest



Remote Sens. 2021, 13, 3341 3 of 22

management plans of timber and no-timber forest products (latex, fruits, and leaves) within
previously established forest management units (UMF I, II, and III) in that National Forest.
UMF III was divided into different annual production units (UPAs). UPA 11 was explored
in 2018 and, therefore, was selected as the test site in this analysis.
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Figure 1. Location of the study area in the Rondônia State, Brazil (A); the study site in the Jamari National Forest (B).

The timber companies need to present forest inventory data to obtain authorization
for selective logging in those UMFs, which include the number and the list of tree species
that occur at that site. They also need to provide a tree species census of the concession
area, including the species identification, diameter at breast height (DBH), circumference
at breast height (CBH), estimated volume, and LiDAR point clouds from aerial surveys
(before and after exploitation).

2.2. SAR Data

This study was based on SAR images acquired by the COSMO-SkyMed constellation
of four satellites, allowing a few-hourly revisiting time with varying incidence angles. The
main payload of the COSMO-SkyMed satellite is a multi-resolution and multi-polarized
X-band imaging radar with spatial resolution ranging from 1 m to 100 m and nominal
incidence angles between 20◦ and 59◦. Table 1 shows the details of the images selected
by this study: three overpasses from 8 January 2018, 5 June 2018, and 8 October 2018,
comprising the logging period in the study area, which took place from April to September
of the same year.

The image preprocessing included the following steps:

1. Download of the complex images in H5 format, which stores the data in hierarchical
data format (HDF), containing the sensor’s scan metadata;

2. Multi-look filtering, defined as one look in range and azimuth, which resulted in
a grid cell of 3 m, representing the best spatial resolution of the StripMap image
acquisition mode, and conversion from slant range to ground range;

3. Co-registration for correction of relative translational and rotational deviations and
scale difference between images;

4. Application of the GammaMAP filter [51], with a 3 × 3 window and ENL 1.1, which
was pointed out by [33] as presenting the best results for multitemporal analyzes in
tropical forests;
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5. Geocoding using the digital elevation model produced from the Phased Array type
L-band Synthetic Aperture Radar (PALSAR) sensor and conversion to the backscatter
coefficients (σ◦, units in dB).

Table 1. Characteristics of the COSMO-SkyMed scenes used in this study.

Parameter Specification

Platform COSMO-SkyMed
Launch June 2007
Swath 620 km

Wavelength X-band
Polarization HH

Number of satellites 4
Year 2018

Acquisition mode Stripmap HIMAGE
Size 40 km × 40 km

Incidence angle ~55◦

Spatial resolution 3 m × 3 m

2.3. Cloud Computing of LiDAR Points

The LiDAR point clouds acquired in 2018 and 2019 over a portion of UPA 11 were
processed to generate a digital surface model (DSM) from the first return points, which
correspond to the pulses with the shortest time between emission and return, which are
those that correspond to the outermost surface of forest canopy. This procedure involves
the generation of a matrix, where each cell, with a resolution defined by the specialist (1 m
× 1 m in the case of this research), receives the value of the first pulse received within
that cell. The scanning process was set up by the company that carried out the survey to
acquire approximately 21 pulses per square meter of land surface from the airborne LiDAR
Optech ALTM Gemini sensor. The ratio of these two DSMs was also obtained to highlight
the areas with tree extraction. Pixels representing selectively logged forests show higher
values using this ratio. Subsequently, the pixels representing selectively logged forests
were manually delineated on a computer screen and converted into vector-based shapefile
format and considered as ground truth (Figure 2).
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2.4. SAR Attribute Extraction

The first step for SAR attribute extraction consisted of generating the coefficients of
variation (CV) between two SAR images. In this case, the images from 5 June 2018 and
8 October 2018 were chosen as Time 1 (T1) and Time 2 (T2), respectively. CV has been
used to detect changes in SAR images as an alternative to the normalized ratio, with good
results [52–54]. CV can assume real numbers within the 0–1 range, where 0 means no
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change. Several attempts were made to define the threshold between selective logging and
undisturbed forests. The threshold should result in commission errors mostly related to
those selectively logged and undisturbed forests and omission errors close to zero. This
threshold was applied to the CV image, resulting in a binary image where 0 represents
undisturbed forests and 1 represents logged forests. Then, pixels with a value of 1 were
converted into polygons. For each polygon, the following spatial attributes were calculated:
area, perimeter, circularity, and shape factor [55]. A kernel map was also generated from
those polygons using the area as the weight to define the centroids. The large density of
polygons representing isolated pixels received smaller weights than the groups of larger
polygons, which were more characteristic of selective logging. For each polygon, several
zonal statistics were generated (count, sum, mean, median, standard deviation, minimum,
maximum, range, minority, majority, and variance [56]) for the following matrices:

1. Maximum ratio between T1 and T2 images;
2. CV between T1 and T2 images;
3. Minimum values between T1 and T2 images;
4. Gradient between T1 and T2 images;
5. 5 × 5 window average [57,58] of the CV image (item 2);
6. 5 × 5 window variance of the CV image (item 2);
7. 5 × 5 window homogeneity of the CV image (item 2);
8. 5 × 5 window contrast of the CV image (item 2);
9. 5 × 5 window dissimilarity of the CV image (item 2);
10. 5 × 5 window entropy of the CV image (item 2);
11. 5 × 5 window second moment of the CV image (item 2);
12. 5 × 5 window correlation of the CV image (item 2);
13. Kernel of polygons generated by thresholding the CV.

Each polygon received 154 spectral, textural, and spatial attributes. With the help of
selective logging samples obtained through the steps described in Section 2.3, each polygon
was classified as timber extraction and no-timber extraction. This attribute is essential for
the machine learning process, since this label is used by the algorithms to learn which other
attributes describe each class and define their limits.

2.5. Classification Tests through Machine Learning

Orange data mining [59] was used for testing machine learning algorithms, which is a
platform to perform data analysis and visualization based on visual programming, with the
possibility of implementation using Python 3 libraries. Initially, to evaluate the predictive
performance of the machine learning model [60], the dataset was divided randomly into
training (70%) and validation (30%) sets, respectively. The sampling set was fixed to allow
subsequent tests to use the same dataset, making the results comparable with each other.
It was also stratified to mimic the composition of the input dataset. The attributes were
used as input in the supervised machine learning algorithms. The first test was conducted
considering the random forest classifier, which offers some advantages over most statistical
modeling methods, including the ability to model nonlinear relationships, resistance to
overfitting, and relative robustness to the presence of noise in the data [39]. Random forest
is an ensemble classifier that uses several classification and regression trees to perform a
prediction [61] (Figure 3).

Each decision tree is produced independently, and each node is split using a randomly
selected number of user-defined attributes (Mtry). By growing the forest to a user-defined
number of trees (Ntree), the algorithm creates trees with high variance and low bias. The
final decision can be made using different strategies, including the average probability
of class assignment from all produced trees. A new unlabeled data entry is evaluated
against all decision trees created in the set and each tree vote for a membership class. The
membership class with the highest number of votes is selected.

Studies involving application of random forest for SAR data indicated that Ntree = 70
is the best suggestion without gain in the classification results [62,63]. The Mtry default
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is defined as the square root of the number of input attributes. In this study, the random
forest classifier was analyzed considering several parameters, as defined in Table 2.
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Table 2. Random forest test parameters considering in this study.

Identification Number of Tress (Ntree) Number of Attributes in Each Division (Mtry)

RF1 10
√

160
RF2 15

√
160

RF3 20
√

160
RF4 30

√
160

RF5 50
√

160
RF6 50 5
RF7 100

√
160

RF8 200
√

160
RF9 200 5

The boosted decision trees (DTs) (or augmented DTs; Figure 4) are also assembly
methods that rely on DTs. In these cases, as the models are built, they are adjusted
in an attempt to minimize the errors of the previous trees [64]. One type of boosted
DT is Adaptative Boosting or Adaboost, which was also evaluated in this study. This
method comprises three components: weak learners (individual bad predictors), a function
that applies a penalty for incorrect classifications, and an additive model which allows
individual weak learners to be combined in such a way that the loss function is minimized.
The algorithm considers all trees, since the additive model is designed in such a way that
the combination of all trees provides an optimal solution. Tests with the AdaBoost classifier
were performed considering different numbers of estimators (Table 3). The weak learners
used by the classifier were the DTs.

Artificial neural networks (ANNs) have been used in various applications [65], in-
cluding remote sensing [66]. The basic elements of an ANN are neurons, equivalent to
biological axons, which are organized in layers (Figure 5).

An ANN has input and output layers, for example, one neuron for each input variable
and one neuron for each output class. ANNs typically have hidden nodes organized into
one or more additional layers. Some models have the characteristic that all neurons in
a layer are connected to all neurons in all adjacent layers [67]. These connections have
fully connected weights. The weights in the connections, in combination with the typically
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nonlinear activation function, further modify the values in each neuron and determine how
the input values are mapped to values in the output nodes. The potential of describing
very complex decision boundaries can be improved by increasing the number of neurons
in the hidden layer, especially by adding even more hidden layers. Neural networks
are normally trained by initial random values for the weights which are then iteratively
adjusted, observing the effect on the output nodes [67].
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bottom of the figure (red and blue). On the right, the result of an Adaboost classifier, which assigns
weights to weak classifiers and thus results in better separation of classes.

Table 3. AdaBoost tests parameters considered in this study.

Identification Number of Estimators Learning Rate 1 Rank Algorithm 2

AB1 1 1.00 SAMME.R
AB2 15 1.00 SAMME.R
AB3 20 1.00 SAMME.R
AB4 30 1.00 SAMME.R
AB5 50 1.00 SAMME.R
AB6 100 1.00 SAMME.R

1 The learning rate determines the extent to which newly acquired information will replace old information
(0 = agent learns nothing; 1 = agent considers the most recent information). 2 Rank algorithm: SAMME (updates
the base estimator weights with ranking results) or SAMME.R (updates the base estimator weights with probability
estimates).

In general, the challenges in using ANNs are as follows: the training stage can be slow
and laborious; there can be network overfitting; there is a need for several parameters to be
specified by the user [64]. Some advantages of neural approaches in remote sensing are
as follows: more accurate performance than other techniques such as statistical methods,
particularly when the feature space is complex and the source data have different statistical
distributions; more rapid performance than other techniques such as statistical classifiers;
incorporation of a priori knowledge and realistic physical constraints into the analysis;
incorporation of different types of data (including those from different sensors) [68].

There are several architectures of ANNs applicable to problems in remote sensing [34].
The architecture of the ANN tested in this work was a feedforward network with multiple
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layers, called multilayer perceptron (MLP). Feedforward ANNs are the most commonly
applied, where the flow is always toward the output layer. When there is more than one
hidden layer, these networks are called deep neural networks or deep learning [69].
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With the aim of finding the best ANN topology for the data considered in this work,
several hyperparameters were tested (Table 4), varying the number of neurons in each
hidden layer, the number of hidden layers, the activation function (Relu and hyperbolic
tangent (tanh)), the weight optimizers (L-BFGS-B [70], SGD [71], and ADAM [72]), the
maximum number of iterations, and the stop criteria. The tests from NN61 to NN70
were performed using the five topologies tested from NN1 to NN60 that showed the best
results, changing the activation function to hyperbolic tangent and the maximum number
of iterations of 2000.

Table 4. Artificial Neural Network test parameters.

Identification Number of Neurons in
Each Hidden Layer

Number of Hidden
Layers

Activation
Function

Weight
Optimizer α (Stop Criteria) Maximum Number

of Iterations

NN1 to NN5 10 1 to 5 ReLu L-BFGS-B 0.00002 1000
NN6 to NN10 50 1 to 5 ReLu L-BFGS-B 0.00002 1000
NN11 to NN15 100 1 to 5 ReLu L-BFGS-B 0.00002 1000
NN16 to NN20 200 1 to 5 ReLu L-BFGS-B 0.00002 1000
NN21 to NN25 10 1 to 5 ReLu SGD 0.00002 1000
NN26 to NN30 50 1 to 5 ReLu SGD 0.00002 1000
NN31 to NN35 100 1 to 5 ReLu SGD 0.00002 1000
NN36 to NN40 200 1 to 5 ReLu SGD 0.00002 1000
NN41 to NN45 10 1 to 5 ReLu Adam 0.00002 1000
NN46 to NN50 50 1 to 5 ReLu Adam 0.00002 1000
NN51 to NN55 100 1 to 5 ReLu Adam 0.00002 1000
NN56 a NN60 200 1 to 5 ReLu Adam 0.00002 1000

NN61 First best result
NN1-NN60 - - - - 2000

NN62 First best result
NN1-NN60 tanh - - 2000

NN63 Second best result
NN1-NN60 - - - 2000

NN64 Second best result
NN1-NN60 tanh - - 2000

NN65 Third best result
NN1-NN60 - - - 2000

NN66 Third best result
NN1-NN60 tanh - - 2000

NN67 Forth best result
NN1-NN60 - - - 2000

NN68 Forth best result
NN1-NN60 tanh - - 2000

NN69 Fifth best result
NN1-NN60 - - - 2000

NN70 Fifth best result
NN1-NN60 tanh - - 2000

Test results were evaluated by applying the trained network over the validation set by
calculating the following parameters [73]:
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1. Area under receiver operator curve (AUC): an AUC of 0.5 suggests no discrimination
between classes; 0.7 to 0.8 is considered acceptable; 0.8 to 0.9 is considered excellent;
more than 0.9 is considered exceptional.

2. Accuracy: proportion of correctly classified samples.
3. F-1: accuracy weighted harmonic average and recall.
4. Precision: proportion of true positives among correctly classified samples as positive,

for example, the extract proportion correctly classified as selectively logged.
5. Recall: proportion of true positives among all positive instances in the data.
6. Training time (s).
7. Test time (s).

In order to evaluate the results obtained with each classifier and typology, the confu-
sion matrices of the best results obtained were compared, indicating the proportion of error
in each class separately. To test the generalizability of the training set, five topologies that
presented the best classification results were analyzed for the complete COSMO-SkyMed
scene, including the area that exceeds the limits of UPA 11 (Figure 1), validating the results
obtained by comparing them with the records of extracted trees provided by the SFB.
The generalization capability was also tested with the application of the network trained
to detect the features of selective logging that occurred between the COSMO-SkyMed
acquisitions on 8 January 2018 and 5 June 2018.

3. Results
3.1. Exploratory Attribute Analysis

A threshold of 0.4 was obtained in the CV image from the June and October 2018
overpasses of the COSMO-SkyMed satellite, including changes (nonstationary processes)
and speckle (stationary process) [53]. This procedure covered all pixels classified as timber
extraction in the LiDAR images plus 70% commission errors (mainly speckle). Among the
2974 polygons generated, 870 belonged to the timber extraction class and 2104 belonged
to the no-timber extraction class. By overlaying the samples selected as timber extraction
in the LiDAR images, the coordinates of extracted trees provided by the SFB, and the
polygons generated by the thresholding of the CV, we found 849 trees extracted in the UPA
11. SAR images were able to identify 96% of these trees, while the remaining 4% were
related to extractions with little change in the canopy structure and, therefore, not detected
in the X-band SAR data. This limited ability to detect selective logging through canopy
gaps was previously reported by [6,7].

The exploratory analysis of the attributes showed redundancy and overlapping of
several attributes. Figure 6 exemplifies, through boxplots of four attributes randomly
selected from the set, that the data are linearly inseparable, which points out the need to
use classifiers capable of dealing with these situations [38,44], as proposed in this work.
The training set resulted in a total of 2082 samples stratified into timber extraction and
no-timber extraction. The samples, although randomly selected, were replicable; that is,
all tests used the same set to avoid differences in results arising from different sample
selections.

3.2. Tests with the Random Forest Classifier

Table 5 shows the results obtained from the variation of the parameters and topology
of the random forest algorithm. All topologies based on random forest presented good
results, since the accuracy and the precision obtained were close to 95% and the AUC
values were high (near 0.95).

A common problem in machine learning techniques is the comparison of the clas-
sification results (topologies) applied to a dataset. Corani and Benavoli [74] presented
a Bayesian approach for comparative statistical inference of two concurrent algorithms
evaluated through cross-validation. Such an approach is composed of two parts: the first,
constituted by a proposal of correlated Bayesian t-test for the analysis of the results of the
cross-validation of a single dataset responsible for the correlation due to the overlapping
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training sets; the second, by merging the posterior probabilities calculated by the Bayesian
t-test correlated on the different datasets to make inferences on various datasets (or subsets)
by adopting a binomial Poisson model. Inferences across multiple datasets account for dif-
ferent uncertainties in cross-validation results over different datasets. The performance of
this test in the k-fold cross-validation with k = 10 showed that all random forest topologies
were equivalent, with a probability of 0.03.
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Table 5. Random forest classification results. In bold, the best results obtained.

Identification Training Time (s) Testing Time (s) AUC Accuracy F1 Precision Recall

RF1 0.349 0.1720 0.9661 0.9456 0.9461 0.9468 0.9456
RF2 0.418 0.0500 0.9721 0.9440 0.9441 0.9442 0.9440
RF3 0.550 0.0550 0.9742 0.9504 0.9506 0.9509 0.9504
RF4 0.991 0.0590 0.9737 0.9464 0.9467 0.9472 0.9464
RF5 1.423 0.0740 0.9740 0.9440 0.9443 0.9447 0.9440
RF6 0.898 0.0900 0.9740 0.9424 0.9423 0.9422 0.9424
RF7 4.962 0.2980 0.9772 0.9440 0.9442 0.9444 0.9440
RF8 5.369 0.4600 0.9792 0.9416 0.9417 0.9419 0.9416
RF9 1.769 0.1410 0.9759 0.9440 0.9440 0.9440 0.9440

Figure 7 shows the confusion matrices of the accuracy, omission, and commission
errors regarding the nine selected random forest topologies. RF3 showed better precision
and accuracy: accuracy rates of 87% and 97.2% for the selectively logged forest and
undisturbed forest classes, respectively. The shortest training and validation times were
obtained with the RF1 and RF2, although RF3 also presented very close times.

Yu et al. [40] previously highlighted random forest as a good SAR image classifier
together with optical images for forest type classification. Gosh and Behera [38] showed
good results with the same method applied to biomass estimation by combining optical
and SAR images acquired using Sentinel satellites. Shiraishi et al. [75] compared several
machine learning methods for land-use classification in SAR images, and the best results
obtained were also obtained with the random forest technique.
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3.3. Tests with the AdaBoost Classifier

Table 6 shows the results obtained from the variation of the parameters and topology
in the AdaBoost classifier. The variation of the topology in terms of number of estimators
did not result in significant changes in any of the quality measures of the classifiers, with
all being considered equivalent.

Table 6. AdaBoost results.

Identification Time of Training (s) Time of Testing (s) AUC Accuracy, F1, Precision and Recall

AB1 0.901 0.064 0.903 0.919
AB2 0.625 0.067 0.899 0.914
AB3 0.749 0.049 0.899 0.914
AB4 0.514 0.036 0.899 0.914
AB5 0.664 0.034 0.909 0.924
AB6 0.547 0.036 0.909 0.924

The confusion matrices (Figure 8) showed that the timber extraction class had classi-
fication accuracy close to 80% in all topologies, while the undisturbed forest class varied
around 94%, without significant gain with an increase in the number of estimators. AB2,
AB3, and AB4 topologies had a higher accuracy rate for the selectively logged forest class,
although slightly higher accuracy and precision values were obtained by AB5 and AB6.
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In general, the AdaBoost classifier performed worse than the random forest. The same
conclusion was reported by Shiraishi et al. [75], who evaluated different methodologies
applied to SAR for classification of land use and land cover in a region of tropical forests.
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3.4. Tests with MLP-ANN

The typologies used in the NN61 to NN70 tests, which replicated the typologies of the
five best results obtained in tests from NN1 to NN60, were NN23, NN26, NN31, NN22,
and NN21, respectively. Table 7 shows the 10 best results obtained from the variation of
the parameters and topology of the NNs, in relation to accuracy and precision.

Table 7. MLT-ANN results. In bold, the best results obtained.

Identification Time of Training (s) Time of Testing (s) AUC Accuracy F1 Precision Recall

NN22 3.723 0.208 0.987 0.959 0.958 0.958 0.959
NN26 9.456 0.161 0.988 0.961 0.961 0.961 0.961
NN29 102.091 0.222 0.983 0.957 0.957 0.957 0.957
NN31 12.075 0.224 0.986 0.956 0.956 0.956 0.956
NN32 117.475 0.236 0.986 0.954 0.954 0.954 0.954
NN36 28.229 0.195 0.988 0.960 0.960 0.960 0.960
NN37 209.572 0.259 0.986 0.954 0.954 0.954 0.954
NN64 8.518 0.210 0.986 0.956 0.956 0.956 0.956
NN66 4.238 0.173 0.983 0.955 0.955 0.955 0.955
NN70 3.672 0.174 0.986 0.960 0.959 0.959 0.960

Confusion matrices showing accuracy and omission and commission errors as a
percentage of the best results obtained through the ANNs are presented in Figure 9. The
highest accuracy and precision were obtained with the NN26 topology, with a function of
ReLu activation, extensively applied in neural networks for image classification [76], and
the SGD weight optimizer, contradicting the results obtained by [77] (although, for class
tree, the results obtained by [77] were very close for all optimizers), showing no difference
with an increase in the number of iterations. The referred topologies resulted in 89% and
96.4% accuracy for the selectively logged and undisturbed forest classes, respectively. The
test time was also the lowest (0.161 s), and the training time (9456 s) was significantly lower
than those presented by the NN29, NN32, and NN37 topologies.
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3.5. Comparative Assessment of Machine Learning Techniques

All tests performed showed good results for detecting selective logging, as previously
shown in the land use and land cover classification studies [43], pointing out that X-band
SAR images, associated with machine learning techniques, despite their shallow interaction
with the canopy, have potential in relation to other SAR bands and other methodologies
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presented in the literature [25,27], especially due to the high revisiting capacity of the
COSMO-SkyMed constellations and the need for only one multitemporal pair of images.

Among the different architectures tested in the set of attributes generated on the
images before and after exploitation, the best result was obtained by the NN26 topology,
which presented a precision and accuracy of 0.961, being 89% correspondent with the
validation samples in terms of selective logging class and 96.4% in terms of undisturbed
forest class. Despite exhaustive tests varying the parameters of the RF and neural network
topologies, the results did not show an improvement in relation to those presented. This
fact indicated the need for an analysis of the NN26 topology error.

Analyzing the boxplots of features correctly classified as timber extraction with those
that were misclassified as no-timber extraction, it was seen that the center, amplitude, and
symmetry of these features are different (Figure 10), which exemplifies some randomly
selected attributes and presents the t-test, rejecting the null hypothesis and demonstrating
that the means are statistically different. Likewise, comparing the features correctly classi-
fied as undisturbed forest with those that were misclassified as selectively logged forests,
asymmetric data were found. In summary, the features classified erroneously are outliers,
with attribute values differing from the rest of the samples.
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Analyzing the LiDAR data available for the study area, it was possible to observe
that the extracted trees informed by the companies were not delimited in the stage of
thresholding of the CV. Therefore, they were not included in the classification process in
timber extraction or no-timber extraction (11% of the trees cut). They are small crown
structures (between 6 m and 10 m in diameter) with corymbiform architecture [78] and not
emergent in relation to neighboring crowns (Figure 11).

According to Locks [7], who carried out a study of canopy damage identification by
selective logging based on LiDAR data, about 93.3% of felled trees result in canopy damage;
that is, approximately 7% of the extractions are unidentified in SAR images that interact at
the surface level of canopy, as is the case of the X-band.
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the proposed method.

3.6. Generalization Test

Generalization capability refers to the ability of the network to correctly classify data
not used for network training [67]. In this work, the NN26 generalization ability test
was performed, the first step of which consisted of thresholding the CV image generated
between the COSMO-SkyMed overpasses from June–October and January–June 2018, at a
value of 0.4. This procedure resulted in 186,886 polygons for the June–October images and
224,250 polygons for the January–June images (Figure 12).
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Figure 12 also presents the results of the classification through NN26 for the extraction
class. The data were validated by selecting all polygons contained in the area where the
forest inventory provided by the SFB is available, which includes the geographic position
of the cut trees, comparing them with the classification result using the inventory data. For
the result obtained between the COSMO-SkyMed overpasses of 5 June 2018 and 8 October
2018, on which the typologies were trained, the selectively logged and undisturbed forests
correctly classified represented 89% and 95%, respectively. The overall accuracy was 91%.

An analysis of the forest inventory data showed that 11% of the trees reported as being
cut were unidentified and did not even participate in the classification process because
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they were not delimited in the first stage (thresholding CV). The evaluation of 11% of
trees cut and undetected showed that 36% represent logging that did not result in forest
clearance; therefore, it was not possible to identify them through high-frequency SAR
sensors (Figure 13). Those features were also unidentified in the digital surface model
product generated from the last LiDAR return. The remaining 64% are trees with small
crowns or shaded by neighboring crowns and located in front of them in relation to the
sensor imaging direction. According to [16], the detection of changes in the shadowing
effect depends on factors such as polarization, incidence angle, and characteristics of the
study area. In this study, three-dimensional features involving the target, surroundings,
and sensor characteristics made the change detection partially difficult.
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Figure 13. COSMO-SkyMed images showing an unidentified extraction. The green asterisk represents
a tree recorded as extracted by forest inventory.

For the January–June COSMO-SkyMed images, correctly classified timber extractions
and no-timber extractions represented 88% and 92%, respectively. The overall accuracy
was 89%. The January image was noisy (Figure 14), changing the values of the backscatter
coefficient and, consequently, generating high values of CV between the images, causing a
high incidence of false positives for the timber extraction class. Therefore, it is necessary to
observe the occasional noise, which may result from atmospheric effects frequently present
in X-band data [79] or sensor problems, which may interfere in the quality of the results.
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Although machine learning algorithms were trained using data collected in areas
of legal forest concession, the generalization test highlighted logging from areas outside
the studied National Forest. The overlapping of the logging activities detected in the
period between June and October with the polygons pointed out by the Selective Logging
Detection System (DETEX) [80] as areas of illegal logging that took place between June
and October, from the partnership between the SFB and the National Institute for Space
Research (INPE), demonstrated that our methodology may be useful in detecting illegal
logging in the Brazilian Amazon, as there was a good agreement between our study’s
approach and that of INPE (Figure 15). The advantage of the proposed method is that,
once based on SAR data, it allows monitoring even under cloud cover; moreover, given the
correlation between gaps and log volume [7], it allows estimating the intensity of logging.
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Deutscher et al. [54] reported that X-band SAR data from the TerraSAR-X sensor are
able to identify disturbances in tropical forests larger than 0.5 ha with an accuracy of 98%.
In this research, it was shown that X-band SAR data are also promising for the detection
of smaller scars, such as selective logging, and that, in conjunction with machine learning
techniques, present high generalization capacity, resulting in greater accuracy than 85% for
the extraction class.

4. Discussion

Our study is the first to investigate the potential of X-band SAR images acquired
in the StripMap mode for monitoring selective logging in tropical forests. Our results
indicate good possibility for the use of this dataset, as the logging activity causes changes
in the backscattering processes because of the changes in the structure of the forest canopy.
However, about 7% of the extracted trees could not be identified because of the insufficient
SAR spatial resolution and because of the arrangements of the extracted tree crowns in
relation to their neighbors, as observed by Locks [7].

The large amount of data available on the Jamari National Forest (LiDAR images and
the forest inventory) allowed the identification of forest scars caused by selective logging,
essential for training the machine learning algorithms tested in this study. Multitemporal
changes in shading and illumination in the X-band SAR images, whose transmitted signals
mostly interact at the top of canopies, were able to be detected and delimited by defining a
threshold in terms of the coefficient of variation. These changes in shading and lighting
were also reported by Bouvet et al. [16] as potential criteria for deforestation detection and
mapping. The threshold based on coefficient of variation, as reported by Koeniguer and
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Nicolas [53], is suitable for detecting changes due to its simple formulation and remarkable
statistical properties.

Koeniguer and Nicolas [53] presented the first theoretical study demonstrating that
the coefficient of variation is relevant for detecting changes even in areas with speckle, and
that it has different statistical properties for at least three categories of temporal profiles:
permanent disperser, stable natural speckle area, and a nonstationary area that generally
is interpreted as a change. In this study, the forest areas that did not face anthropogenic
interference were considered natural with stable speckle, and the selective loggings cor-
responded to changes. A threshold of 0.4 enabled the delimitation of changed features
(selective logging) together with some other changes related to speckle and atmospheric
interference (false positives).

The machine learning techniques considered in this study showed good results in
comparison with previous studies on the automatic detection of selective logging based
on high-resolution optical or SAR images, semiautomated methods, and low temporal
frequency [26,81,82]. The advantages over previous studies are as follows: (1) after training
the algorithms, the method is fully automatic, reducing errors associated with human
interpretation; (2) the possibility of constant monitoring even under adverse weather
conditions; (3) high revisit capability of X-band COSMO-SkyMed constellation satellites;
(4) high generalization capacity of pretrained networks, allowing the use of the same
training set if the SAR images are acquired under the same image acquisition modes.

The tests of generalization capacity presented results close to those obtained by the
algorithms that rely on training processes, demonstrating high generalization of the trained
networks. A frequent reported problem in studies based on machine learning classifiers is
the specialization of the trained network (or overfitting) and the problem of local minima,
limiting the generalization capacity and demanding new training samples for each scene
to be classified [83]. A hypothesis suggested for the good results obtained in this work
is the stability of the SAR signal in the images used and the use of textural and spatial
attributes, influenced by spectral changes on a smaller scale than the spectral attributes. In
addition to the ionospheric effects, climate and seasonal surface conditions can considerably
affect SAR measurements, modifying timeseries characteristics and limiting large-scale
applications [84]. In the case of X-band SAR images, rain interception, for example, can
add up to 3 dB to the backscattered signal. Several authors have studied these phenomena
and pointed out solutions for stabilizing the multitemporal SAR data signal [84].

The image acquired in January 2018 used in this study showed radiometric problems
related to the sensor, as can be seen in Figure 14, which did not negatively affect the
generalizability of the pretrained network. However, the method still needs to be tested
regarding the generalizability of the prediction according to factors that can affect the
detection by the model, such as scenes covering distinct forests and obtained under adverse
weather conditions. Convolutional neural network (CNN) tests are also suggested, which
have great potential for generalization in areas not seen before, as they use contextual
information and are not strongly affected by absolute pixel values [85]. Other suggested
approaches to reduce the overfitting problem are endless learning [86] and self-taught
learning [87], which can be tested in the future.

Although several tests were performed using deep neural networks, the best result
was obtained using a single-layer neural network. Regardless of the depth of the network,
an advantage of using artificial neural networks lies in the fact that learning is based
on the characteristics of the data presented and not on the a priori knowledge of the
interpreter [83]. Thus, an important step to obtain good results is the availability of reliable
data for training algorithms. The adoption of neural networks for remote sensing problems
has advantages in problems whose physical models are complex (nonlinear, for example),
not yet well understood, or even difficult to be generalized [83]. The disadvantage of this
type of approach is to find the appropriate hyperparameters for the dataset and problem
considered, as well as the long training time (which increases with the number of hidden
layers).
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Machine learning-based approaches, especially CNN, are often treated as black boxes
due to the difficulty in understanding the parameters that led the network to a given
decision. Kattenborn et al. [85] justified this treatment due to the users’ unfamiliarity with
these techniques and the incomparable depth and number of parameters of these models.
However, most machine learning models have a clear and linear structure and basic
operators such as pooling and activation functions. Regarding the attributes used in this
study, it is possible, through various approaches such as genetic algorithms [88], to know
the individual contribution to obtaining the results, seeking combinatorial optimization.
This will be the subject of further investigation, in addition to tests using CNN.

5. Conclusions

The images used in this study, in which acquisition dates coincided with the period
before and after selective logging, allowed us to identify the features resulting from this
type of activity, since all images were acquired according to the same parameters (orbit
direction, angle of incidence, band, and polarization); therefore, temporal changes refer to
changes in land cover instead of differences in acquisition parameters. Other factors that
can cause multitemporal changes in X-band SAR images are severe atmospheric events
and flaws in the imaging acquisition process.

To our best knowledge, no research had been published addressing the use of X-band
SAR data acquired in StripMap mode for systematic monitoring of selective logging in a
tropical forest. With the increasing availability of these data, through the launch of new
X-band SAR constellations, new information extraction methodologies are required for
applications that demand high revisits.

The machine learning techniques tested showed good results from the attributes
generated with images acquired before and after the exploitation of the area, showing the
potential for detecting selective logging in tropical forests through X-band SAR data. The
accuracy rates obtained for the selectively logged forest class were approximately 88%
using an ANN with 50 neurons in a hidden layer, with ReLu activation function and an
SGD weight optimizer with 1000 iterations, even in the validation test applied to a dataset
different from that used for training.

As the X-band interacts mostly at the top of the forest canopy, only selective extractions
that cause canopy damage can be detected. As a result, 11% of the trees identified as being
logged in UPA 11 could not be identified in the first stage of the proposed method, and
those logged forests could not be detected using the digital surface model product derived
from the first return of LiDAR data.

We recommend that future studies should better explore methods of suppression
or minimization of errors related to systematic noise in images or caused by extreme
meteorological events, which affect X-band backscatter signals, causing an increase in
commission errors. Another suggestion is to extend the tests including the CNN machine
learning algorithm and the development of a method based on the probability of being a
logging event, rather than the binary classification adopted in this study.
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