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Over the past decades, advances in plant biotechnology have allowed the development 
of genetically modified maize varieties that have significantly impacted agricultural 
management and improved the grain yield worldwide. To date, genetically modified 
varieties represent 30% of the world’s maize cultivated area and incorporate traits such 
as herbicide, insect and disease resistance, abiotic stress tolerance, high yield, and 
improved nutritional quality. Maize transformation, which is a prerequisite for genetically 
modified maize development, is no longer a major bottleneck. Protocols using morphogenic 
regulators have evolved significantly towards increasing transformation frequency and 
genotype independence. Emerging technologies using either stable or transient expression 
and tissue culture-independent methods, such as direct genome editing using RNA-guided 
endonuclease system as an in vivo desired-target mutator, simultaneous double haploid 
production and editing/haploid-inducer-mediated genome editing, and pollen 
transformation, are expected to lead significant progress in maize biotechnology. This 
review summarises the significant advances in maize transformation protocols, 
technologies, and applications and discusses the current status, including a pipeline for 
trait development and regulatory issues related to current and future genetically modified 
and genetically edited maize varieties.

Keywords: maize, plant transformation, gene editing, plant biotechnology, genetic modification, morphogenic 
regulator-mediated transformation

INTRODUCTION

As an important global crop and a model plant for genetics and biotechnology studies, maize 
is one of the most researched plant species. Because of its richness in genetic and genomic 
resources, maize has been used for biological investigations into plant domestication and 
evolution, epigenetics, heterosis, disease, insect resistance inheritance, doubled haploids, genome 
editing, and breeding tools (Strable and Scanlon, 2009; Andorf et  al., 2019). However, the 
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development of genetically modified maize varieties has faced 
enormous difficulties due to genotype-associated recalcitrance 
to transformation. The first protocols for stable maize 
transformation, which were published in the late 1980s, used 
particle bombardment, but the transformation frequency obtained 
with the method was very low (Gordon-Kamm et  al., 1990; 
Frame et  al., 1994). Nevertheless, agricultural biotechnology 
companies were able to launch commercial transgenic varieties 
using this protocol (ISAAA database, 2021). A few years later, 
the overwhelming success of herbicide- and insect-resistant 
transgenic maize varieties modified the global seed industry 
from a pulverized market with several local and small seed 
companies into a consolidated market with a few transnational 
companies able to invest in research and bear the expensive 
regulatory costs to commercialize genetically modified varieties 
(Bijman, 2001; Howard, 2009). In 2019, genetically modified 
maize varieties accounted for over 30% of the world’s maize 
cultivated area (ISAAA database, 2021). The list of the so-called 
biotech traits currently available is no longer restricted to 
herbicide and insect resistance; abiotic stress tolerance, high 
yield, and improved nutritional quality are traits expected to 
be  introduced into the market soon (Wu et al., 2019; Simmons 
et  al., 2020; ISAAA database, 2021).

The progress in maize transformation protocols over the 
years aimed to overcome genotype recalcitrance and produce 
less complex and unfragmented transgene insertions in the 
plant genome, which is a major drawback associated with the 
regulatory aspects of transgenics (Kausch et  al., 2021a). As a 
result, Agrobacterium-mediated transformation has become the 
most suitable protocol for selecting single and unfragmented 
insertion events. Increasing the transformation frequency and 
expanding the number of genotypes suitable for Agrobacterium 
infection and plant regeneration of transgenic events were the 
focus of research groups in both the industrial and academic 
sectors (Frame et  al., 2002, 2006; Ishida et  al., 2003, 2007; 
Huang and Wei, 2005; Lowe et  al., 2018). In parallel to 
improvements in protocols for Agrobacterium infection and 
transformation, advances have also been achieved in plasmid 
design, suitable promoters, and selectable marker genes (Kausch 
et al., 2021b; Simmons et al., 2021). One of the most significant 
advances that resulted in improvements in maize transformation 
was the design of constructs expressing morphogenetic regulators 
(MRs) that allow direct embryogenesis from immature zygotic 
embryos (IZEs) and thereby bypass the callus induction stage 
(Lowe et al., 2016, 2018; Svitashev et al., 2016; Mookkan et al., 
2017; Barone et  al., 2020). For example, vector constructs 
expressing the MRs BABY BOOM and WUSCHEL allowed 
the transformation of elite maize inbred lines at frequencies 
of up to 50%, and this process bypasses the laborious and 
time-consuming backcross programmes for introgression of the 
transgene into commercial hybrids (Lowe et  al., 2016).

The costs associated with the deregulation of genetically 
modified commercial maize plants are prohibitive for most 
public research institutions. Only the largest agricultural 
biotechnology companies are financially prepared to pay these 
costs, and therefore, the world has seen an increasing 
concentration of maize seed providers (Deconinck, 2019). This 

scenario may be  overcome by gene-editing technologies that 
simplify gene structure/expression manipulation (Jorasch, 2020). 
Provided that regulatory agencies worldwide become aware of 
the potential of extensively using this technology, gene editing 
will soon become more accessible to the public interested in 
contributing to agricultural sustainability, which will allow the 
worldwide development of biotechnology varieties that 
incorporate desirable traits (Schiemann et  al., 2019). Gene-
editing technologies will also benefit from the progress being 
made in DNA and protein delivery mechanisms and tissue 
culture-free methods for maize modification (Li et  al., 2017; 
Vejlupkova et al., 2020). For example, double haploid induction 
associated with gene editing methods [simultaneous double 
haploid production and editing (Hi-Edit) and haploid-inducer 
mediated genome editing (IMGE)] opens new opportunities 
to speed up precision breeding (Kelliher et  al., 2019; Wang 
et  al., 2019). The possibility of obtaining genetically modified 
plants without integrating foreign DNA also opens a new path 
for the deregulation of biotech traits. In several countries, 
including Argentina, Brazil, and the USA, genome-edited varieties 
that do not incorporate foreign DNA have already been 
deregulated as conventional improved varieties with no additional 
restrictions (Hull et  al., 2021). The potential lack of a need 
for approval by regulatory agencies would significantly reduce 
the time and costs to introducing the new edited varieties to 
the market compared with those needed for regulated transgenic 
varieties (Lassoued et  al., 2019).

Recent advances in the transformation and regulatory aspects 
of genetically modified/edited maize plants have encouraged 
academic and private facilities to provide transformation services, 
which has allowed small research groups and companies to 
test their genes and alleles. In addition, the genome sequences 
of several maize lines and hybrids are already available (Hufford 
et  al., 2021), which allows the design of strategies for genetic 
modification/edition using improved transformation protocols. 
These improvements will allow the evaluation of an increasing 
number of genes and alleles associated with desirable agronomic 
traits (Portwood et  al., 2019).

As a critical technology, maize transformation has been the 
central theme of several reviews covering different aspects 
ranging from historical and current advances in transformation 
protocols, methods, and applications (Wang et  al., 2009; Que 
et  al., 2014; Yadava et  al., 2017; Ishida et  al., 2020; Kausch 
et  al., 2021a, 2021b). Here, we  present the latest advances in 
the protocols and technologies for maize transformation and 
expand the topic to the development of new genetically engineered 
maize varieties, regulatory issues, and the importance of delivering 
new commercial biotech maize varieties to the market.

CURRENT STATUS OF MAIZE 
TRANSFORMATION

Plant Genotype
One of the bottlenecks associated with Agrobacterium-mediated 
transformation is the recalcitrance of maize to bacterial infection 
and the regeneration of transformed plants. Almost all published 
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protocols have yielded the successful transformation of a few 
genotypes that usually exhibit satisfactory Agrobacterium 
infection, callus formation, and plant regeneration (Ishida et al., 
1996, 2003; Frame et  al., 2006; Coussens et  al., 2012). The 
most commonly used maize genotype in academic laboratories 
is the single hybrid Hi-II (Armstrong et  al., 1991) and their 
inbred parents (Frame et al., 2006; Ishida et al., 2007). However, 
although these genotypes show high-frequency Agrobacterium 
infection of IZEs, embryogenic callus formation, good 
performance in selective medium, and recovery of transformed 
plants, they lack the minimal agronomic performance needed 
for phenotyping characterization (Frame et  al., 2006; Wang 
et al., 2009; Kausch et al., 2021a). In addition, events generated 
from individual embryos produced by self-pollinated Hi-II 
hybrid plants have different genetic backgrounds. These 
constraints require time-consuming backcross programmes for 
the introgression of transgenic events into elite inbred lines 
for phenotypic evaluation. More recently, the B104 maize inbred 
line has been used for maize transformation. Although this 
genotype presents a slightly lower transformation frequency, 
the plants have better agronomic performance, which allows 
phenotyping of the transformed plants at the T1 generation. 
In general, the transformed B104 plants are vigorous and 
produce a high number of kernels in the T1 generation, which 
allows the selection of homozygous transformed alleles when 
self-pollinated (Frame et  al., 2006; Coussens et  al., 2012; Raji 
et  al., 2018). The B104 maize inbred line, when crossed with 
elite lines, gives rise to single hybrids that show suitable yield 
performance in field trials (Feys et al., 2018). Companies usually 
utilize their proprietary elite genotypes, such as NP2222 (Zhong 
et  al., 2018), PHR03, PH184C, and PH1V69 (Simmons et  al., 
2021). Tropical maize genotypes have also been transformed 
(Yadava et  al., 2017). In general, the transformation efficiency 
was lower than that of the temperate genotypes with the 
exception of that reported for the Sudanese inbred line IL3, 
which reached 3.78% compared with 0.98% of the A188 inbred 
line (Omer et  al., 2013).

Explant Material
Genetic transformation requires the efficient introduction of 
a DNA construct harbouring target and marker genes into 
the plant cell, which is an effective tissue culture and plant 
regeneration protocol that allows selection of the transformed 
cell/tissue, and the further development of fertile plants. The 
first maize transformation protocols used cell suspensions and 
calli as explants, and the DNA construct was delivered by 
particle bombardment (Gordon-Kamm et  al., 1990). A few 
years later, successful maize transformation was achieved using 
Agrobacterium tumefaciens carrying a modified bacteria Ti 
plasmid harbouring a gene conferring antibiotic resistance 
(Ishida et al., 1996). Nevertheless, the transformation frequency 
achieved with either particle bombardment or Agrobacterium 
was very low. In the following years, the construct design was 
improved to incorporate high-expression promoters to drive 
selectable marker and target gene expression, which, along 
with improvements in the culture media and infection treatments, 

increased the proportion of single-copy insertion events and 
made Agrobacterium the best choice for maize transformation 
(Frame et  al., 2002; Kausch et  al., 2021b). In general, the 
improved protocols made use of the highly efficient Agrobacterium 
strains EHA101 (Hood et al., 1986), EHA105 (Du et al., 2019), 
and LBA4404 (Ishida et  al., 1996, 2007; Zhong et  al., 2018). 
Although attempts have been made to use different explants 
(Mu et  al., 2012), almost all current protocols use IZEs for 
Agrobacterium-mediated transformation due to the well-
established callus induction and somatic embryogenesis obtained 
with this explant (Wang et al., 2009; Yadava et al., 2017; Kausch 
et  al., 2021b). IZEs give rise to type II callus-induced somatic 
embryos that, upon efficient selection, produce regenerated 
transformed events (Kausch et  al., 2021a).

Although IZEs are the best explant choice for maize 
transformation, care should be  taken regarding aspects that 
affect transformation frequency. First, maize plants must 
be grown in a greenhouse with environmental control to ensure 
the homogeneous growth of healthy and vigorous plants, 
particularly for routine transformation throughout the year 
(Ishida et  al., 2020). Detailed protocols for growing maize in 
greenhouses are available in the literature (Eddy and Hahn, 
2012), but adjustments to the temperature, light quality/intensity, 
optimized nutritional conditions, and disease controls are often 
needed to ensure the quality of IZE production. Second, for 
classical Agrobacterium-mediated transformation, fresh embryos 
varying in size between 1.2 mm and 2 mm should be  used 
(Raji et  al., 2018). It is important to note that the embryo 
size usually varies within a single ear, and very small or larger 
embryos thus need to be  discarded.

Culture Media
In general, maize transformation protocols use culture media 
prepared with N6 or MS salts (Frame et al., 2006). The protocols 
can be  optimized by altering the combinations of sugars, salts, 
vitamins, amino acids, antioxidants, antibiotics, and growth 
regulators (Ishida et  al., 2003; Frame et  al., 2006; Yadava et  al., 
2017). Supplementation with silver nitrate has resulted in 
increased embryogenic callus induction and the recovery of 
regenerated plants (Ishida et  al., 2003; Wang et  al., 2009). The 
combination of copper sulfate (CuSO4) with 6-benzyl amino 
purine (BAP) has been shown to increase embryogenic callus 
induction and plant regeneration (Cho et  al., 2014), whereas 
the combination of BAP with cysteine and dithiothreitol increases 
the infection rate (Du et  al., 2010). Factors influencing 
Agrobacterium-mediated transformation include the 
concentration of the virulence inducer acetosyringone, the 
cocultivation time, and preinoculum bacterial growth (Du 
et  al., 2019).

The effective concentrations of selective agents (antibiotics, 
herbicides, and sugars) should be  optimized to inhibit the 
growth of nontransformed cell clusters (Wang et  al., 2009; 
Que et al., 2014; Dong et al., 2021). In addition, nontransformed 
callus sectors that commonly grow around the transformed 
cell clusters should be  removed to increase the recovery of 
transformed, regenerated plants (Raji et al., 2018). The selectable 
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marker genes used in the constructs designed for maize 
transformation include antibiotic-resistant neomycin 
phosphotransferase II (nptII; Breyer et  al., 2014; Barone et  al., 
2020; Hoerster et  al., 2020), hypoxanthine phosphoribosyl 
transferase (hpt; Ishida et al., 2007) and the herbicide resistance 
genes phosphinothricin N-acetyltransferase (pat/bar; Frame et al., 
2002; Ishida et  al., 2003) and acetolactate synthase (Hra/als; 
Zhang et  al., 2005; Hoerster et  al., 2020). Selectable herbicide 
markers commonly confer a trait that is highly desired in 
agronomic performance (Que et  al., 2014). The use of bar/pat 
genes as a selective marker allows the selection of transformed 
calli with phosphinothricin (PPT) or its derivatives and has 
been shown to be very effective for the selection of transformed 
maize plants (Wang et  al., 2009; Que et  al., 2014; Yadava 
et  al., 2017). Other selection systems based on the metabolism 
of sugars (mannose) and amino acids (D-serine and D-alanine) 
have emerged (Que et  al., 2014; Yadava et  al., 2017).

Improvement of Agrobacterium Strains
Agrobacterium strains have been improved to achieve increased 
plant transformation frequency through the development of 
binary vectors (Zambryski et  al., 1982; Hoekema et  al., 1983; 
Bevan, 1984; Komari et  al., 2006), the development of ternary 
helper plasmids and superbinary vectors (Ishida et  al., 1996; 
Anand et  al., 2018; Zhang et  al., 2019), the upregulation of 
virulence (vir) gene expression (Ishida et  al., 1996; Van Der 
Fits et  al., 2000; Ye et  al., 2011; Vaghchhipawala et  al., 2018), 
and the removal of negative factors of T-DNA transfer (Nonaka 
et  al., 2019). Genome editing has also helped improve 
Agrobacterium strains themselves. For example, clustered regularly 
interspaced short palindromic repeats (CRISPR)-mediated loss-
of-function mutations in recA have generated an EHA105 strain 
with improved performance for maize transformation (Rodrigues 
et  al., 2021). RecA-deficient strains are typically used to avoid 
the recombination of additional virulence genes from ternary 
helper plasmids with homologous sequences from the Ti plasmid 
(Mookkan et  al., 2017; Anand et  al., 2018; Sardesai et  al., 
2018), which allows their concomitant use with ternary vectors 
harbouring additional virulence genes and morphogenic 
regulators to increase plant regeneration.

Other features may also be  manipulated to improve 
Agrobacterium-mediated transformation and the fate of 
transformed events. For example, the subversion of host plant 
factors (Pitzschke, 2013; Sardesai et  al., 2013; Hwang et  al., 
2015), the reduction of vector backbone and transposon 
integration (Ülker et  al., 2008; Kim and An, 2012; Jupe et  al., 
2019), the increase of T-DNA transfer capacity (Nonaka et  al., 
2019), the environmental containment of Agrobacterium when 
used for field applications (Torti et  al., 2021), the increase on 
transient transformation frequency (Wang et  al., 2018) and 
the use of effective tools for non-invasive monitoring of gene 
expression and plant transformation (He et  al., 2020; Xu 
et  al., 2021).

Another promising perspective is the use of autonomously 
replicating virus-based vectors (Zaidi and Mansoor, 2017) for 
overexpression, gene silencing, or gene editing in maize via 

Agrobacterium (Ding et  al., 2006; Wang et  al., 2016; Jarugula 
et  al., 2018; Gao et  al., 2019; Hu et  al., 2019; Mei et  al., 2019; 
Xie et  al., 2021). These technologies have allowed transient 
expression at an industrial scale by spraying Agrobacterium 
carrying the viral vector (Torti et al., 2021). Bypassing difficulties, 
such as low transient gene transfer rates, regeneration difficulties, 
and host cell integrity issues (Zaidi and Mansoor, 2017; Nonaka 
et  al., 2019), the virus-based vectors could be  optimized to 
allow the development of transient expression strategies for 
CRISPR-Cas gene editing without the stable integration of 
foreign DNA.

Standard Protocol for Maize 
Transformation
A basic protocol based on published data (Ishida et  al., 1996; 
Frame et  al., 2002; Zhao et  al., 2002; Huang and Wei, 2005; 
Frame et  al., 2006; Ishida et  al., 2007; Vega et  al., 2008; Lee 
and Zhang, 2016) is currently being used for routine maize 
transformation using IZEs as explant in many laboratories 
worldwide. The main steps of this routine maize transformation 
(Figure  1) involve plant growth under controlled conditions 
(Figure  1A), harvesting ears at 10–16 days post-pollination, 
selecting 1.2–2-mm IZEs (Figures  1B–C), infecting with 
Agrobacterium harbouring the desired construct (Figure  1D), 
monitoring the infection rate using GUS-harbouring vectors 
(Figure  1E), incubating the infected embryos in the dark at 
21°C for resting (Figure 1F), transferring the infected embryos 
to the first-round selective medium in the dark at 25°C 
(Figure  1G), transferring the infected embryos to the second-
round selective medium in the dark at 25°C (Figure  1H), 
transferring the resistant embryogenic calli to the first-round 
regeneration medium in the dark at 25°C (Figure 1I), transferring 
the regenerating plants to second-round regeneration medium 
to rooting in penumbra light (16hs) at 25°C (Figures  1J–K), 
transferring the regenerated plants to the acclimation room at 
26°C/22°C day/night, 16 h light (Figure  1L) and finally 
transferring the acclimated plants to the greenhouse for plant 
growth and T1 seed production (Figures  1M–O).

When growing plants for IZE harvesting, environmental 
factors should be  taken into account. For the B104 genotype, 
the recommended greenhouse temperature varies between 20°C 
and 28°C (night/day), and light intensity varies between 600 
and 1,000 μmol.m−2.s−1. Fine-tuning the temperature and light 
are essential to the production of high-quality embryos for 
successful transformation. For routine transformation throughout 
the year, the plants are pollinated weekly, and the IZEs reach 
their ideal size 10–16 days after pollination. The harvested ears 
can be  stored at 4°C for a couple of days prior to use. The 
Agrobacterium strains EHA101, EHA105 and LBA4404 are 
commonly used for the transformation of IZEs. After infection 
in N6 liquid medium (Figure  1D), the IZEs are laid down 
on cocultivation medium for 3 days in the dark at 21°C 
(Figure 1F). The cocultivation medium is similar to the infection 
medium with the exception that the N6 salts are substituted 
by MS salts (Frame et  al., 2006). The infection occurs mainly 
in the scutellum cells facing upward (Figure  1E). After 3 days 
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in the cocultivation medium, the IZEs are transferred to a 
resting medium containing the same composition of cocultivation 
medium with the appropriate antibiotics for bacterial 
counterselection for 7 days at 21°C in the dark (Figure  1F). 
The IZEs are then transferred to a selective medium containing 
a low concentration of the PPT selective agent for 14 days 
(Figure  1G) and then to a selective medium containing an 
increased concentration of the selective agent for 28 days 
(Figure  1H). The selective agent depends on the construct 
selectable marker being the most popular bar gene that confers 
bialaphos/phosphinothricin (PPT) resistance (Gordon-Kamm 
et  al., 1990; Frame et  al., 2002). In this case, PPT is first used 
at 1,5 mg/l for 14 days, followed by 28 days at 5 mg/l. Other 
selectable marker genes widely used include nptII, which confers 
kanamycin resistance (Breyer et  al., 2014; Barone et  al., 2020; 
Hoerster et al., 2020), and hra, which confers imazapyr resistance 
(Hoerster et  al., 2020) and pmi for resistance to mannose 
(Dong et  al., 2021). In general, embryogenic callus induction 
is completed after 2 weeks on low-concentration selective medium 
(Figure  1G). Maize genotypes able to produce type II calli 

exhibit early embryogenesis with the rapid proliferation of 
somatic embryos, whereas genotypes that produce type I callus 
genotypes exhibit late embryogenesis with organogenic and 
meristematic domes showing more compact tissues (Kausch 
et  al., 2021b). After the selection phase, the selected calli are 
fragmented and transferred to regeneration medium without 
hormones containing the maximum concentration of selective 
agent (6 mg/l of PPT, Figure  1I) and without hormones for 
3 weeks and then to regeneration medium without hormones 
and selective agents at low light intensity for 2–4 weeks 
(Figures  1J–K). Regenerated plantlets with roots and shoots 
are finally transferred to soil and acclimated until the plants 
are in appropriate condition to be transferred to the greenhouse 
(Figures 1L–M). The transformation time, from Agrobacterium 
infection to T1 seeds takes approximately 6–8 months 
(Figure  1O).

Maize Transformation Service Providers
Despite recent advances in maize transformation, only a few 
academic groups worldwide have the necessary infrastructure 

FIGURE 1 | Standard protocol for B104 maize transformation. (A) Growth of donor plants for immature embryo production under greenhouse-controlled 
conditions. (B) Ears are harvested 10–16 d after pollination. (C) The immature zygotic embryo reaches the ideal size of 1.2–2 mm. (D) Isolated immature embryos in 
co-cultivation. (E) Immature embryo transiently expressing the gus reporter gene. (F) Embryos in resting media seven days after Agrobacterium infection. (G) Calli 
induction on selection I medium. (H) Compact type I callus in selection II medium. (I,J) Regeneration of transformed plants. (K) Transformed plantlets with roots and 
shoots are grown in the penumbra room. (L) T0 transgenic individuals rooted in the soil in an acclimation room. (M) T0 plants grown at the greenhouse. (N) Flowering 
and pollination of T0 plants at the greenhouse. (O) Harvesting of T1 seeds. The complete process, from infection to T1 seed production, takes approximately 
6–8 months. The images are not to scale.
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to effectively implement maize transformation. Although 
improved protocols are available, the steps from immature 
embryos to T1 seeds require well-equipped laboratory and 
greenhouse facilities for the Agrobacterium-mediated 
transformation (Wang et  al., 2009; Altpeter et  al., 2016). In 
addition to a high-quality infrastructure, the availability of 
skilled personnel is another factor determining the success of 
maize transformation. Due to these constraints, several specialized 
public and private facilities currently offer maize transformation 
services (Table 1). B104 and Hi-II are the most used genotypes 
by maize transformation service providers. Public and private 
maize transformation providers are available in the USA, Brazil, 
India, and Europe (Table  1).

EMERGING TECHNOLOGIES FOR MAIZE 
TRANSFORMATION

Overcoming Genotype Recalcitrance: 
Morphogenic Regulator-Mediated 
Transformation
Although routinely performed, maize transformation faces the 
constraints of a few genotypes amenable to Agrobacterium-
mediated transformation. The maize inbred line B73, for instance, 
is an important genetic and genomic resource but is strongly 
recalcitrant to transformation. The same is true for most of 
the commercial elite maize inbred lines. In addition, even the 
most improved transformation protocol currently available 
requires a callus culture step, which is laborious, time-consuming 
and constitutes a constraint for efficient large-scale transformation 
pipelines (Lowe et  al., 2016). New methods relying on 
morphogenic regulators (MRs) expression at the early steps 
of maize transformation have been developed to overcome 
these obstacles. MRs, such as BABY BOOM (BBM), OVULE 
DEVELOPMENT PROTEIN 2 (ODP2), and WUSCHEL 2 (WUS2), 
are transcription factors capable of inducing somatic 
embryogenesis in different plant tissues. Transformation vectors 
harbouring combinations of WUS2 with either BBM (Lowe 
et  al., 2016, 2018; Mookkan et  al., 2017; Barone et  al., 2020) 
or ODP2 (Svitashev et  al., 2016) along with selectable markers 
and target genes have demonstrated high transformation 
frequency. In general, these Morphogenic Regulator-Mediated 
Transformation (MRMT) vectors can be  introduced in the 
current Agrobacterium strains and used for immature embryo 
transformation. The MR methods exhibit two significant benefits: 
(1) increased plant regeneration rates and the recovery of 
transformed plants from recalcitrant genotypes and (2) a 
shortening in the overall time needed for transformation by 
bypassing the callus culture step (Figure  2A).

The first published MRMT method demonstrated that the 
use of vectors harbouring BBM and WUS2 for either 
Agrobacterium- or particle bombardment -mediated 
transformation increased the transgenic events recovery from 
recalcitrant genotypes by 25 to 52% (Lowe et  al., 2016). Soon 
after, a transformation frequency of 15% was obtained for the 
recalcitrant B73 inbred line (Mookkan et  al., 2017). Despite 

this transformation success, the continuous expression of MRs 
can lead to various developmental defects. Thus, the expression 
of MRs needs to be  restricted to the embryogenesis induction 
step. Two approaches have been developed to overcome these 
detrimental effects: (1) excision of the MR expression cassette 
by a recombination system and (2) driving the expression of 
MRs using specific promoters. To date, CREATES 
RECOMBINATION (CRE) flanked by loxP sites has been the 
recombination system of choice for the excision of MR genes 
from expression cassettes (Lowe et  al., 2016; Mookkan et  al., 
2017; Zhang et  al., 2019; Hoerster et  al., 2020; Masters et  al., 
2020). The transformation vectors include a region containing 
both the MRs and CRE/loxP, whose expression is driven by 

TABLE 1 | Academic laboratories and facilities providing maize transformation 
services.

Country Laboratory/Facility Maize 
Genotype

Website

Argentina INDEAR NA https://www.indear.
com/en/plant-
transformation-and-
tissue-culture/

Belgium VIB Crop Genome 
Engineering Facility

B104 https://www.psb.
ugent.be/cores/crop_
genome_engineering_
facility

Brazil Pangeia Biotech Hi-II https://www.
pangeiabiotech.com/

Germany Crop Genetic  
Systems

A188 B104  
Hi-II

https://www.crop-
genetic-systems.de/
english/prices/

India Metahelix Tropical/ 
Temperate

https://www.rallis.co.
in/Seed_Division/main/
pt_transformation.html

USA Wisconsin Crop 
Innovation Center

Hi-II LH244 https://cropinnovation.
cals.wisc.edu/
services/maize-
transformation/ 

USA Cornell CALS - 
College of Agriculture 
and Life Sciences

B104 https://cals.cornell.
edu/school-
integrative-plant-
science/about/
campuses-facilities/
plant-transformation-
facility

USA Plant Transformation 
Core Facility at the 
University of Missouri

Hi-II B104 https://research.
missouri.edu/ptc/
services.php

USA Danforth Center Core 
Facilities

NA https://www.
danforthcenter.org/
our-work/core-
facilities/plant-
transformation/

USA Plant Transformation at 
The University of 
Rhode Island

Hi-II https://web.uri.edu/
pbl/plant-
transformation/

USA Creative Biogene Hi-II B104  
Others

https://www.creative-
biogene.com/services/
maize-transformation-
service.html
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inducible promoters that can be  triggered after the first steps 
of somatic embryogenesis induction to excise the MR cassette 
(Figure 2B). Examples of inducible promoters are those driving 
the drought-responsive Rab17 gene (Lowe et al., 2016; Mookkan 
et  al., 2017; Zhang et  al., 2019) or the heat-inducible Hsp17.7 
gene (Masters et  al., 2020). The selection of successful excision 
events may be  facilitated by a fluorescent protein, which is 
only expressed after full excision of the CRE/loxP cassette.

A potential downside factor is that the quality of events 
may be affected because recombination is hardly 100% efficient 
and may leave part of the MR cassettes in the genome of the 
transformed events. Nevertheless, the frequency of complete 
recombination in transformed events ranges from 61 to 83% 
(Zhang et  al., 2019). Another method avoids such drawbacks 
using specific promoters to drive MR expression. The rationale 
of this method is to maintain the expression of MRs in calli, 
embryos, and young leaves while avoiding its expression in 
meristems, roots, and reproductive organs. The use of a maize 
phospholipid transferase protein promoter (ZmPLTP) and an 
auxin-inducible promoter (ZmAXIG1) to drive BBM and WUS2 

expression, respectively, allows the recovery of healthy 
transformed plants without excision of the MRs (Lowe et  al., 
2018). The MR induction of somatic embryos seems to 
be  genotype independent, as observed with more than 22 
inbred lines from DuPont Pioneer (Lowe et al., 2018). Moreover, 
MR methods also have the advantage of inducing somatic 
embryogenesis directly from the scutellum epidermis, which 
skips the initial stage of callus formation and thus halves the 
time needed for in vitro culture prior to transferring the plants 
to a greenhouse (Figure  2A; Lowe et  al., 2018).

Recently, an alternative method was proposed to avoid the 
integration of MRs in the genome of transformed events by 
infecting immature embryos with two Agrobacterium strains: 
one harbouring a construct with the selectable marker and 
target genes, and the other harbouring the MR construct 
(Hoerster et  al., 2020). Upon infection, transient expression 
from the MR cassette induces somatic embryogenesis, whereas 
only embryos containing the selectable marker and target gene 
constructs integrated into the plant genome are recovered. The 
expression of WUS2 is driven by the PLTP promoter incorporating 

A

B

FIGURE 2 | Schematic representation of the morphogenic regulator-mediated maize transformation (MRMT). (A) Comparison between standard transformation 
(top) and MRMT (bottom) protocols. Tissue culture phases are indicated by different colours. By skipping the callus culture step, MRMT shortens the time needed 
for in vitro tissue culture. Note that although not specified, a selective agent is used in the MRMT culture media to allow regeneration of transformed embryos only. 
(B) Schematic representation of generic T-DNA present in MRMT-based vectors. In addition to the genetic payload of interest, T-DNA harbours morphogenic 
regulators (MRs) and a recombinase (CRE). Upon a given stimulus, CRE excises the MRs from the construct. The time period and culture media are based in 
Coussens et al. (2012) and Raji et al. (2018) for the standard protocol and in Masters et al. (2020) for the MRMT protocol.
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viral enhancers that increase the induction of somatic 
embryogenesis and counterselect embryos in which the MR 
construct is eventually integrated because the high expression 
of WUS2 inhibits regeneration (Hoerster et al., 2020). In addition 
to WUS2 and BBM/ODP2, other MRs, such as GROWTH-
REGULATING FACTOR 5 (GRF5) and chimeric 
GRF-INTERACTING FACTOR 1 (GRF4-GIF1), have been shown 
to increase the recovery of transgenic events (Debernardi et al., 
2020; Kong et  al., 2020).

MRs have been helpful for CRISPR/Cas9 genome editing, 
which usually demands the screening of many edited events 
(Zhang et  al., 2019; Barone et  al., 2020). In addition, genome 
editing based on less efficient systems, such as homologous 
recombination (HR), can benefit even further from a higher 
embryo recovery rate (Barone et al., 2020). MR transformation 
has also been efficient for CRISPR/Cas9 ribonucleoprotein 
(RNP) gene editing. In this case, IZE is co-bombarded with 
the RNPs of interest together with DNA constructs containing 
the MRs (Svitashev et  al., 2016). This approach allows the 
recovery of foreign DNA- and marker-free GE plants. MR-based 
ternary vectors built by combining different backbones, helper 
plasmids, and recombination systems have been shown to 
be  effective for maize CRISPR/Cas9 genome editing (Zhang 
et  al., 2019). The commercially available “ready-to-use” vector 
is compatible with Golden Gate cloning for assembling the 
sgRNA expression cassette (Zhang et  al., 2019).

Haploid-Inducer Mediated Genome Editing 
System
CRISPR-Cas genome editing (CGE) in plants has evolved 
enormously in the past few years. The first efficient CGE process 
in plants was demonstrated in 2013 by three independent 
groups, which edited genes in rice, wheat, Nicotiana benthamiana, 
and Arabidopsis thaliana (Li et  al., 2013; Nekrasov et  al., 2013; 
Shan et  al., 2013). As a result, CGE has become the most 
accessible, efficient, and versatile genome-editing tool for plants 
(Chen et  al., 2019). In general, CGE uses a Cas9 endonuclease 
and a chimeric single guide RNA (sgRNA) that drives Cas9 
to a target DNA sequence in the genome (Charpentier and 
Doudna, 2013). A range of CRISPR-Cas toolkits have been 
made available for major crops (Chen et  al., 2019), to be  used 
for various aims, including the simultaneous editing of multiple 
traits and precise allelic replacements (Svitashev et  al., 2015; 
Shi et  al., 2017; Chen et  al., 2019; Kelliher et  al., 2019; Wang 
et  al., 2019; Ahmar et  al., 2020; Liu et  al., 2020; Van Tassel 
et  al., 2020; Zhang et  al., 2020a; Gao et  al., 2020b). However, 
a frequent bottleneck of the technique is the delivery of 
CRISPR-Cas by standard Agrobacterium or biolistic methods 
because most crop varieties are recalcitrant to transformation.

Effective methods to deliver the CRISPR-Cas machinery in 
germplasm recalcitrant to gene editing by crossing have been 
proposed (Li et  al., 2017; Kelliher et  al., 2019; Wang et  al., 
2019). Direct genome-editing technologies, including desired-
target mutator (DTM; Li et  al., 2017; Qi et  al., 2020) and 
HI-Edit (Kelliher et  al., 2019), which is also known as IMGE 
(Wang et al., 2019), are based on the pollination of elite recipient 

inbred lines using the pollen of a stably transformed line 
harbouring a CRISPR-Cas construct (Figures  3–4). In DTM, 
the target gene is directly edited in a desirable allele via trans-
acting CRISPR-Cas (Figures  3A–C). The trans editing can 
occur by (1) the delivery of Cas RNPs, which are expressed 
by the sperm cell, directly into the egg cell of the elite line 
(gametophytic expression) and (2) the expression of Cas and 
sgRNA in the zygote after gamete fusion (zygotic expression; 
Figure 3D). Both CRISPR-Cas systems depend on the promoter 
used to drive cassette expression (e.g.: pollen-specific promoter 
versus constitutive promoter, Jacquier et  al., 2020). Thus, after 
subsequent crossing, CRISPR-Cas-free plants with the original 
receptor genetic background that are homozygous for the desired 
edited gene can be  obtained (Figures  3C,E). Although 
backcrossings are needed to recover the original genotype, this 
method dramatically reduces the workload of introgression 
breeding programs that usually need marker-assisted backcrossing 
and more generations to minimize the linkage drag effect (Peng 
et  al., 2014; Li et  al., 2017).

In the HI-Edit/IMGE method, the paternal genome is a 
haploid inducer line harbouring a CRISPR-Cas cassette used to 
pollinate the maternal elite line (Figure  4A). In this case, the 
maternal genome is edited in trans, whereas the male genome 
is eliminated at the zygote phase. The haploid progeny, which 
is typically sterile, are then screened for CRISPR–Cas-induced 
mutations (Figure 4B) and subsequently treated with a colchicine 
mitotic inhibitor (Prasanna et  al., 2012; Melchinger et  al., 2016; 
Chaikam et al., 2019) or another less toxic doubling agent (Geiger 
and Gordillo, 2009; Häntzschel and Weber, 2010) to produce 
fertile doubled haploid and gene-edited nontransgenic plants 
(Kelliher et al., 2019; Wang et al., 2019; Figures 4C–E). However, 
improvements are needed to overcome the inherent problems 
related to haploid induction per se (Trentin et al., 2020; Jacquier 
et  al., 2021). For example, CRISPR-Cas can be  used before or 
in parallel to HI-Edit to: (1) increase the haploid induction 
rates by targeting genes related to high haploid induction (Kelliher 
et  al., 2017; Zhong et  al., 2019) or genes related to the inducer 
exclusion (Kelliher et  al., 2019); (2) accelerate and accurately 
sort kernels/seedlings with haploid embryos from normal embryos 
by modifying visual traits such as anthocyanin (Chaikam et  al., 
2019) or by integrating visible transgenic markers into the 
inducers (Yu and Birchler, 2016; Xu et  al., 2021; Yan et  al., 
2021) or even targeting genes involved in the oil content of 
seeds (Melchinger et  al., 2013) and fixing recessive alleles of 
morphological traits in donors (Trentin et al., 2020). Care should 
be  taken with desirable/undesirable agronomic traits during 
induction of haploid plants that would compromise the breeding 
programmes (Trentin et  al., 2020). Desirable agronomic traits 
could be  further targeted by gene editing, to take full advantage 
of HI-Edit/IMGE technology.

Overall, DTM and HI-Edit/IMGE technologies can help 
stack favourable genes in the genomes of elite lines. Precise 
genome modification overcomes the difficulties of traditional 
random uncontrolled mutagenesis and unpredictable insertions 
into the plant genome and thus has potential positive impacts 
on plant breeding (Schiemann et  al., 2019). As a potential 
drawback, the CRISPR-Cas technology can generate undesirable 
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off-targets but, although frequently predicted in silico, has been 
shown to occur rarely in plants (Young et  al., 2019; Graham 
et  al., 2020; Herbert et  al., 2020; Gao et  al., 2020a).

Nanoparticle-Mediated Transformation
As discussed in previous sections, new technologies have pushed 
maize transformation (especially that aiming at genome editing) 
closer to a genotype-independent status in the past few years. 
These tools have enabled achieving levels of efficiency and 
scale that are practicable at academic and industrial settings.

Another promising technology employs nanoparticle-mediated 
(NP) delivery of macromolecules in a tissue culture-independent 
manner. The major advantages of NPs reside in their small 
sizes, diverse geometries, and versatile surface activation and 
binding capabilities (Cunningham et  al., 2018). Although the 
exclusion limit of cell membranes is approximately 500 nm, 
that of plant cell walls ranges from approximately 5 to 20 nm 
(Cunningham et  al., 2018) and is thus the major size-limiting 

barrier for introducing materials intracellularly. Carbon nanotubes 
(CNTs), a type of NP with a size of at most ~20 nm in one 
dimension, can avoid the requirements for harsh entry methods 
that frequently result in cell damage. Indeed, the passive delivery 
of biomolecules into leaf cells of intact plants and the protection 
of polynucleotides from nuclease degradation have been observed 
with ≤12-nm single-walled carbon nanotubes (SWCNTs; Demirer 
et  al., 2019). Furthermore, NPs can adsorb and carry a variety 
of cargo chemistries into cells, including DNA, RNA, proteins, 
RNPs, and small molecules (Cunningham et  al., 2018), which 
makes NPs suitable for various approaches, which not only 
include genetic modification but also gene expression and 
pharmacological perturbations.

Pollen Transformation
Tissue culture-independent methods for plant transformation 
in plants have been limited to a few species-tissue/cell type 
systems (for recent reviews, see Kausch et  al., 2021a, 2021b 

A
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FIGURE 3 | Schematic representation of the desired-target mutator (DTM) maize transformation. (A) The CRISPR-Cas cassette can be transformed into a 
nonrecalcitrant inbred line for trans editing in an elite recalcitrant inbred line. (B) Pollen carrying a CRISPR-Cas cassette designed to target gene(s) of interest was 
used to pollinate the elite maize line. (C) The target gene is directly edited via trans-acting CRISPR-Cas. (D) The delivery of RNP, which is expressed by the sperm 
cell, directly into the egg cell of the elite line (gametophytic expression) or expression of RNP in the zygote after gamete fusion (zygotic expression) generates a 
hybrid edited embryo. (E) After trans editing, subsequent crossings are needed to obtain CRISPR-Cas-free plants with the original receptor genetic background and 
homozygous to the desired mutation. The schematic illustration view in (D) was adapted from Jacquier et al. (2020).
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and Anjanappa and Gruissem, 2021). One of these methods 
relies on delivering DNA constructs into mature pollen that 
is then used for direct pollination (Eapen, 2011). However, 
the methods remain controversial due to their low frequency 
or lack of reproducibility. In the case of maize, the aeration 
of pollen grains at 4°C in sucrose before sonication results 
in improved transformation (Yang et  al., 2017). However, no 
successful transformation using this method has been published 
thus far.

Methods that exploit both the pollen biology and NP features 
are anticipated to result in significant improvements towards 
the realization of tissue culture-independent transformation of 
maize, particularly with respect to genome editing (Demirer 
et al., 2021), for which transgene integration is often unnecessary. 
In particular, subsequent advances are expected to take advantage 
of (1) the rapid and vigorous growth of maize pollen tubes 
both on stigma and in vitro (2) mounting knowledge of pollen 

and pollen tube gene expression and cell wall biochemistry 
(Zhou et  al., 2017), which can inform further perturbation of 
their permeability, and (3) the versatile and customizable 
physicochemical properties and sizes of NPs, which would 
allow diverse cargo and passive cell entry.

DEVELOPMENT OF GENETICALLY 
MODIFIED AND EDITED VARIETIES

Biotechnology Pipeline for Trait 
Development
Over the last three decades, genetically modified (GM) maize 
varieties have successfully reached the market, which has brought 
traits such as herbicide resistance and insect resistance to farms. 
The first generation of varieties incorporated a single gene 

A

B

C E

D

FIGURE 4 | Haploid-inducer-mediated genome editing (IMGE) or simultaneous double haploid production and editing (HI-Edit) in maize. (A) The haploid inducer 
line harbouring a CRISPR-Cas cassette is used to pollinate the maternal elite line of any genotype. (B) The haploid progeny, which are typically sterile, were 
screened for CRISPR-Cas-induced mutations (~3%) and subsequently treated with a doubling agent to produce fertile doubled haploids. (C) Edited doubled haploid 
lines with improved agronomic traits are obtained after self-pollination. The zoomed view of trans genome editing and the maternal haploid formation processes 
occurring in B are shown in D-E. (D) After trans-acting CRISPR-Cas, and fertilization, the unstable paternal chromosome from haploid-inducer pollen is lost. (E) The 
formed embryo is nontransgenic (Cas-free) and has a doubled chromosome to recover the homozygous edited diploid elite plant.
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with only one mode of action against one insect order for 
insect resistance. The following generations were obtained by 
crossing herbicide and insect resistant events and different 
insect resistance events to achieve multiple modes of action 
against different insect orders. These so-called stacking varieties 
have reached impressive success with farmers, as demonstrated 
by a clear and complete phenotypic outcome (ISAAA database, 
2021). The development of these first-generation traits is 
somewhat obvious because the science behind this development 
was described very early in the literature. However, the related 
process for quantitative traits such as abiotic stress tolerance, 
nutrient use efficiency, and yield is substantially more complex 
because these traits involve multiple genes that are subjected 
to strong environmental influence. To explore the impact of 
single genes on complex traits, companies have developed 
programmes ranging from gene to field biotechnology pipelines 
to evaluate gene effects at a large scale (Simmons et  al., 2021).

A typical biotechnology pipeline (Mumm, 2013; Prado et al., 
2014; Simmons et  al., 2021) involves the following phases: 
discovery, proof of concept, early development, advanced 
development, prelaunch, and launch of commercial varieties 
(Figure 5). Some phases have activities that overlap temporarily, 
particularly when a positive early discovery lead is found, and 
the optimization activities begin before the end of the validation. 
The gene discovery phase is challenging, costly, and uncertain, 
particularly for traits such as drought and yield, which require 
well-defined phenotypic responses to drive the search for 
candidate genes (Nuccio et  al., 2018; Simmons et  al., 2021). 
High-throughput phenotypic screening of model plants, usually 
A. thaliana and O. sativa, is used to test hundreds of candidate 
genes. The proof-of-concept phase is characterized by the 
generation of events for each candidate gene and the initial 
phenotypic testing in both controlled environments and small-
scale field trials (Simmons et  al., 2021). At the end of this 
phase, maize events showing good agronomic performance, 
stable trait expression, and inheritance are elected as leads. In 
the early development phase, lead optimizations to improve 
the stability and enhance protein expression are usually required, 
and the leads are molecularly characterized and tested in large-
scale field trials on multiple target locations and years (Simmons 
et  al., 2021). The advanced development phase is characterized 
by the introgression of validated leads on commercial lines, 
and this process often involves the use of molecular markers 
to accelerate the breeding process and ensure trait conversion 
(Mumm, 2013). Regulatory data on gene product toxicity, 
allergenicity, compositional analysis, and environmental and 
human safety are also generated. In the prelaunch phase, the 
number of seeds from the new GM variety are increased to 
reach the market, quality control is implemented to secure 
trait identity and purity, a regulatory report is submitted, and 
the new GM trait hybrid is prepared for commercial launch. 
Depending on the trait and the resources available, completion 
of the pipeline takes, on average, 11–13 years (Mcdougall, 2011; 
Mumm, 2013; Nuccio et  al., 2018).

The average cost to develop a commercial maize GM trait 
is estimated at $50–136 million (Figure  5; Mcdougall, 2011; 
Mumm, 2013). Excluding the discovery phase, which can vary 

depending on the target trait, the advanced development and 
prelaunch phases are costly and time-consuming (Figure  5) 
because multiple field trials and regulatory studies are needed 
to ensure the safety and quality of the developed GM variety. 
However, genome editing that is free from transgene DNA 
sequences and is already regulated as non-GM in several 
countries would significantly contribute to decreasing the cost 
of regulatory studies and the overall costs of launching 
commercial varieties (Figure  5; Lowe et  al., 2016; Lassoued 
et  al., 2019).

Regulatory Issues Associated With Maize 
GM Traits
Since the release of the first commercial insect-resistant GM 
maize 25 years ago (Tabashnik and Carrière, 2017; Pellegrino 
et  al., 2018), 148 GM maize events have been approved for 
commercial use worldwide (ISAAA database, 2021). The global 
area cultivated with GM maize occupied 61 million hectares 
in 2019, and this area included 33 million hectares in the 
USA, 15 million hectares in Brazil, 6 million hectares in 
Argentina, and 2 million hectares in South  Africa (ISAAA 
Brief, 2019). However, although GM crops pose no additional 
risks to humans and the environment compared with conventional 
crops (National Academies of Sciences, Engineering, and 
Medicine, 2016), the public constraints of the technology, 
particularly in the European Union, remain high (Woźniak 
et al., 2021). The development of new plant breeding technologies 
(NPBTs), such as cisgenesis, intragenesis, and genome editing, 
can contribute to modifying public perception, particularly if 
they are properly communicated to society (Cardi, 2016; 
Harfouche et  al., 2021).

The availability of plant genomes for major crops and their 
wild relatives will allow the identification of genes underlying 
the traits of interest and their precise modification or transfer 
into targeted varieties (Michael and VanBuren, 2015; Cardi, 
2016). In this regard, cisgenic and intragenic mutations that 
are based on genetic alteration within a crop genome or the 
transfer of genes from sexually compatible species may illuminate 
an amenable regulatory path (Holme et al., 2013; Schaart et al., 
2016). Although the current regulatory path regarding the 
biosafety of cisgenes/intragenes remains complex, some of the 
end products are indistinguishable from conventional plant 
breeding products. In Australia, Canada, India, and the USA, 
these products are reviewed on a case-by-case basis, whereas 
in the European Union, cisgenic and intragenic plants are 
regulated as regular GM organisms (Hull et al., 2021). Although 
no commercial cisgenic or intragenic maize has been launched 
to date, studies based on the genome-wide association and 
genome sequencing of maize lines will certainly lead to the 
identification of genes with the potential to improve cultivated 
genotypes using a cisgene/intragene approach (Hufford 
et  al., 2021).

Genome editing by site-directed nuclease (SDN) technologies 
has the potential to be  widely accessible to the scientific 
community for the generation of biotechnology crops (van de 
Wiel et al., 2017). SDN applications can be divided into SDN-1, 
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SDN-2, and SDN-3 (Grohmann et al., 2019). SDN-1 and SDN-2 
generate small-sized random (SDN-1) or template-directed 
(SDN-2) mutations at predefined genomic loci and have thus 
been considered mimics of those resulting from natural DNA 
variation (Eckerstorfer et al., 2021). Thus, a handful of countries 
consider crops modified by SDN-1 and SDN-2 as conventional 
plants (Anders et al., 2021). Argentina, Chile, the USA, Canada, 
Brazil, Colombia, and Paraguay have already approved normative 
resolutions on genome editing (Eckerstorfer et al., 2019), whereas 
the European Union relies on the legislation of GM organisms 
to restrict the cultivation of genome-edited crops (Turnbull 
et  al., 2021).

Currently Approved Commercial Maize 
Events and Future Expectations
The adoption of GM traits is considered the fastest innovation 
embraced by farmers around the world. From 1996 to 2018, 
the global economic gains from GM crop varieties reached 

US$ 225 billion, and 52% of these gains were in developing 
countries (Brookes and Barfoot, 2020). In 2019, transgenic 
plants were cultivated on 190.4 million hectares in 29 
countries for consumption as food and feed, and this amount 
represents a 112-fold increase from 1.7 million hectares in 
1996. Among the most adopted crops, soybean stands out, 
followed by maize, cotton, and canola. Of the 193.4 million 
global maize cultivation areas in 2019, 31% (60.9 million 
hectares) in 14 countries cultivated GM maize varieties 
(ISAAA Brief, 2019). Currently, maize is the crop with the 
most approved GM events, and 148 (36.2%) events in 35 
countries mostly combine insect resistance and herbicide 
tolerance traits (ISAAA Brief, 2019). Other GM traits already 
commercially approved for maize are the restoration of 
fertility, male sterility, increased drought tolerance, production 
of phytase, modified amino acids and alpha amylase, enhanced 
photosynthesis, and increased ear biomass. These approved 
traits represent 39 single genes (Supplementary Table S1), 
and the majority of these genes are related to insect (18) 

FIGURE 5 | Agricultural biotechnology pipeline for trait development in maize. General overview of main activities and estimates of maximum (light colours) and 
minimum (dark colours) costs and development time of each pipeline phase: discovery, proof-of-concept, early development, advanced development and 
prelaunch. Estimates are based on Mcdougall (2011) and Mumm (2013).
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and herbicide tolerance (11). The next generation of GM 
maize varieties potentially coming to the market comprises 
events with new insecticidal proteins such as Vpb4Da2, 
DvSnf7 RNA, and IPDO72Aa to control the population of 
insects already resistant to Bt (Schellenberger et  al., 2016; 
Moar et  al., 2017; Yin et  al., 2020), varieties that exhibit 
improve grain yield by overexpressing the zmm28 and 
ZM-BG1H1 genes (Wu et  al., 2019; Simmons et  al., 2020) 
and varieties that exhibit tolerance to drought stress by 
overexpressing ARGOS8 (Shi et  al., 2015).

The first and only commercial genome-edited maize variety 
was developed by Corteva to produce a high content of 
amylopectin (Gao et al., 2020a). Drought stress-tolerant genome-
edited maize has been developed by precise modification of 
the promoter region to increase the expression of the ARGOS8 
gene (Shi et  al., 2017). Other genome-edited maize varieties 
currently being developed include varieties with the traits of 
male sterility to facilitate hybrid development (Wan et  al., 
2019), tolerance to multiple stresses (Zhou et  al., 2016), and 
dwarfism (Zhang et  al., 2020b). From 2018 to 2020, several 
companies invested in genome editing in maize for achieving 
drought tolerance, resistance, and increased yield and stability, 
in addition to several traits investigated by government or 
academic institutions (USDA-APHIS, 2021).

CONCLUDING REMARKS

In this review, we  discuss the recent advances in genetic 
transformation and its application to introducing genetically 
modified and edited maize events to the market. Suitable maize 
transformation protocols using particle bombardment and A. 
tumefaciens are available and extensively applied for maize 
transformation. B104 is the most a suitable genotype, particularly 
due to its good agronomic performance, which directly allows 
the production of hybrids for field trial evaluation. However, 
transformation and plant regeneration remain limiting factors 
to the generation of elite commercial maize lines. This barrier 
should be  transposed soon through the use of genotype-
independent MRMT, which bypasses the callus phase and allows 
the rapid induction of somatic embryos from transformed 
scutellar cells. The advances in maize transformation technologies 
have also allowed the devising of strategies such as Hi-EDIT/
IMGE to accelerate the genome editing-driven breeding of 
elite maize germplasms. Thus, platforms for advanced maize 
biotechnology and breeding by combining genomics and genome 
editing and the discovery of genes and alleles for complex 
traits will certainly allow the development of varieties that are 
better adapted to the biotic and abiotic stresses imposed by 
global climate changes.

The adoption of genetically modified maize varieties is 
already consolidated and has been shown to increase crop 
yields, reduce pesticide and insecticide use, and decrease 
the cost of crop production. However, even though GM 
crops are the fastest technology adopted by farmers, their 
acceptance by consumers remains low. The emergence of 
new plant breeding technologies, at least those that do not 
incorporate foreign DNA into the host cell, can change 
consumer perception and increase food security strategies. 
It is hoped that the new technologies discussed in this 
review will enable the release of more significant numbers 
of maize lines carrying desired traits to meet today’s 
agriculture challenges.
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