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Abstract

BACKGROUND: The rice stalk stink bug Tibraca limbativentris (Hemiptera: Pentatomidae) is one of themost important rice pests
in Brazil. The search for cultivars that tolerate insect injury is necessary to complement other less aggressive methods of pest
suppression. The combination of integrated pest management tactics will reduce insecticide applications and improve the
safety of food production. Here, we tested the tolerance response of Xingu, Canela de Ferro and Primavera rice genotypes in
glasshouse experiments. In addition, we measured tolerance expressed in a variety of physiological responses, including gas
exchange rates, leaf chlorophyll content and reactive oxygen species (ROS) detoxification.

RESULTS: The results showed that the tolerance of the Primavera genotype to rice stalk stink bug damage was higher, due to
(a) a lower reduction of photosynthetic activity, (41% reduction only 96 h after infestation) compared to Xingu and Canela de
Ferro (56 and 65% reduction at 24 and 48 h after infestation, respectively); (b) the capacity to maintain the chlorophyll content
after infestation, while Xingu and Canela de Ferro reduced their chlorophyll content to 20% and 25% at 72 and 48 h after infes-
tation, respectively; (c) the antioxidative defense system being activated in the first 12 h after infestation, in which superoxide
dismutase (SOD) showed an increase of 61% in its activity, and (d) the maintenance of its grain yield, number of panicles per
plant, number of filled grains, and spikelets sterility.

CONCLUSION: Rice genotypes tolerant to herbivory can be identified by measuring the effect of injury and the plant's physio-
logical response by evaluating attributes such as grain yield and its components, gas exchange, chlorophyll content and ROS
detoxification. Therefore, the use of rice genotypes tolerant to stalk stink bugs as a component of integrated pest management
has the potential to reduce upland rice yield loss.
© 2021 Society of Chemical Industry.
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1 INTRODUCTION
Host plant resistance (HPR) is one of the most effective and sus-
tainable pest control tactics and is non-polluting and accessible
to farmers.1 Three categories of HPR have been proposed: antixe-
nosis, antibiosis and tolerance. In antibiosis, the plant negatively
affects insect biology/physiology and may even cause insect
death. In antixenosis, the plant has an adverse effect on
insect behavior, making it an unsuitable host for food, oviposition
or shelter. In tolerance, the plant presents the ability to recover
from or withstand injury by maintaining normal vital functions
through the activation of biochemical-molecular defense mecha-
nisms, even under stressful conditions.2,3 In addition, tolerance
characteristics have no effect on the pest such that consequent
selection of resistant pest populations is unlikely.2,4 However, anti-
biosis and antixenosis can exert pest selection pressures, which
may result in pests overcoming plant resistance, as they interfere
with insect biology/physiology.5

When the plant's tolerance involves compensatory traits for
itself, the plant is able to harbor large numbers of herbivores with-
out interfering with the insect pest's physiology or behavior.2

According to Mitchell et al.,6 plant tolerance occurs when plant
traits reduce the negative effects of herbivore damage on crop
yield. Plant tolerance to insects is a genetic condition expressed

through various biochemical and physiological events related to
primary processes such as photosynthetic activity, growth and
detoxification.2 Studies have shown reduced photosynthetic rates
and chlorophyll contents in susceptible plants compared to
insect-tolerant plants.7–10 According to Buffon et al.,11 the photo-
synthetic rate in rice variety IRGA 423 (tolerant) was less affected
by Schizotetranychus oryzae (Acari: Tetranychidae) infestation
than it was in plants of the variety Puitá INTA-CL (susceptible).
The wheat-tolerant variety (Halt) infested with Diuraphis noxia
(Hemiptera: Aphididae) showed a photosynthetic rate similar to
that of the control plants (without infestation), while the suscepti-
ble variety (TAM 107) showed a reduction in the photosynthesis
rate.7
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In response to initial insect feeding, ROS (reactive oxygen spe-
cies) such as superoxide radicals (O2

−.), hydrogen peroxide
(H2O2), singlet oxygen (O.), and hydroxyl radicals (OH.) have been
recognized as central early signals, integrating environmental
information and regulating stress tolerance.9,11,13 Normally, plants
display exceptional redox control, using ROS and antioxidants,
such as ascorbate and glutathione, to regulate numerous aspects
of their biology, including metabolism, growth, development and
gene expression patterns.13–16 Under normal conditions, ROS are
rapidly detoxified, and cellular redox homeostasis is governed by
the presence of enzymes, including superoxide dismutase (SOD),
catalase (CAT), ascorbate peroxidase (POX), glutathione peroxi-
dase, peroxiredoxin, thioredoxin, glutaredoxin, glutathione reduc-
tase and dehydroascorbate reductase,17 and large pools of
antioxidants that remove and buffer against oxidants.12,18

However, an oxidative burst in response to environmental stres-
sesmay lead to the generation of excessive ROS.19 In this scenario,
if the excessive accumulation of ROS is not efficiently removed, it
can become toxic to plant cells, rapidly oxidizing and damaging
cellular components, and ultimately lead to cell death.2 Under
proper developmental conditions, cell ROS production is low
(240 mmol L–1 s−1 O2

− and the steady-state level of 0.5 mmol L–
1 s−1 H2O2 in chloroplasts), while many stresses that alter cellular
homeostasis accentuate ROS production (240–720 mmol L–1 s−1

O2
− and 5–15 mmol L–1 H2O2).

20 When injured by insects, tolerant
plants increase the activity of antioxidant system enzymes as a
cell detoxification mechanism.2,21–23 In tolerant rice genotypes,
an increase in POX and polyphenol oxidase activity was observed
when Nilaparvata lugens (Hemiptera: Delphacidae) infested
plants.24 In tobacco, tolerance to damage caused by whiteflies
(Hemiptera: Aleyrodidae) can be explained by increased CAT
activity.25

The rice stalk stink bug Tibraca limbativentris Stål, 1860
(Hemiptera: Pentatomidae) is recognized as the major rice pest
in Brazil and is also important throughout South and Central
America.26–28 This species also presents potential as an invasive
pest in the United States.29 The damage caused by rice stalk stink
bugs can occur during the vegetative phase, which leads to a
‘dead heart’, or in the reproductive phase, which leads to a ‘white-
head’.30 Under high infestation conditions, the yield loss caused
by the pest can reach up to 90%.31

Plant perception of hemipteran pests appears to occur within a
short time frame <1 h, with some changes observed within an
even shorter interval.16,32 Reaction cascades impacted by a num-
ber of cell wall-anchored proteins include changes in intercellular
calcium content and the production of superoxide and related
ROS. Some of these events are likely part of the innate immunity
of plants to pests and/or pathogens.18 Piercing-sucking insects
subsequently trigger more specific responses because the
removal of the phloem and xylem contents disturbs both
the water and nutrient balance in the plant and effectively modu-
lates chloroplast functions.2

The most common method used to control rice stalk stink bugs is
chemical insecticide applications.33 However, this method can be
inefficient due to inadequate contact between the insect and the
insecticide because the insect usually settles at the base of the rice
stem to feed.34 The use of only insecticides to control stink bugs
can lead to undesirable effects on the environment, non-target
organisms and humans, as well as favoring the selection of insects
resistant to insecticides.33,35 Therefore, it is necessary to incorporate
more efficient and less environmentally disruptive control methods
compatible with integrated pest management (IPM).6

Rice (Oryza sativa L.) has an evolutionary peculiarity of being
semiaquatic, and flooded rice paddies have become the major
form of rice cultivation; growth in irrigated and rainfed lowland
conditions occurs in 75% and 19% of the global production area,
respectively. Upland rice represents only 4% of global rice produc-
tion and is grown on less than 9% of Asia's total rice acreage, with
46% in Latin America and 47% inWest Africa.36 As rice is an essen-
tial crop for food security in more than half of the world's
population,1 it is of utmost importance to assess the impact of
herbivory on agronomic and physiological attributes such as grain
yield and its components, gas exchange, chlorophyll content and
antioxidant systems. However, plant tolerance to insects has been
poorly studied due to barriers in the determination of defense
action mechanisms, as well as factors that hamper high-precision
phenotyping methods for large-scale screening.6,37

2 MATERIALS AND METHODS
To characterize the tolerance of upland rice to stalk stink bugs,
two experiments were carried out in duplicate at Embrapa Arroz
e Feijão. One experiment sought to evaluate the agronomic per-
formance of plants attacked by this insect, and the other experi-
ment aimed to evaluate the physiological responses of injured
plants. We use three rice genotypes (O. sativa L.) that are known
for their different degrees of resistance to rice stalk stink bug.
The Xingu genotype, BGA 014016, a commercial cultivar, is sus-
ceptible to rice stalk stink bug.38 The Canela de Ferro genotype,
BGA 011523, landrace, and Primavera, BGA 008070, are both com-
mercial cultivars that present agronomic traits such as high grain
yield and consumer acceptance; both genotypes are resistant to
the rice stalk stink bug by antibiosis and/or antixenosis.38 The
three genotypes belong to the gene bank of Embrapa Rice and
Beans and constitute genetic diversity within the upland rice
breeding program.

2.1 Insects rearing
For oviposition, T. limbativentris adults were field-collected
(Embrapa Rice and Beans experimental area), kept in cages and
fed rice plants (cultivar BR IRGA 409) in a glasshouse. The eggs
were collected and transferred to a Gerbox-type plastic container
(11 cm × 11 cm × 3.5 cm, Adria Laboratórios, Londrina, Paraná,
Brazil) lined with a moistened paper towel and kept in the labora-
tory (temperature 25 ± 2 °C, relative humidity 70 ± 10% and pho-
toperiod 14 h) until nymphs hatched; nymphs remained under
these conditions until the second instar.
After this phase, the nymphs were transferred to rice plants (the

same variety) at age 45 to 50 days and covered with voile mesh
cages until the adult stage for oviposition. The plants were
inspected every 2 days, with dead insects and ovipositions being
removed.

2.2 Agronomic attributes
2.2.1 Grain yield and production components
The upland rice plants were obtained using the same methodol-
ogy as in the previous experiment. At 10 days after emergence
(DAE), the seedlings were transplanted to 8 L plastic pots contain-
ing commercial soil substrate (BIOPLANT - Nova Ponte, MG, Brazil).
Three plants were transplanted into each plastic pot, with each
plastic pot being considered one replicate, totaling six replicates
in a completely randomized design. The plants received the
recommended fertilization for rice cultivation39 and were irri-
gated periodically according to their water requirements. The
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plants were kept in a glasshouse with environmental conditions
monitored by a datalogger (Hobo® U12-012, Onset Computer
Corp. Ltd, Cape Cod, MA, USA). Temperatures ranged from 16.5
to 32.7 °C (22.8 °C average), and relative humidity ranged from
20.7% to 85.5% (45.2% average).
At 48 DAE, the plants of the three genotypes were infested with

two pairs of adult rice stalk stink bugs (15 days) for a period of
8 days. The plants were covered with a screen cage (50 mesh).
After infestation, all plants were subjected to insecticide applica-
tion (tiamethoxan + ⊗-cyhalothrin, Engeo Pleno®) to ensure no
insect damage to the plants.
Harvestingwas performedmanually after physiologicalmaturity of

the grains. The agronomic traits evaluated were grain yield (GY in g
plant−1, which means the total mass of grains, in grams, obtained
for three plants per pot) and its components, such as the number
of panicles per plant (NPP), number of filled grains (NFG, filled grains
average in six panicles per column), and number of empty grains
(NEG, empty grains average in six panicles per column). Spikelet ste-
rility was estimated as SS= (NEG × 100)/TG, where SS is the spikelet
sterility, NEG the number of empty grains, and TG the total number
of grains.

2.3 Physiological traits
2.3.1 Plant growth
Seeds of the three genotypes were sown in a Styrofoam tray
(128 cells) filled with commercial soil substrate. At 10 DAE, the
seedlings were transplanted to 8 L plastic pots. Each plastic pot
containing two plants was considered one replicate, totaling
eight replicates in a completely randomized design. The plants
were kept in a glasshouse with environmental conditions moni-
tored by a datalogger (Hobo® U12-012, Onset Computer Corp.
Ltd). The temperatures ranged from 20.5 to 35.7 °C (26.7 °C aver-
age), and the relative humidity ranged from 43.7% to 94.2%
(77.9% average). The plants received the recommended fertiliza-
tion for rice cultivation38 andwere irrigated periodically according
to their water requirements.

2.3.2 Plant infestation
At 49 DAE, each of the two rice plants in each plastic pot was cov-
ered with a voile mesh cage, one of which was infested with an
adult rice stalk stink bug female (12 days, starved for 8 h before
infestation), while the other plant was left uninfested (control
treatment). The insect was placed in contact with the rice stalk
for 12, 24, 48, 72 and 96 h. Each of the time periods constituted
separate treatments, independent of each other, taking care
not to damage the plant and interfere with the physiological
analysis. At the end of each time, the insect was removed, and
physiological evaluations were performed.

2.3.3 Gas exchange
The carbon dioxide (CO2) assimilation rate (A, in μmol CO2

m−2 s−1), transpiration rate (E, in mmol H2O m−2 s−1), stomatal
conductance (gs, in mol H2O m−2 s−1), and internal CO2 concen-
tration (CI, in μmol mol−1) were determined on the middle third
of the first fully expanded leaf (top to base) of upland rice plants.
Measurements at 12, 24, 48, 72 and 96 h after rice stalk stink bug
infestation were performed using a portable infrared gas analyzer
(LCpro+, ADC BioScientific, Hoddesdon, UK). The equipment was
set to use temperature and concentrations of 370 to
400 mol mol−1 CO2 in air, which is the reference condition used
in the IRGA photosynthesis chamber. The photon flux density
photosynthetically active (PPFD) was 1200 μmol [quanta]

m−2 s−1 in the chamber with artificial light, where the leaf to be
analyzed was placed. The minimum equilibration time set for per-
forming the reading was 2 min. Two readings per plant, between
8:00 and 10:30 h, were performed at each repetition per
treatment.

2.3.4 Chlorophyll content
Leaf chlorophyll contentmeasurements were performed at 12, 24,
48, 72 and 96 h after rice stalk stink bug infestation of the rice
plants. Measurements were indirectly performed by a SPAD-502
(Konica Minolta Sensing, Inc., Tecnal Laboratory Equipment, Pira-
cicaba, Brazil)40 portable meter using the optical density differ-
ence of two wavelength regions (650 nm and 940 nm). Ten
readings per plant, between 8:00 and 10:30 h, were performed
during each repetition per treatment.

2.3.5 Superoxide dismutase, catalase and peroxidase activity
2.3.5.1. Crude extract. The first fully expanded leaf (top to base)
was collected at 12, 24, 48, 72 and 96 h after infestation of the rice
plants to determine its enzymatic activity. After collection, the
leaves were placed in 50 mL Falcon centrifuge tubes and kept in
liquid nitrogen. Then, they were subjected to freeze drying at
−80 °C with lyophilization, and analytical processing was subse-
quently performed. To obtain the leaf extract, 60 mg of lyophi-
lized leaf, 20 mL of 100 mmol L−1 potassium phosphate buffer
solution, pH 7.8, containing 0.1 mmol L−1 EDTA, 0.44% (p/v) poly-
vinylpyrrolidone K-40 (PVP) and 0.5% (v/v) Triton X-100 was used.
Then, the mixture was homogenized for 3 min in a vortex shaker,
and the homogenate obtained was centrifuged at 11 000 rpm for
40 min at 4 °C. The supernatant, referred to as the crude leaf
extract, was fractionated into 1000 μL aliquots and stored at
−20 °C.41

2.3.5.2. Superoxide dismutase specific activity. Briefly, 50 μL ali-
quots of the crude rice leaf extract were used to determine SOD
activity,42 with modifications. The method is based on the ability
of SOD to inhibit the photochemical reduction of nitroblue tetra-
zolium (NBT). According to Corte et al.43 one unit of SOD is defined
as the amount of enzyme that causes a 50% decrease in SOD-
inhibitable NBT reduction. The results were expressed as SOD
units (UN SOD mg−1 protein), defined as the ratio of SOD activity
to the total amount of soluble protein contained in the crude
extract, with the total soluble protein content of the crude leaf
extract being determined according to Bradford.44

2.3.5.3. Catalase specific activity. Briefly, 50 μL aliquots of the
crude rice leaf extract were used to determine CAT activity,45 with
minor modifications. The catalase kinetic assay was determined
by the disappearance of H2O2 as measured by ultraviolet spectro-
photometry and expressed as mmol reduced H2O2 min−1. To
determine the specific activity (mmol reduced H2O2 min−1 mg−1

protein), defined as the ratio of CAT activity to the total amount
of soluble protein contained in the crude extract, the total soluble
protein content in the crude leaf extract was determined accord-
ing to Bradford.44

2.3.5.4. Peroxidase specific activity. Brifly, 50 μL aliquots of the
crude rice leaf extract were added to the reaction medium con-
sisting of 0.1 mol L–1 acetate buffer pH 5.0, 0.3% H2O2 and
1.0 mmol L–1 2,20-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
(ABTS).46,47 The POX activity results are expressed in mmol ABTS*
s−1. To determine the specific activity (mmol ABTS* s−1 mg−1),
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defined as the ratio of POX activity to the total amount of soluble
protein contained in the crude extract, the total soluble protein
content in the crude leaf extract was determined according to
Bradford.44

2.3.5.5. Total soluble protein. The total soluble protein concentra-
tion for all samples was determined by the Bradford method43

using bovine serum albumin (BSA) from a stock 1 mg mL−1 BSA
standard solution. The total soluble protein content in the leaf
extract was calculated by reference to the calibration graph plot-
ted from the results obtained with the diluted standard solutions
containing 0, 25, 75, 125, 175, 225, and 300 μg mL−1 BSA.

2.4 Statistical analysis
Data were analyzed for normality by the Kolmogorov–Smirnov
test and homoscedasticity by the Bartlett test. Then, the means
that assumed a normal distribution were submitted to joint anal-
ysis of variance for replicates, and Student's t-test (P < 0.05) was
used to verify if there were differences between the injured and
uninjured plants. When the assumptions were not met, themeans
were submitted to joint analysis of deviance for replicates
(ANODEV) (P < 0.05), fitting Poisson generalized linear models
(GLMs) for the variables NPP and NFG and a binomial for
the variable SS. All analyses were performed using R version
4.0.1 (www.rproject.org).

3 RESULTS
3.1 Agronomic attributes
The GY and NFG of the injured plants of the Xingu and Canela de
Ferro genotypes showed significant differences relative to unin-
jured plants (Table 1). For the NPP, no significant differences were
observed between plants injured by rice stalk stink bugs and
uninjured plants in any of the evaluated genotypes.
In the Xingu and Canela de Ferro genotypes, NFG was approxi-

mately 27% lower in injured plants than in uninjured plants. In the
Primavera genotype, no reduction in NFG between injured and
uninjured plants was observed. In the Xingu and Canela de Ferro
genotypes, the reduction in GY in the injured plants was 29% and

24%, respectively. In the Primavera genotype, no significant differ-
ence in GY between injured and uninjured plants was observed.
In the Xingu and Canela de Ferro genotypes, the increase in SS

in injured plants was approximately 112% compared to uninjured
plants. In the Primavera genotype, no increase in SS between
injured and uninjured plants was observed.

3.2 Physiological traits
In the three genotypes evaluated, the plants infested with rice
stalk stink bugs showed a significant reduction in A, E and gs com-
pared with the uninjured plants (Figs 1, 2 and 3). On average, the
net photosynthesis value was approximately 12.5 μmol CO2

m−2 s−1 for uninjured plants of the Xingu, Canela de Ferro and Pri-
mavera genotypes during 96 h of evaluation. Transpiration and
stomatal conductance values, on average, were approximately
3.5 mmol H2O m−2 s−1 and 0.23 mol H2O m−2 s−1, respectively.
Although within the accepted standards for upland rice
genotypes,48 these values are considered low for modern
cultivars.
For the injured plants, Xingu presented photosynthetic activity

reduction 24 h after infestation. Over the subsequent hours
(24 to 96 h after insect contact with the rice plants), the average
reduction was approximately 56% (t1,30 = −5.66, P = 0.0005),
26% (t1,30 = −2.71, P = 0.016) and 40% (t1,30 = 4.87, P < 0.001),
respectively. In the Canela de Ferro genotype, the reductions in
A, E and gs were even more pronounced (65%, 36% and 42%,
respectively), beginning at 48 (t1,30 = 4.78 P = 0.0002), 72
(t1,30 = 2.56, P = 0.022) and 96 h (t1,30 = −2.23, P = 0.042) after
infestation, respectively. In the Primavera genotype, the reduction
in A (41%) (t1,30 = −2.82, P = 0.0013), E (36%) (t1,30 = −5.48
P=<0.001) and gs (40%) (t1,30=−4.36, P < 0.001) occurred within
96 h after infestation. In relation to CI, plants of the Xingu and
Canela de Ferro genotypes injured by rice stalk stink bugs showed
significant increases compared with uninjured plants (Fig. 4). An
increase of 18% in CI in both the Xingu (t1,30 = 4.09, P = 0.001)
and Canela de Ferro (t1,30 = 2.89, P = 0.011) genotypes was
observed starting 72 h after infestation. However, the Primavera
genotype presented no significant increase in CI compared to
uninjured plants.

Table 1. Individual effect of Tibraca limbativentris infestation on grain yield and its components of rice genotypes

Variety Uninjured Injured P-Value Percent t(1,22)

Grain yield (GY) (g plant−1)
Xingu 23.60 ± 0.001 16.82 ± 0.002 0.0319 −34.4 2.52
Canela de Ferro 25.27 ± 0.001 19.29 ± 0.001 0.0078 −24.7 3.36
Primavera 19.26 ± 0.002 19.44 ± 0.002 0.9602 0 0.05
Number of panicles plant (NPP)
Xingu 7 ± 0.001 6 ± 0.001 0.4967 −14.3 0.46
Canela de Ferro 7 ± 0.0006 5.16 ± 0.0004 0.1971 −26.3 1.66
Primavera 6.83 ± 0.7 5.83 ± 0.6 0.4911 −14.7 0.47
Number of filled grains (NFG)
Xingu 597.1 ± 48.3 440 ± 65.5 < 0.001 −26.4 13.6
Canela de Ferro 825.5 ± 53.3 605.1 ± 26.1 < 0.001 −26.7 204.4
Primavera 719.1 ± 42.1 794.5 ± 76.0 < 0.001 0 22.5
Spikelet sterility (SS) (%)
Xingu 5.03 ± 2.86 10.63 ± 1.28 < 0.001 +111 101.75
Canela de Ferro 7.63 ± 3.35 16.18 ± 1.25 < 0.001 +112 197.2
Primavera 9.53 ± 1.14 8.09 ± 1.01 0.0147 0 5.94
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Considering chlorophyll content, the Xingu and Canela de Ferro
genotype plants infested with rice stalk stink bugs showed a sig-
nificantly lower SPAD index (Fig. 5). In the Xingu genotype, the
average reduction in chlorophyll content 72 h after infestation
was 20% (t1,30 = 3.94, P = 0.003). In the Canela de Ferro genotype,
the reduction was 25% 48 h after infestation (t1,30 = 4.76, P 0.001).

In contrast, injured Primavera genotype plants presented no sig-
nificant reduction in chlorophyll content compared to uninjured
plants.
The enzymes of the cellular antioxidant defense system, SOD,

CAT and POX, were found to bemore active when rice plants were
infestedwith rice stalk stink bug (Figs 6, 7 and 8). Concerning SOD,

Figure 1. Assimilation rate (A) (mean ± standard error) in rice varieties
infested by Tibraca limbativentris. (a) Xingu, (b) Canela de Ferro and
(c) Primavera. Treatments within each post-infestation time with an aster-
isk (*) were statistically distinguished by t-tests (P < 0.05) within each post-
infestation time.

Figure 2. Transpiration rate (E) (mean ± standard error) in rice varieties
infested with Tibraca limbativentris. (a) Xingu, (b) Canela de Ferro and
(c) Primavera. Treatments within each post-infestation time with an aster-
isk (*) were statistically distinguished by t-tests (P < 0.05) within each post-
infestation time.
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injured plants of Xingu, Canela de Ferro and Primavera genotypes
showed significantly higher specific activity (60%) at
96 (t1,30 = 2.95, P 0.006), (30%) 48 (t1,30 = 2.06, P = 0.0498) and
(61%) 12 h (t1,30 = 4.11, P < 0.001) after infestation, respectively.
For CAT, injured plants of the Xingu, Canela de Ferro and Prima-
vera genotypes showed significantly higher specific activity
(48%) 48 (t1,30 = 1.87, P = 0.008), (69%) 24 (t1,30 = 3.11,

p = 0.0075) and (45%) 48 h (t1,30 = 2.89, P = 0.0117) after infesta-
tion, respectively. For POX, injured plants of the Xingu, Canela de
Ferro and Primavera genotypes showed significantly higher spe-
cific activity (56%) 48 (t1,30 = 2.76, P = 0.0116), (22%) 72
(t1,30 = 2.97, P = 0.005) and (28%) 24 h (t1,30 = 2.56, P = 0.0154)
after infestation, respectively.

Figure 3. Stomatal conductance (gs) (mean ± standard error) in leaves of
rice varieties infested by Tibraca limbativentris. (a) Xingu, (b) Canela de
Ferro and (c) Primavera. Treatments within each post-infestation time with
an asterisk (*) were statistically distinguished by t-tests (P < 0.05) within
each post-infestation time.

Figure 4. Internal concentration of carbon (CI) (mean ± standard error) in
rice varieties infected by Tibraca limbativentris. (a) Xingu, (b) Canela de
Ferro and (c) Primavera. Treatments within each post-infestation timewith
an asterisk (*) were statistically distinguished by t-tests (P < 0.05) within
each post-infestation time.
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4 DISCUSSION
In our study, we characterized the tolerance of rice to rice stalk
stink bugs, measuring the agronomic performance of plants
attacked by rice stalk stink bugs and the physiological responses
of the injured plants.
The agronomic performance of Xingu, Canela de Ferro and Pri-

mavera cultivated in the presence and absence of rice stalk stink

bugs had different responses to pest damage. The Primavera
genotype performed differently from the Xingu and Canela de
Ferro genotypes, presenting no significant reduction in GY per
plot or the NFG, in addition to no significant increase in percent
SS in injured plants compared with uninjured plants. Previous
studies have shown that tolerant insect-injured plants have
increased growth and nitrogen physiology,49 increased plant

Figure 6. Superoxide dismutase (SOD) (UN SOD mg−1 protein) (mean
± standard error) enzyme activity in the sap of rice varieties infested with
Tibraca limbativentris. (a) Xingu, (b) Canela de Ferro and (c) Primavera.
Treatments within each post-infestation time with an asterisk (*) were sta-
tistically distinguished by t-tests (P < 0.05) within each post-
infestation time.

Figure 5. Chlorophyll content (SPAD) (mean ± standard error) in leaves
of rice varieties infested with Tibraca limbativentris. (a) Xingu, (b) Canela
de Ferro and (c) Primavera. Treatments within each post-infestation time
with an asterisk (*) were statistically distinguished by t-tests (P < 0.05)
within each post-infestation time.
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vigor50 or increased photosynthetic activity in their undamaged
parts to compensate for the damage caused by herbivory.51,52

In parallel, the leaf gas exchange performance of the Primavera
genotype was minimally affected by the damage caused by the
rice stalk stink bug compared to the response of injured plants
of the Xingu and Canela de Ferro genotypes. The carbon assimila-
tion values for Primavera leaves (12 to 72 h after infestation) did

not differ, with a mean relative photosynthesis value of 91%
compared to the uninjured plants. As the infestation increased,
a moderate decrease (41%) in relative photosynthesis was
observed 96 h after infestation. Xingu and Canela de Ferro
showed an abrupt reduction (56% and 65%) 24 and 48 h after
infestation. Changes in vascular tissue may explain the reduction

Figure 8. Peroxidase (POX) activity (mmol ABTS* s−1 mg−1) (mean
± standard error) in the sap of rice varieties infested with Tibraca limbati-
ventris. (a) Xingu, (b) Canela de Ferro and (c) Primavera. Treatments with
an asterisk (*) were statistically distinguished by t-tests (P < 0.05) within
each post-infestation time.

Figure 7. Catalase (CAT) activity (mmol H2O reduced min−1g−1protein)
(mean ± standard error) in the sap of rice varieties infested with Tibraca
limbativentris. (a) Xingu, (b) Canela de Ferro and (c) Primavera. Treatments
within each post-infestation time with an asterisk (*) were statistically dis-
tinguished by t-tests (P < 0.05) within each post-infestation time.
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in the photosynthetic rate in plants infested with the rice stalk
stink bug, as this insect lodges at the base of the stalk of rice
plants and sucks the sap by inserting stylets between the conduc-
tive vessel cells.9,53 Nonetheless, we cannot ignore the possibility
that the chemical compounds in insect saliva affect photosyn-
thetic tissues.53,54 Photosystem II physiological changes can occur
after the destruction or inactivation of the pigment responsible
for light capture, and without the inductive amplification of
the captured light, there are no free electrons to conduct the
biochemical step of photosynthesis.55,56

With effective plant–insect interactions, the vascular tissue is
compromised, affecting not only sap translocation but also xylem
current, which can be observed, in this study, through transpira-
tion and stomatal conductance reduction. The first effect of sto-
matal closure is a decrease in mesophyll CO2 and in net
photosynthesis, in part due to a decrease in the synthesis of
rubisco and in its carboxylation activity and efficiency, or both.57

However, stomatal conductance is not controlled by any one fac-
tor alone but by a complex interaction of several leaf internal and
external factors.58 As stomatal conductance has a close relation-
ship with leaf transpiration, since water exits the leaf through
the stomata, an abrupt reduction in both was observed in Xingu
and Canela de Ferro during the first hours of infestation. Further-
more, the stomata usually maintain a constant internal partial CO2

pressure relative to the external pressure. CO2 concentration is
defined as the balance between CO2 consumption (photosynthe-
sis) and replacement (external flux, respiration, and photorespira-
tion).59,60 Thus, infested Xingu and Canela de Ferro plants showed
increased concentrations of internal CO2 in their leaves, which
may be associated with increased respiratory and photorespira-
tory rates.53,61 The plant breathes more due to the need for extra
energy production to repair the structures damaged by the
insect.9

However, increased production of secondary colms, pre-
existing high levels of carbon storage in roots, and the ability to
reallocate carbon after injury from roots to shoots,60 may have
had a significant impact on the stability of the grain yield of Prima-
vera, since these are additional types of compensatory growth
mechanisms that allow plants to recover from herbivore attack,
although these components have not been evaluated in our
study. According to Lemoine et al.62 senescence and reserve
mobilization are integral components of plant development and
basic strategies used in stress mitigation.
Leaves normally have a number of chloroplasts and photosyn-

thetic pigments (chlorophyll a, chlorophyll b, carotene, and xan-
thophyll), far beyond what is necessary,62 so they become more
opaque when infested by pests. Our results indicated that stink
bug attack reduces chlorophyll content at levels detectable by
SPAD and that this reduction depends on the degree of tolerance
of the genotype in question. Infested plants of Xingu and Canela
de Ferro presented a reduced chlorophyll content, while the Pri-
mavera genotype showed no difference. Altered SPAD levels
due to attacks by piercing-sucking insects were also detected by
Goławska et al.63 and Jesus et al.,10 who studied four leguminous
species attacked by aphids.
The attack of insects on plants causes an oxidative explosion

characterized by the production of ROS,64 which, if produced in
large quantities, causes deleterious effects on cells.25 According
to Lei and Zhu-Salzman,65 rapid H2O2 production upon aphid
infestation in the bik1 mutant suggests that the BIK1 (BOTRYTIS-
INDUCED KINASE1) gene, encoding a receptor-like cytoplasmic
kinase in Arabidopsis, affects ROS homeostasis. RESPIRATORY

BURST OXIDASE HOMOLOGUE (AtRBOH) genes in Arabidopsis
encode NADPH oxidases involved in ROS production in response
to infection by bacterial and fungal pathogens, particularly AtR-
BOHD and AtRBOHF. Arabidopsis serine/threonine kinase OXIDA-
TIVE SIGNAL-INDUCIBLE1 (AtOXI1) and zinc finger protein AtZat12
are both marker genes for ROS signaling. Arabidopsis CATALASE1
(AtCAT1) and CATALASE2 (AtCAT2) can detoxify H2O2 and are
induced by abiotic stresses. Cytosolic ASCORBATE PEROXIDASE1
(AtAPX1) can also scavenge H2O2.
As a form of defense, plants have an apparatus of antioxidant

system enzymes thatminimize the effect of ROS.23,66 Several stud-
ies have described the ability of tolerant genotypes to increase
the activity of antioxidant system enzymes when challenged by
insect damage.10,22,24,67,68 In this study, Primavera plants had
increased specific SOD activity from the first hours of insect-plant
contact, differing significantly from Xingu and Canela de Ferro
plants, which showed an increase in SOD activity 96 and 48 h after
infestation, respectively. SOD is the enzyme that is the first line of
defense against the toxic effects of ROS, as it is responsible for the
displacement of the superoxide radical in H2O2 and molecular
oxygen.69 Sytykiewicz et al.70 described a significant increase in
superoxide anion radicals (O2

−.) in maize seedlings infested with
Rhopalosiphum padi (bird cherry-oat aphid).
In the cascade of detoxification reactions, the enzymes CAT and

POX act next, as they are responsible for H2O2 demutation in
water and oxygen.21,71 Primavera genotype plants showed high
activity at most evaluation times, showing that their attack per-
ception and detoxification mechanisms were immediately trig-
gered following the attack. However, the activity levels of
these enzymes in insects are believed to be crucial factors in
determining their resistance to a broad spectrum of toxic
chemicals.65

Thus, it is plausible that integration of these processes might be
involved in attenuation of the defense response, maintaining
higher levels of ROS mitigating systems, compensation of photo-
synthates lost due to insect herbivory and renewed growth of the
meristems and maintained grain yield in the Primavera genotype.
Screening studies of the gene bank to identify rice genotypes tol-
erant to the rice stalk stink bug, as well as molecular biological
screening to identify and characterize tolerance genes in rice
plants, should be conducted to support the rice breeding pro-
gram to develop resistant cultivars. In addition, gas exchange
and chlorophyll content are physiological attributes that can be
used to identify rice genotypes more tolerant to rice stalk stink
bugs, as they are sensitive, non-destructive methods for detecting
pest damage and are easy to use in field conditions.
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