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A B S T R A C T   

The red palm mite, Raoiella indica (Acari: Tenuipalpidae), is a serious pest of coconut plantations in tropical 
countries such as Brazil. Ecologically-sound control strategies have been sought for this pest; however, the po
tential of entomopathogenic fungi such as Beauveria bassiana (Hypocreales: Cordycipitaceae) in controlling this 
pest, as well as its compatibility with co-occurring natural enemies, remains poorly investigated. Thus, the 
present study was conducted to investigate the potential of four B. bassiana strains in controlling R. indica, as well 
as the compatibility of the most pathogenic fungal strain with the predatory mites Amblyseius largoensis and 
Typhlodromus ornatus (Acari: Phytoseiidae). Briefly, the pathogenicity of four B. bassiana strains (Bb-032, Bb-053, 
Bb-057 and Bb-086), isolated from coconut pests, were tested against R. indica. The B. bassiana strain Bb-032 was 
selected for further bioassays for being the most pathogenic to R. indica. The red palm mite survival and mean 
survival time drastically decreased when exposed to B. bassiana strain Bb-032 at both LC50 and LC80. In contrast, 
neither survival nor mean survival time of A. largoensis and T. ornatus were affected by the exposure to LC50 and 
LC80 of B. bassiana strain Bb-032. The fungal strain showed considerable selectivity to the two predatory mites; 
however, at its estimated LC80 for R. indica, reduced oviposition, egg viability and the instantaneous rate of 
increase (ri) were generally observed for both natural enemies. Therefore, B. bassiana holds potential promise for 
controlling R. indica in addition to being generally selective to non-target predatory mites.   

1. Introduction 

The red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), is a 
polyphagous species that can colonize plants of several families (Carrillo 
et al., 2012; Gómez-Moya et al., 2017). The ability to survive under 
adverse conditions, high reproductive capacity, and rapid spread and 
adaptation to new hosts favoured the invasion of R. indica onto the 
American continent, which culminated in a high economic impact in 
coconut-producing countries (Domingos et al., 2013; Melo et al., 2018). 
High infestations of R. indica in coconut palms may cause severe yel
lowing of the leaves followed by tissue necrosis (Flechtmann and Eti
enne, 2004). However, information on economic losses is scarce, and is 
based on estimates (Navia et al., 2013). For instance, Trinidad and 
Tobago have been heavily affected by R. indica, with some plantations 

suffering a reduction in coconut production of about 70 % (Navia et al., 
2013). In Brazil, the red palm mite was first reported in 2009 (Navia 
et al., 2011) and has since spread throughout the country causing sig
nificant losses to agriculture due to the potential damage to plants of 
economic importance, such as coconut, banana, several species of 
palm-producing oil or wax, and ornamentals (Melo et al., 2018). 

Raoiella indica is usually controlled with acaricides, which poten
tially increase production costs, contaminate the environment, and 
negatively affect human health and non-target organisms (Geiger et al., 
2010; Roubos et al., 2014). Entomopathogenic fungi such as Beauveria 
bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) have been 
used effectively for the control of agricultural pests as they are 
broad-spectrum pathogens, capable of infecting insects (Dhawan and 
Joshi, 2017; Mascarin et al., 2019) and mites (Draganova and Simova, 
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2010; van Lenteren et al., 2018; Chavan et al., 2019). In addition to 
fungi, predatory mites of the Phytoseiidae family, such as Amblyseius 
largoensis Muma (Acari: Phytoseiidae) and Typhlodromus (Anthoseius) 
ornatus Denmark and Muma (Acari: Phytoseiidae), naturally inhabit 
coconut plantations in Brazil (Morais et al., 2016; Návia et al., 2005; 
Reis et al., 2008). The predatory mite A. largoensis has also been 
emphasized as an important natural enemy of R. indica in many tropical 
countries (Carrillo and Peña, 2012; Domingos et al., 2013). Since the 
combined use of B. bassiana and predators can synergistically act on mite 
pests (Midthassel et al., 2016), this study aimed to investigate the po
tential of four B. bassiana strains in controlling R. indica, as well as the 
compatibility of the most pathogenic fungal strain with the predatory 
mites A. largoensis and T. ornatus. 

2. Materials and methods 

2.1. Rearing of R. indica and predators 

Coconut leaflets containing teliochrysalids of R. indica were collected 
from coconut palms in Aracaju city (10◦ 57′ 03′′ S; 37◦ 03′ 07” W), 
Sergipe state, Brazil. The leaflets were kept in open transparent plastic 
tubes (52 cm long x 5.5 cm in diameter), placed in glass jars (10.1 ×
10.1 × 13.7 cm, Invicta®, MG, Brazil) with water up to the base of the 
leaflets to maintain their turgidity until the emergence of the adult fe
males (Lira et al., 2021). Mites fed on leaves and females less than 48 h 
old were used in all bioassays. The colony of A. largoensis and T. ornatus 
was started with adult females and nymphs collected from unsprayed 
coconut leaflets in the same plantation as described for R. indica. In
dividuals of R. indica, A. largoensis and T. ornatus were identified using 
taxonomic keys, and voucher specimens were deposited in the mite 
collection of Maranhão State University (UEMA), São Luís, Maranhão, 
Brazil. 

The colonies were maintained at 27 ± 3 ◦C and 70 ± 10 % R.H. with a 
12 h scotophase. Arenas consisted of PVC pieces (24 cm long x 10 cm 
wide) on a polyurethane foam (26 cm long x 12 cm wide x 3.0 cm thick) 
with a barrier of cotton wool soaked in water around the edge to further 
prevent the predatory mites from escaping. Cotton threads underneath a 
glass slide (18 × 18 mm) were placed on the arenas to serve as shelter 
and oviposition sites (Teodoro et al., 2017). The predatory mites were 
fed with castor bean pollen, Ricinus communis L. (Malpighiales: 
Euphorbiaceae), eggs, protonymphs, deutonymphs (immature stages) 
and adults (males and females) of R. indica and diluted honey (10 %), 
which were replenished every two days. 

2.2. Selection of B. bassiana strain 

The pathogenicity of four B. bassiana strains, isolated from coconut 
pests and belonging to Embrapa Tabuleiros Costeiros, Aracaju - Brazil, 
were tested against adult stage of R. indica: [Bb 032- germination rate 
95.8 %, isolated from Rhynchophorus palmarum Linnaeus (Coleoptera: 
Curculionidae) collected in Aracaju city, Sergipe state; Bb 053- germi
nation rate 93.4 %, isolated from Brassolis sophorae Linnaeus (Lepidop
tera: Nymphalidae) collected in Moju municipality, Pará state; Bb 057- 
germination rate 93.5 %, isolated from Homalinotus coriaceus (Gyl
lenhal) (Coleoptera: Curculionidae) collected in Neópolis municipality, 
Sergipe state; and Bb 086- germination rate 98.6 %, isolated from Rhi
nostomus barbirostris Linnaeus (Coleoptera: Curculionidae) collected in 
Valencia municipality, Bahia state]. 

The arenas (experimental units) consisted of coconut leaflet sections 
placed upside down inside Petri dishes (15 cm diameter x 1.3 cm depth) 
in which a layer of solidified agar (5 %) was immersed, with 0.3 % 
methylparaben (Nipagim™) as fungicide and distilled water (Santos 
et al., 2019). Thirty adult females of R. indica were transferred to arenas 
(2.0 cm diameter), opened with the aid of a circular mold, thereby 
exposing the area of the coconut leaflet epidermis. Subsequently, the 
arenas were sprayed with the four B. bassiana strains at a standard 

concentration of 3.3 × 108 conidia/mL through a Potter tower using a 
1.7 mL aliquot at 34 kPa (0.34 bar) pressure, rendering a 1.8 ± 0.1 
mg/cm2 residue, which is in line with the recommendation of 
IOBC/WPRS (International Organization for Biological Control of 
Noxious Animals and Plants/West Palearctic Regional Section) (Hassan 
et al., 1994). The solution was previously prepared in an aseptic 
chamber by adding 150 mL of distilled and sterile water, and 0.05 % 
Tween® 80 (Sigma Aldrich) to a vial with the matrix culture and stirring 
it well with the aid of a sterile glass rod to release the conidia from the 
respective medium (Ferreira 2004). Ten replicates were performed for 
each fungal strains (Bb-032, Bb-053, Bb-057 and Bb-086), and control 
arenas were sprayed with Tween® 80 (0.05 %) solution. 

Thirty minutes after spraying, the arenas were covered with perfo
rated PVC film and maintained under controlled conditions (27 ± 3 ◦C, 
70 ± 10 % relative humidity, 12 h scotophase). Mortality was recorded 
daily for a period of eight days, and dead mites were individually 
transferred to Petri dishes (6 cm diameter x 1 cm depth) containing 
water-soaked cotton and daily examined under optical microscope. In
dividual mites that developed fungal mycelia were considered to have 
been killed as result of fungal infection (Wu et al., 2020). 

2.3. Acute toxicity bioassays 

Further bioassays were carried out with the B. bassiana Bb-032 strain 
since it was shown to be the most pathogenic to adult stage of R. indica. 
Acute toxicity bioassay followed the methodology described above; 
however, fifteen adult females of R. indica were used in the bioassay. 
Adult females of R. indica were sprayed with increasing concentrations 
of B. bassiana (101, 102, 103, 104, 105, 106, 107, 108, 109 and 1010 

conidia/mL), which were selected in a previous bioassay that had a 
range of 1.1 × 10− 3 to 7.6 × 1015 conidia/mL of solution. 

The toxicity of B. bassiana to the predatory mites A. largoensis and 
T. ornatus was assessed by transferring ten adult females of each pred
ator to PVC discs (7 cm in diameter) placed on a polyurethane foam (8 
cm diameter x 4.5 cm thick) saturated with distilled water in a plastic 
container (9 cm diameter x 7 cm depth). Predatory mites were sprayed 
with the LC50 (9.15 × 105 conidia/mL) and LC80 (1.55 × 109 conidia/ 
mL) of the fungal solution, B. bassiana Bb-032 strain. Cotton threads 
underneath a glass slide (18 × 18 mm) were transferred to arenas to 
serve as shelter and oviposition sites. Ten replicates (arenas) were used 
for each concentration tested. The evaluations were performed every 24 
h for a period of eight days, and dead mites were placed in a humid 
chamber until fungal emergence. The predatory mites were fed with 
castor bean pollen R. communis L. and 10 % honey placed on unsprayed 
0.5 cm2 PVC pieces, and these sources were replenished every two days. 

2.4. Sublethal effects of B. bassiana strain Bb-032 on life history 
parameters of R. indica and predatory mites 

The bioassays were performed with the LC50 and LC80 of B. bassiana 
strain Bb-032, as estimated for R. indica. The following parameters were 
observed: a) survival of R. indica; b) survival, reproduction and egg 
viability of A. largoensis and T. ornatus. The arenas were prepared as 
described previously for both R. indica and predatory mites, and control 
arenas were sprayed with Tween® 80 (0.05 %). Fifteen adult females of 
R. indica and ten adult females and five males of A. largoensis and 
T. ornatus were used in the bioassays. Ten replicates (arenas) were used 
for each LC (LC50; LC80 and control) tested. The mites were evaluated 
every 24 h for a period of eight days. Dead individuals were placed in a 
humid chamber until fungal emergence and the eggs laid by either 
A. largoensis or T. ornatus females were separated to assess egg viability. 
Every 24 h, the numbers of eggs laid by A. largoensis or T. ornatus females 
from each replicate per treatment were separated and placed in new 
arenas to be evaluated until the larvae hatched. 
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2.5. Sublethal effects of B. bassiana on population growth of R. indica 
and predatory mites 

Procedures and spraying were performed as described in the path
ogenicity bioassays, except that R. indica individuals were transferred to 
coconut leaflets (4 cm wide x 40 cm long) standing upright in distilled 
water-saturated polyurethane foam sitting inside plastic tubes (52 cm 
long x 5.5 cm in diameter). Twenty females and ten males of R. indica 
(adult stages) or ten females and five males of either A. largoensis or 
T. ornatus (adult stages) were sprayed with the LC50 and LC80 of 
B. bassiana, as estimated for R. indica. Adult females at the onset of their 
reproductive period were used in this bioassay. We carried out ten 
replicates per treatment; the control was sprayed with Tween® 80 (0.05 
%). The numbers of eggs, immatures and adults of R. indica were 
counted after ten days of exposure. As for predatory mites, counting only 
occurred on the eighth day, which corresponds to peak oviposition (G.S 
Freitas et al., unpublished data). Predatory mites were fed as previously 
described. Data were used to calculate the instantaneous rate of increase 
(ri) using the equation: ri = [ln (Nf/Ni)]/t, where Nf is the final number 
of live mites (including eggs and immatures), Ni is the initial number of 
live mites and t is the length of the experiment (Walthall and Stark, 
1997). 

2.6. Statistical analyses 

The pathogenicity of the four B. bassiana strains were compared with 
one-way ANOVA followed by Fisher’s LSD test. Beforehand, the 
normality of the residues was tested using the Kolmogorov-Smirnov test 
and the homogeneity of variances was checked using the Hurtley test. 
Median lethal concentrations of the most pathogenic strain of B. bassiana 
to R. indica (Bb-032) were estimated by Probit analysis using the PROC 
PROBIT (SAS Institute, 2013). Survival analyses were estimated with the 
Kaplan-Meier method (log-rank test, P < 0.05) using SigmaPlot 12.5 
(Systat Software, San Jose, CA, USA). Cumulative oviposition data were 
subjected to non-linear regression analyses, whereas egg viability and 
differences in population growth were submitted to one-way ANOVAs 
followed by the Tukey test using SigmaPlot 12.5. Whenever data did not 
adjust to normality, the ANOVA ON RANK test was performed. 

3. Results 

Three days after spraying the B. bassiana strains (Bb-032, Bb-053, Bb- 
057 and Bb-086), fungal mycelia were observed in some adult females of 
R. indica in all treatments. However, at the end of the bioassay (eight 
days), the B. bassiana strain Bb-032 was the most pathogenic to R. indica 

Fig. 1. Mortality (%) of Raoiella indica exposed to four strains of Beauveria 
bassiana. Different letters denote significant differences by the Fisher’s LSD test 
(P < 0.05). Means ± SE are given. Mortality was recorded daily for a period of 
eight days. 

Table 1 
Acute toxicity (conidia/mL) of Beauveria bassiana strain (Bb-032) to adult fe
males of Raoiella indica. Mortality was recorded daily for a period of eight days.  

Strain aLC50 (95 % CI)b aLC80 (95 % CI)b Slope 
(±SE) 

χ2 Pc dfd 

Bb- 
032 

9.15 × 105 

(3.52 × 105 - 
2.24 × 106) 

1.55 × 109 

(4.32 × 108 - 
8.30 × 109) 

0.026 ±
0.0023 

5.37 0.25 5  

a Lethal concentrations. 
b Confidence intervals. 
c Probability value. 
d Degrees of freedom. 

Fig. 2. Survival of Raoiella indica and the predatory mites Typhlodromus ornatus 
and Amblyseius largoensis exposed to the LC50 (9.15 × 105 conidia/mL) and LC80 
(1.55 × 109 conidia/mL) of Beauveria bassiana, as estimated for Raoiella indica 
(A); and mean survival time (B). Treatments for each species under the same 
horizontal line do not differ statistically (P < 0.05). 
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(F3.39 = 6.072, P < 0.001) (LC50 = 9.15 × 105 conidia/mL and LC80 =

1.55 × 109 conidia/mL) (Fig. 1 and Table 1) and therefore selected for 
further studies. 

The survival of R. indica drastically decreased when exposed to 
B. bassiana strain Bb-032 at both LC50 (χ2 = 548.21, df = 5, P < 0.001) 
and LC80 (χ2 = 617.23, df = 5, P < 0.001) in comparison with the control 
(Fig. 2A). Similarly, there was a sharp reduction in the mean survival 
time of R. indica exposed to LC50 (4.17 ± 0.22 days) and LC80 (3.80 ±
0.16 days) compared with the control (7.42 ± 0.11 days) (Fig. 2B). In 
contrast, neither survival (Fig. 2A) nor mean survival time (Fig. 2B) of 
the predatory mites A. largoensis and T. ornatus were affected by the 
exposure to LC50 and LC80 of B. bassiana, as estimated for R. indica. 

Likewise, the LC50 of B. bassiana did not reduce the oviposition of either 
of the predatory mites (Fig. 3A, C). However, adult females of 
A. largoensis and T. ornatus laid the least number of eggs when exposed to 
LC80 of B. bassiana (Table 2). Egg viability was also reduced when 
predators were exposed to LC80 of B. bassiana (F2.27 = 5.82; P < 0.05) 
(Fig. 3B, D). 

The B. bassiana strain Bb-032 drastically reduced the instantaneous 
rate of increase (ri) of R. indica in a concentration-dependent manner. 
Less drastic reductions in ri occurred when predatory mites were 
exposed to either LC50 or LC80 of B. bassiana (Fig. 4). 

Fig. 3. Number and viability of eggs of Typhlodromus ornatus (A, B) and Amblyseius largoensis (C, D) exposed to LC50 and LC80 of Beauveria bassiana strain (Bb-032) as 
estimated for Raoiella indica. Symbols represent the mean of ten replicates and vertical bars denote the standard errors. Treatments for each species under the same 
horizontal line do not differ statistically (P < 0.05). 

Table 2 
Non-linear regression analyses of cumulative oviposition for Typhlodromus ornatus and Amblyseius largoensis exposed to Beauveria bassiana shown in Fig. 3 A, C.  

Model Species treatment Estimated parameters (±SD) dferror F P R2    

a b x0     

f = a/[1+ exp (-(x-x0)/b)] Typhlodromus ornatus Control 21.6 (19.7–23.6) a 1.3 (1.0–1.6) 4.1 (3.7–4.5) 5 522.2 <0.0001 0.99 
LC50 22.2 (19.0–25.4) a 1.5 (1.1–1.9) 4.4 (3.8. - 5.1) 5 398.9 <0.0001 0.99 
LC80 15.0 (13.2–16.9) b 1.4 (0.9–1.8) 4.0 (3.5–4.6) 5 313.1 <0.0001 0.99 

Amblyseius largoensis Control 21.4 (17.6–25.2) a 1.5 (0.9–2.1) 3.9 (3.1–4.7) 5 163.1 <0.0001 0.98 
LC50 19.9 (18.0–21.9) a 1.4 (1.1–1.8) 3.7 (3.2. - 4.1) 5 395.8 <0.0001 0.99 
LC80 13.0 (11.1–14.9) b 1.4 (0.9–1.9) 3.8 (3.2–4.5) 5 201.9 <0.0001 0.98 

Different letters within a parameter column indicate statistical differences between treatments for each predatory mite. 

G.S. de Freitas et al.                                                                                                                                                                                                                            



Crop Protection 149 (2021) 105776

5

4. Discussion 

Our results indicate that the entomopathogenic fungi B. bassiana has 
potential as a biological control agent of the red palm mite R. indica and 
appears compatible with predatory mites. In our study, we selected a 
highly-pathogenic strain of B. bassiana Bb-032 to R. indica that also 
presented considerable selectivity to the predatory mites A. largoensis 
and T. ornatus. Differences in susceptibility of mites possibly stem from 
species-specific physiological characteristics, foraging ability, and the 
larger size of predators compared to the pest mite (Cloyd et al., 2006; 
Lima et al., 2012). Chavan et al. (2019) showed that adults of R. indica 
are more susceptible to fungal infection than the immature stages, which 
may be related to the presence of the integument and ecdysis. Ecdysis is 
an important factor in arthropod resistance to fungal infection (Wu 
et al., 2014; Butt et al., 2016). 

It is noteworthy that the virulence of fungal strains is related to their 
ability to produce compounds that surpass the well-developed physical 
structure and immune response of the target organisms. The entomo
pathogenic fungi B. bassiana produces several hydrophilic enzymes, and 
once in the host, its insecticidal effect is attributed to the production of 
non-ribosomal peptide-synthetase (NRPS), beauvericin, bassianolide, 
bassiacridin, dipicolinic acid and oxalic acid (Bidochka and Khacha
tourians, 1991; Wang and Xu, 2012; Xiao et al., 2012). The production of 
these compounds is also dependent on the type of isolation (Draganova 
and Simova, 2010), abiotic factors (Vega et al., 2012), application 
methods (Fernandes et al., 2012), and the developmental stage of the 
target organism (Shrestha et al., 2015). 

Although R. indica lived for 8 days after fungal infection, which is 
corroborated by other studies (Draganova and Simova, 2010; Immediato 
et al., 2015), the moribund mites have their physiological activity 
impaired, which could possibly make them susceptible to natural en
emies in the field. In addition, survival of R. indica also decreased with 
exposure as shown for the instantaneous rates of increase that were 
reduced at both LC50 and LC80 of B. bassiana. Similarly, Seyed-Talebi 
et al. (2012) also found that growth rate of Tetranychus urticae Koch 
(Acari: Tetranychidae) was reduced when exposed to sublethal con
centrations of B. bassiana. Our results clearly indicate that the popula
tion growth of R. indica was susceptible to B. bassiana infection by direct 
exposure. 

The tolerance of the predatory mites A. largoensis and T. ornatus to 
B. bassiana was observed in survival curves of these organisms when 

exposed to LC50 and LC80 of this fungus, as estimated for R. indica. 
However, B. bassiana reduced oviposition, egg hatching and growth rate 
of these predators. The reduction in predator’s population increase may 
be related to costly energy processes as it reduces the rate of feeding and 
food conversion (Roy et al., 2006). Our results are in accordance with 
other studies showing that B. bassiana is generally selective to predatory 
mites (Midthassel et al., 2016; Wu et al., 2016). 

This study demonstrates that B. bassiana was effective at controlling 
R. indica at the two lethal concentrations tested (LC50: 9.15 × 105 con
idia/mL; LC80: 1.55 × 109 conidia/mL), and showed considerable 
selectivity (compatibility) to the predatory mites A. largoensis and 
T. ornatus. The compatibility of natural enemies with entomopathogenic 
fungi suggests a viable alternative to acaricides to suppress R. indica 
populations. These findings reinforce the potential of B. bassiana as a 
relevant and safer tool to control R. indica. However, further studies are 
needed to determine the efficiency of B. bassiana to R. indica under field 
conditions. 
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