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Abstract The red palm mite, Raoiella indicaHirst (Ac-
ari: Tenuipalpidae), is a severe pest of coconut (Cocos
nucifera L.), banana (Musa sp.), and some ornamental
palms. The predatory mite Amblyseius largoensis
Muma (Acari: Phytoseiidae) has been reported in asso-
ciation with R. indica in several countries. Here, we
assessed the interaction effect between prey density
and population structure on predation and fecundity of
this phytoseiid species. Specifically, we estimated the
predation capacity of nymphs and females of
A. largoensis based on their functional and numerical
responses when fed on eggs, immature stages
(deutonymphs or protonymphs), and females of
R. indica. Nymphs and females of A. largoensis pre-
sented type II functional responses to R. indica, except
for nymphs of the predator when consuming immature
stages of the pest that exhibited a type III functional

response. Nymphs and females of the predator showed a
higher attack rate and shorter handling time when feed-
ing on eggs of R. indica than on immatures and females.
The highest oviposition rates of A. largoensis were
observed when eggs and immatures of the pest were
offered as prey. The results indicate that nymphs and
females of A. largoensismay be effective in suppressing
R. indica populations, mainly at lower prey densities.
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Introduction

The red palm mite, Raoiella indica Hirst (Acari:
Tenuipalpidae), is a severe pest with high reproductive
capacity, rapid dissemination, and the ability to adapt to
new hosts. It was first described from India (Hirst 1924)
and remained restricted to the Old World until it was
detected in the Caribbean by Flechtmann and Etienne
(2004). Subsequently, this pest mite has been reported in
Puerto Rico (Rodrigues et al. 2007), Venezuela
(Vásquez et al. 2008), Mexico (Nappo 2009), Colombia
(Carrillo et al. 2011), Brazil (Navia et al. 2011), and the
United States of America (USA) (Peña et al. 2012). In
Brazil, R. indica has spread to all coconut production
regions in less than 10 years (Navia et al. 2011;
Rodrigues and Antony 2011; Oliveira et al. 2016; Hata
et al. 2017; Melo et al. 2018).

The coconut tree, Cocos nucifera L. (Arecaceae), is a
main host for the red palm mite, and yield losses can
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reach up to 70% in Trinidad and Tobago (Peña 2013).
Coconut cultivation has great socioeconomic impor-
tance for Brazil, the fourth greatest producer in the
world (FAO 2014), with a cultivation area of approxi-
mately 250 thousand hectares (IBGE 2017). In addition
to coconut plantations, R. indica can also attack other
Arecaceae as well as species of Heliconiaceae,
Musaceae, and Zingiberaceae (Vásquez and Moraes
2012; Carrillo et al. 2012a).

Strategies ranging from chemical control (Ramos
et al. 2011; Rodrigues and Peña 2012; Assis et al.
2012) over plant resistance (Rodrigues and Irish 2012)
to biological control (Rodríguez et al. 2010; Carrillo
et al. 2012b, 2014; Domingos et al. 2012) have been
investigated. Regarding biological control, several stud-
ies have been carried out aiming at identifying natural
enemies (Carrillo et al. 2012c; Hoy 2012; Taylor et al.
2012; Domingos et al. 2012). Predatory mites of the
family Phytoseiidae are common natural enemies of
phytophagous mites (McMurtry et al. 2013), and some
species have been found in association with R. indica
(Taylor et al. 2012). Amblyseius largoensisMuma (Ac-
ari: Phytoseiidae) is a type III generalist predator, pre-
dominantly found in coconut palm leaflets around the
world (McMurtry and De Moraes 1984; Demite et al.
2014), which, in addition to feeding on phytophagous
mites and other arthropods, also feeds on pollen and
sugary substances such as nectar (McMurtry and Croft
1997; Lawson-Balagbo et al. 2008; Melo et al. 2015).
This species has been reported in association with
R. indica in coconut plantations in several countries,
including Brazil (Roda et al. 2008; Carrillo et al. 2011;
Bowman and Hoy 2012; Rodríguez et al. 2010; Taylor
et al. 2012; Gondim Jr et al. 2012). Several studies on
A. largoensis against the red palm mite have been con-
ducted, and the results indicate its potential as a biolog-
ical agent of R. indica, prey preference, and plasticity in
response to this pest (Carrillo et al. 2010, 2012b, 2014;
Carrillo and Peña 2012; Domingos et al. 2012; Morais
et al. 2016); however, there is limited information on the
interaction between prey density, population structure,
and fecundity of this predator.

Functional and numerical response studies are useful
in assessing the potential of biological control agents
(Holling 1959; Holling 1961; Costa et al. 2017). The
functional response describes the predation rate as a
function of prey density, and the numerical response
describes changes in the predator’s abundance due to
changes in prey density (Solomon 1949; Holling 1959).

The functional response of a predator may vary depend-
ing on the stage of development of its prey and its own
development stage (Santos 1975; Reis et al. 2000;
Carrillo and Peña 2012; Costa et al. 2014). In this
context, the objective of the present study is to assess
the type of functional response of nymphs and females
ofA. largoensis fed on different developmental stages of
R. indica, as well as its numerical response to this pest.

Materials and methods

Rearing of A. largoensis

The colony of A. largoensiswas started with individuals
collected from leaflets of a coconut plantation located in
the city of Aracaju (10° 56′ 46“S; 37° 03’ 12”W),
Sergipe State, Brazil, in March 2017. Individuals were
identified using taxonomic keys, and voucher speci-
mens were deposited in the mite collection of Maranhão
State University, São Luís, Brazil. The mites were mass-
reared in arenas made of pieces of PVC (23 cm long ×
4 cm wide) placed on a polyurethane foam (24 × 5 ×
3.0 cm), surrounded by a layer of hydrophilic cotton
moistened with distilled water, and placed in a plastic
tray saturated with distilled water. Cotton threads un-
derneath a glass slide (18 × 18 mm) were placed on the
arenas to serve as shelter and oviposition site (Oliveira
et al. 2017). The predatory mites were fed castor bean
pollen, Ricinus communis L. (Euphorbiaceae), all stages
of R. indica and, 10% honey, and these sources were
replenished every 2 days.

Population of R. indica

To obtain eggs, females ofR. indicawere collected from
unsprayed coconut leaflets in the same plantation as
described above, let to oviposit for 3 days on coconut
leaflets placed on moistened polyurethane foam with
distilled water, and inserted into open plastic tubes
(52 cm long × 5.5 cm diameter). The tubes were kept
in glass pots with distilled water up to the height of the
foam to maintain the turgidity of the leaflet. Likewise,
leaflets of coconut with protochrysalis, deutochrysalis,
and teliochrysalis (quiescent stages) of R. indica were
collected and maintained as mentioned above until the
emergence of protonymphs, deutonymphs (immature
stages) and adult females, respectively. The active
stages were used in the bioassays up to 48 h after the
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emergence. Larvae were not used due to their minute
size (similar to eggs) and because they are very easy to
wound and therefore difficult to handle. Unsexed
protonymphs or deutonymphs were used due to the
difficulty to separate immature males from females
(Kane et al. 2012).

Functional and numerical responses

All experimentswere conducted at standardized conditions
(27 ± 3 °C temperature, 70 ± 10% relative humidity, and
12 h photoperiod). The arenas were made of PVC disks
(6 cm diameter) placed on a polyurethane foam (6 cm
diameter × 0.33 cm depth) saturated with distilled water
inside a plastic container (6.2 cm diameter × 5 cm depth).
A barrier of cotton wool soaked in water was placed
around the edge of the PVC disk to prevent the predatory
mites from escaping (Oliveira et al. 2017).

Functional response experiments were conducted sep-
arately for nymphs and females of A. largoensis and for
each stage of R. indica. In each experiment, a nymph
(deutonymph) (4–5days old) or an adult female (8–10days
old) of A. largoensis was transferred to an arena with
increasing densities (5, 10, 20, 30, 40, 60, 80, and 100)
of eggs, immature stages (protonymph or deutonymphs),
or females of R. indica. We carried out 10 replicates for
each density of R. indica stages. The numbers of eggs,
immatures, and females of R. indica consumed by nymphs
of the predatory mite were recorded after 24 h, without
prey replacement during the experiment. For females of
the predator, in addition to evaluating the functional re-
sponsewithin 24 h as for nymphs, their numerical response
was recorded for 48 h with prey replenishment at the end
of the first day. Oviposition data from the first day were
excluded to minimize the effects of previous diets (Carrillo
and Peña 2012).

Statistical analyses

The functional response curve type was determined by
logistic regression of the proportion of prey consumed as
a function of prey density, using the CATMOD procedure
in the SAS statistical software (SAS Institute 2008), to
determine the significance of the regression coefficients
and the sign of the linear coefficient. Initially, the cubic
model was tested because of its ability to capture all
possible variations in functional response. The data were
adjusted to the polynomial function to determine the func-
tional response (Juliano 2001):

Ne

N0
¼ exp P0 þ P1N0 þ P2N2

0 þ P3N3
0

� �

1þ exp P0 þ P1N0 þ P2N2
0 þ P3N3

0

� �

Where (Ne) is the number of attacked mites and (N0) is the
offered density, P0, P1, P2, and P3 are the intercept, linear,
quadratic, and cubic coefficients, respectively, related to
the slope of the curve. The signs P1 and P2 are used to
determine the type of functional response. When the linear
term is not significantly different from zero, it indicates a
type I functional response. When the linear coefficient is
significantly negative (P1< 0), the predator displays a type
II functional response, which indicates that the proportion
of prey consumed declines monotonically with the initial
prey density. When the linear coefficient is significantly
positive (P1> 0) and the quadratic coefficient is negative
(P2 < 0), the predator presents a type III functional re-
sponse, which indicates a positively density-dependent
proportion of prey consumed (Juliano 2001).

As the experiments were conducted without prey
replacement during the functional response experiment,
we used the random predator equation (Juliano 2001;
Rogers 1972) as a description of the functional re-
sponses of types II and III.

Ne ¼ N0 1−exp α ThNe−Tð Þ½ �f g

Ne ¼ N0 1−exp dþ bN0

��
ThNe−T

� �
= 1þ cN0ð Þ

h in o

where Ne = number of prey attacked, T = exposure time
(24 h), N0 = initial prey density, α = attack rate, a con-
stant rate of successful search, and Th = handling time.
The consumption peak was estimated based on the
reciprocal of –Th 1

Th

� �
and compared based on confi-

dence intervals. Subsequently, Th (handling time) and α
(attack rate) parameters of the functional response were
estimated using the nonlinear least square regression
PROC NLIN procedure in SAS (SAS 2008), as de-
scribed in Juliano (2001).

The oviposition rate of A. largoensis as a function of
R. indica density was analyzed via regression analysis
between the number of eggs and the density of prey
offered, using the PROC REG of the SAS program
(SAS 2008). Consumption among the densities and at
the highest prey density (100) for nymphs and females
of A. largoensis was compared using ANOVA, follow-
ed by Tukey’s test at 5% of probability.
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Results

Nymphs of A. largoensis presented a type II functional
response to eggs and R. indica females, as indicated by the
negative and significant linear coefficient (P < 0.0001).
This contrasts with a sigmoid increase in consumption
when R. indica immatures were offered as prey to
A. largoensis nymphs, characterizing a type III functional
response as also indicated by the positive and significant
linear coefficient (P < 0.0193). Females of A. largoensis
presented a type II functional response to all stages of
R. indica (Table 1).

The number of R. indica preys consumed by nymphs
of A. largoensis varied. When the prey consisted of eggs
and immatures, the increase was up until the densities 20
and 60, respectively, after which it stabilized with an
average consumption of 21.3 ± 2.77 (eggs) and 17.93 +
5.46 (immatures), contrasting with a low consumption
when adults females were offered as prey 5.01 ± 0.87,
except for the densities 40 and 100, which increased
average consumption to 9.0 ± 1.55 (Fig. 1a). For
A. largoensis females, average consumption varied with
prey stage and density. The consumption stabilized after
the density of 30 for eggs (27.52 ± 1.67) and adult
females (11.07 ± 0.92) preys. However, at a density of
80 of these stages, an increase in consumption for eggs
(36.7 ± 9.67) and adult females (15.6 ± 3.02) was found.
For immatures, consumption stabilized until the density
of 60 (23.2 ± 1.04) (Fig. 1b). For the highest prey

density (100), nymphs of the predator consumed more
eggs and immatures of R. indica than females of the
prey (F2,25 = 14,59; P < 0.0001) (Fig. 2a). Also, females
of A. largoensis consumed more eggs than immatures
and females (F2,27 = 33,71; P < 0.0001) (Fig. 2b).

The proportion of eggs and adults of R. indica con-
sumed by nymphs of A. largoensis decreased with in-
creasing prey density. However, when nymphs of the
predator fed on immatures of the pest, the proportion of
prey consumed increased with density, peaking at 30
(Fig. 3a). On the other hand, the consumed proportion of
all the stages of prey by females of the predatory mite
decreased with increasing prey density (Fig. 3b).

There were no significant differences in the attack
rate (α) of nymphs and females of the predator to
eggs, immatures, and females of R. indica (except
for a lower α of nymphs preying on immatures
stages of the pest). Lower handling times (Th) and
higher consumption peaks (1/Th) were found for
nymphs of the predator preying on eggs and imma-
tures when compared with females of R. indica.
Females of A. largoensis presented the shortest han-
dling time and the highest consumption peak when
fed with eggs compared to immatures and adult
females of the pest (Table 2).

Oviposition of A. largoensis females increased
linearly with prey density for all developmental
stages of R. indica. When R. indica eggs were
offered as prey (Y = 0.793 + 0.014x; P = 0.011;

Table 1 Estimated parameters of the logistic regression of the proportion of eggs, immatures and females of Raoiella indica consumed by
nymphs and adult females of Amblyseius largoensis

Prey stage Parameter A. largoensis nymphs A. largoensis females

Estimate SD x2 p Type FR Estimate SD x2 P Type FR

Eggs Intercept (P0) 6.1318 0.6619 85.82 <.0001 II 8.8956 0.8824 101.63 <.0001 II
Linear (P1) −0.2320 0.0367 39.92 <.0001 −0.3783 0.0464 66.49 <.0001

Quadratic (P2) 0.00245 0.000619 15.71 <.0001 0.00533 0.000748 50.69 <.0001

Cubic (P3) −8.53E-6 3.215E-6 7.04 0.0080 −0.00003 3.759E-6 45.07 <.0001

immatures Intercept (P0) −0.9326 0.1899 24.13 <.0001 III 1.6547 0.1565 111.75 <.0001 II
Linear (P1) 0.0302 0.0129 5.48 0.0193 −0.0417 0.00439 90.38 <.0001

Quadratic (P2) −0.00077 0.000252 9.23 0.0024 0.00089 0.000400 5.02 0.0251

Cubic (P3) 4.218E-6 1.452E-6 8.43 0.0037 1.327E-6 3.798E-7 12.20 0.0005

Females Intercept (P0) 1.2996 0.2748 22.37 <.0001 II 2.6155 0.3138 69.47 <.0001 II
Linear (P1) −0.1207 0.0200 36.37 <.0001 −0.1619 0.0209 60.20 <.0001

Quadratic (P2) 0.00145 0.000407 12.63 0.0004 0.00225 0.000401 31.45 <.0001

Cubic (P3) −5.88E-6 2.407E-6 5.96 0.0146 −0.00001 2.295E-6 22.50 <.0001

Negative and positive linear terms in boldface indicating types II and III functional response respectively
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R2 = 0.682), the maximum oviposition rate of
A. largoensis was 2.10 ± 0.31 eggs/female/day at
a density of 80. With immatures as prey (Y =
0.459 + 0.001x; P = 0.008; R2 = 0.713), oviposition
peaked at a density of 30 (2.00 ± 0.33 eggs/female/
day). When fed with R. indica females (Y =
0.869 + 0.103x; P = 0.023; R2 = 0.602), the maxi-
m um ov i p o s i t i o n r a t e w a s 1 . 7 0 ± 0 . 2 2
eggs/female/day at a density of 100 (Fig. 4).

Discussion

Our results show that nymphs of A. largoensis pre-
sented either type II or III functional responses,
depending on the R. indica developmental stage.

However, females of this predator showed a type II
functional response irrespective of prey stage. In type
II functional responses, the number of prey con-
sumed increases with prey supply until the satiation
of the predator; however, the proportion of con-
sumed prey decreases with prey density, tending to
stabilize. This contrasts with a sigmoid increase in
prey consumption for type III functional responses
(Holling 1959). Natural enemies with the ability to
regulate pests in the range where the proportion of
deaths increases with density are regarded as effi-
cient (Pervez and Omkar 2005). However, predators
with a decreasing consumption at high densities can
also be efficient at low prey densities.

Amblyseius largoensis also exhibited type II func-
tional responses to the mites Polyphagotarsonemus
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latus (Banks) (Acari: Tarsonemidae) (Morell et al.
2010), Oligonychus punicae (Hirst) (Acari :
Tetranychidae) (Sandness and McMurtry 1970) and to
eggs of R. indica (Carrillo and Peña 2012). In line with
our results, nymphs of Euseius concordis (Chant) (Ac-
ari: Phytoseiidae) also presented different functional
responses when preying on eggs, immatures, and fe-
males of the cassava green mite,Mononychellus tanajoa
(Bondar) (Acari: Tetranychidae). Nymphs of the preda-
tor exhibited a type III response when preying on eggs
and females and a type II functional response when
feeding on immatures of M. tanajoa (Costa et al.
2014). The functional response of a predator may vary
depending on several factors, including its own stage of
development and that of its prey (Santos 1975; Reis
et al. 2000; Carrillo and Peña 2012). This could be
explained by the fact that predators in early stages
consume less and prefer small preys due to difficulties
in handling larger preys, while the opposite pattern

occurs for adult predators. Other factors, such as the
origin of the population of A. largoensismay also influ-
ence its potential as a biological control agent of
R. indica (Gómez-Moya et al. 2018).

Nymphs and females of A. largoensis consumed
more eggs than the other developmental stages of
R. indica, most likely because of the preference of this
predatory mite for eggs (Carrillo et al. 2012b; Carrillo
and Peña 2012). Similar results have been observed for
first and second instars of the lacewing Ceraeochrysa
caligata (Banks) (Neuroptera: Chrysopidae), which
consumed more eggs and immatures than females of
R. indica (Viteri Jumbo et al. 2019). The consumption
behavior found here may stem from the fact that early
stages, such as eggs and immatures, have a lower bio-
mass than adults of R. indica, leading predators to
consume more eggs to obtain adequate nutrient amounts
and satiety. As eggs of R. indica last approximately
9 days, longer than other developmental stages
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Fig. 3 Proportion of eggs, immatures and females of Raoiella indica consumed (mean ± SE) by nymphs (a) and females (b) of Amblyseius
largoensis as a function of prey density

Table 2 Estimates mean ± SE and confidence intervals (CI) for the parameters attack rate (a’), handling time (Th) and consumption peak
(1/Th) of nymphs and adult females of Amblyseius largoensis preying on eggs, immatures and females of Raoiella indica for 24 h

A. largoensis Prey stage a’±SE 95% CI Th±SE 95% CI 1/Th 95% CI

Lower Upper Lower Upper Lower Upper

Nymphs Eggs 0.0089±0.0013a 0.0062 0.0115 1.0585±0.0496 a 0.9597 1.1573 0.94 a 0.86 1.05

immatures 0.0014±0.0002 b 0.0008 0.0019 1.2190±0.0678 a 1.0841 1.3540 0.82 a 0.74 0.92

Females 0.0068±0.0017a 0.0033 0.0102 2.9337±0.1240 b 2.6869 3.1805 0.34 b 0.31 0.37

Females Eggs 0.0095±0.0028a 0.0028 0.0152 0.7400±0.0314 a 0.6774 0.8026 1.35 a 1.25 1.49

immatures 0.0076±0.0021a 0.0033 0.0119 1.0499±0.0423 b 0.9657 1.1341 0.96 b 0.88 1.04

Females 0.0090±0.0022a 0.0046 0.0134 1.9055±0.0750 c 1.7563 2.0547 0.52 c 0.50 0.58
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(Nageshachandra and Channabasavanna 1984), they are
available to predators for a long period. From an applied
point of view, a high consumption of eggs is desirable
for preventing pest population build-up.

The attack rate and the handling time are parameters
used to determine the magnitude of the functional re-
sponse (Pervez and Omkar 2005). Handling time in-
cludes the period required for the predator to identify,
capture, attack, and consume prey and is therefore indi-
rectly proportional to prey consumption (Holling 1959).
The longest handling times and lowest consumption
peaks were observed when nymphs and females of
A. largoensis consumed females of R. indica. The re-
duced consumption of R. indica females by
A. largoensis may be related to the greater size and
mobility of the adult females comparedwith other stages
of the prey (Costa et al. 2017). Since eggs are immobile
and immatures present a reduced antipredator behavior,
they may have been easier to handle compared to
R. indica females (Ganjisaffar and Perring 2015).
Carrillo et al. (2012b) observed that females of
A. largoensis penetrate the chorion and imbibe all of
the egg content in only one attack. In contrast, females
probed several times in order to penetrate the larval
cuticle of R. indica, which led to a longer handling time.
In addition, other defense mechanisms, such as the
possible existence of allomones on females of
R. indica, may further protect against predators.

According to Sabelis and Janssen (1994), phytoseiid
predation matches oviposition, as they allocate a major
fraction of food ingested to egg production. The

oviposition peak of A. largoensis females was higher
when the predator consumed eggs and immatures of
R. indica in comparison with females. This pattern
paired with the consumption behavior of A. largoensis
emphasizing the suitability of this predator in control-
ling mainly eggs and immatures of R. indica. Overall,
our results suggest that nymphs and females of
A. largoensis could be effective biological control
agents of the red palm mite, mainly at initial infestation.
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