

COMPONENTES IMUNOLÓGICOS DO COLOSTRO SUÍNO FRESCO E CONGELADO

Shaiana Salete Maciag¹, Ricardo Forner², Franciana V. Bellaver³, Gabrielly Bombassaro³ e Ana Paula Bastos⁴

¹Mestranda em Ciências Veterinária - Universidade do Centro-Oeste do Paraná

²Universidade Federal do Rio Grande do Sul - UFRGS

³Instituto Federal Catarinense - Campus Concórdia

⁴Pesquisador da Embrapa Suínos e Aves

Palavras-chave: banco de colostro, imunidade passiva, células imunes.

INTRODUCAO

A ingestão de colostro pelo leitão nas primeiras horas de vida é de extrema importância para seu desenvolvimento saudável, já que nessa espécie a transferência de imunidade materna se dá de forma passiva pela ingestão do colostro (1). O colostro é rico em imunoglobulinas e células imunes, bem como outros compostos que nutrem e regulam as funções biológicas. Células polimorfonucleares são as mais abundantes e em menor quantidade estão os linfócitos, fagócitos e células epiteliais (2). A hiperprolificidade em fêmeas permitiu o aumento no tamanho da ninhada, como consequência aumentou a heterogenicidade de peso da leitegada, já que muitas vezes a matriz não produz colostro suficiente ou o leitão apresenta uma viabilidade baixa que compromete a ingestão adequada de colostro (3). O colostro pode ser armazenado em geladeira ou freezer, no entanto o processo de congelamento e descongelamento pode causar danos às células que compõem o colostro, portanto pouco se sabe sobre a viabilidade celular e a imunogenicidade do colostro, bem como o seu prazo de validade. No presente estudo objetivou-se comparar o perfil dos componentes imunes do colostro fresco e congelado.

MATERIAL E MÉTODOS

O experimento foi conduzido em 20 porcas mestiças Landrace x Large White de paridades mistas. O colostro foi coletado manualmente em tubos de 50 mL após o nascimento do primeiro leitão. O colostro foi avaliado fresco, com 7 e 15 dias de congelamento, e após foram descongeladas em banho maria a 37°C. As amostras de colostro foram diluídas 1 em 3 em PBS contendo 5% de soro fetal bovino e centrifugadas por 10 min a 1300 rpm. A camada superior gorda foi descartada. A viabilidade das células foi avaliada pelo teste de azul de tripan. As amostras foram incubadas com os seguintes anticorpos: isotipos controles; CD3, CD4, CD8, granulocitos, macrofágos CD79a, CD5 CD14, CD16 e CD335. A citometria de fluxo foi realizada com citômetro de fluxo Accuri® (Becton Dickinson) e a fluorescência dos anticorpos foi detectada nos canais FL1 (530/30 nm) para FITC, FL2 (585/42 nm) para PE e FL3 (661/16 nm) para APC. Foram analisados 50.000 eventos (baseados no FSC e SSC). Os dados foram analisados com o software Accuri C6 plus (Becton Dickinson).

RESULTADOS E DISCUSSÃO

Analisou-se a população de células imunes no colostro fresco e congelado por 7 e 15 dias, conforme a tabela 1, as células imunes predominantes no colostro foram em torno de 40% de granulócitos no colostro fresco e com 7 dias de congelamento, não havendo redução significativa com o congelamento. Seguido por linfócitos T (CD3+, 28%) não havendo diferenças significativas entre os períodos de congelamento. Entretanto, a subpopulação de células CD3+CD4+, diminuiu significativamente sua população após o congelamento, como células T CD4+ naive (CD4+CD27+CD45RA+), memória central CD4+ T (CD4+ CD27+ CD45RA·) e células T CD4+ de memória efetora (CD4+CD27-CD45RA·). Também houve redução na população de células T CD3+CD8+, com o congelamento, reduzindo sua população de 38% do colostro fresco para 34% e 32% com 7 e 14 dias de congelamento, respectivamente. Os fenótipos de memória (CD3+CD8+CD27+CD45RA+) e de memória central (CD3+CD8+CD27+CD45RA-) não apresentaram diferenças com o congelamento. As células de memória efetora (CD3+CD8+CD27-CD45RA-) e as células CD3+ CD4+CD8+ também não apresentaram perdas significativas com o congelamento de 7 dias, porém houve uma redução significativa com o congelamento de 15 dias em que houve perda de mais da metade das células. Os linfócitos B, no geral, tiveram uma redução da sua população com o congelamento tanto com 7 dias e mais ainda aos 15 dias. No entanto, a subpopulação CD79a+ SWC7+CD5 foi a que teve maior diferença entre o colostro fresco e congelado. Células NK se apresentaram em torno de 15% tanto no colostro fresco como congelado. E por último a população de macrófagos ficou em torno de 8%, não havendo diferença significativa com o congelamento. Não observamos alterações significativas nas imunoglobulinas A, M e G com o congelamento.

CONCLUSÕES

NNo presente estudo, observamos que com o congelamento do colostro houve redução significativa nos linfócitos, sendo que o tempo de congelamento causa uma redução diretamente proporcional ao período de congelamento, observamos a influência do processo de congelamento sobre algumas células imunes como macrófagos e granulócitos. A formação de bancos de colostro é uma alternativa viável a ser empregada na produção de suínos, contudo, deve-se garantir que este material não perca suas

15ª Jornada de Iniciação Científica - JINC 21 de Outubro de 2021 - Concórdia, SC

propriedades fundamentais para garantir o suprimento imune necessário ao leitão. De acordo com os resultados preliminares, o colostro congelado tem uma validade de 15 dias para transferência de imunidade humoral e um prazo de 7 dias para transferência imunológica celular.

REFERÊNCIAS

- 1. QUESNEL, H.; FARMER, C.; DEVILLERS, N. Colostrum intake: influence on piglet performance and
- factors of variation. Livestock Science 145, 105–114, 2012.

 MAGNUSSON, U.; RODRIGUEZ-MARTINEZ, H.; EINARSSON, S. A Simple, Rapid Method for Differential Cell Counts in Porcine Mammary Secretions. Veterinary Record 129 (22):485-490, 1991.
- 3. QUESNEL, H. Colostrum production by sows: variability of colostrum yield and immunoglobulin G concentrations. Animal 5, 1546-1553, 2011.
- 4. BALZANI, A.; CORDELL, H. J.; EDWARDS, S. A. Evaluation of an on-farm method to assess colostrum IgG content in sows. Animal, 10:4, pp 643-648, 2015.

Tabela 1. Componentes Imunológicos do colostro fresco e congelado

Células imunes	Tratamento		
	Fresco	7 dias	15 dias
Granulocitos	40,61±1,265	40,56±1,142	37,42±1,356
Macrofagos+	9,282±1,549	7,140±1,215	8,645±1,890
CD79A+	15,00±1,807 ^a	5,384±0,937 ^b	6,132±1,485 ^b
CD79A+SWC7+IGM+	22,65±2,372	20,18±3,314	19,53±1,970
CD79A+SWC7+CD45R/B220+	2,406±0,366	3,399±0,834	1,974±0,556
CD79A+SWC7+CD5-	27,580±0,954 ^a	24,190±0,982 ^b	23,976±0,895 ^b
CD3+	29,92±1,607	28,41±1,527	26,71±1,713
CD3+CD4+	10,72±1,535 ^a	6,121±1,542 ^{ab}	5,219±1,251 ^b
CD3+CD4+CD27+CD45RA+	4,790±0,861 ^b	3,944±0,634 ^b	19,44±1,999ª
CD3+CD4+CD27+CD45RA-	13,90±2,132 ^a	10,53±1,091 ^a	4,835±1,415 ^b
CD3 ⁺ CD4 ⁺ CD27 ⁻ CD45RA ⁻	25,77±2,265 ^a	22,50±2,002 ^a	9,575±1,534 ^b
CD3+CD8+	38,93±0,972°	34,15±1,225 ^b	32,45±1,285 ^b
CD3+CD8+CD27+CD45RA+	5,836±1,278	4,468±0,647	5,394±1,229
CD3 ⁺ CD8 ⁺ [CD27 ⁺ CD45RA ⁻	14,66±1,772	11,32±1,138	9,893±1,339
CD3+CD8+CD27-CD45RA-	22,10±1,977°	20,30±1,948 ^{ab}	14,96±1,591 ^b
CD3+CD4+CD8+	25,77±2,265 ^a	22,50±2,002 ^a	9,575±1,534 ^b
CD3 ⁻ CD8 ^{low} CD335 ⁺	14,93±1,117	14,39±1,549	15,85±1,850