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A B S T R A C T   

Advances in artificial intelligence, computer vision, and high-performance computing have enabled the creation 
of efficient solutions to monitor pests and identify plant diseases. In this context, we present InsectCV, a system 
for automatic insect detection in the lab from scanned trap images. This study considered the use of Moericke- 
type traps to capture insects in outdoor environments. Each sample can contain hundreds of insects of interest, 
such as aphids, parasitoids, thrips, and flies. The presence of debris, superimposed objects, and insects in varied 
poses is also common. To develop this solution, we used a set of 209 grayscale images containing 17,908 labeled 
insects. We applied the Mask R-CNN method to generate the model and created three web services for the image 
inference. The model training contemplated transfer learning and data augmentation techniques. This approach 
defined two new parameters to adjust the ratio of false positive by class, and change the lengths of the anchor 
side of the Region Proposal Network, improving the accuracy in the detection of small objects. The model 
validation used a total of 580 images obtained from field exposed traps located at Coxilha, and Passo Fundo, 
north of Rio Grande do Sul State, during wheat crop season in 2019 and 2020. Compared to manual counting, the 
coefficients of determination (R2 

= 0.81 for aphids and R2 
= 0.78 for parasitoids) show a good-fitting model to 

identify the fluctuation of population levels for these insects, presenting tiny deviations of the growth curve in 
the initial phases, and in the maintenance of the curve shape. In samples with hundreds of insects and debris that 
generate more connections or overlaps, model performance was affected due to the increase in false negatives. 
Comparative tests between InsectCV and manual counting performed by a specialist suggest that the system is 
sufficiently accurate to guide warning systems for integrated pest management of aphids. We also discussed the 
implications of adopting this tool and the gaps that require further development.   

1. Introduction 

The increase in the aphid population (Hemiptera: Aphididae) in 
winter cereals (e.g. wheat, barley, triticale, and oat) might cause a sig
nificant reduction in grain yield due to their feeding habits. Aphids are 
also vectors of pathogens, such as barley yellow dwarf virus (BYDV-PAV, 
BYDV-MAV, BYDV-PAS) and cereal yellow dwarf virus (CYDV-RPV, 
CYDV-RPS) (Savaris et al., 2013). Monitoring pest population fluctua
tions, whether in the field or laboratory experiments, allows researchers 
to track the variation in infestation levels and support integrated pest 
management programs (Hodgson et al., 2012). According to Brabec 
et al. (Brabec et al., 2014), aphid population fluctuation is determined 
by seasonal periodic sampling and can vary significantly monthly or 

annually. Furthermore, aphids have an overdispersed population dy
namic and can vary by order of magnitude within 24 h (Davis et al., 
2014; Howard and Dixon, 2008; Jarošová et al., 2019). 

Regarding pest monitoring programs, Brazilian Agricultural 
Research Corporation, Embrapa Trigo1 coordinates a winter cereal Na
tional Pest Monitoring Network since 2015. This network uses Moericke- 
type yellow traps in experiments to observe migrations of aphid pop
ulations and their natural enemies, the parasitoid wasps (Hymenoptera: 
Aphelinidae and Braconidae, Aphidiinae). This method is widely used 
and easy to implement, allowing researchers to capture aphids from a 
specific area for monitoring and understanding population oscillations 
(Döring, 2014; Morris, 2018). The experiments allow associate popula
tion levels to economic damage and generating relevant data to warning 
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systems in the decision-making process related to crop management 
(Embrapa Trigo, 2017; Embrapa Trigo, 2019; Engel et al., 2021). 

The process of sorting elements captured in the traps requires 
manual tasks such as collecting, removing debris, and relocating aphids 
and parasitoids on a test plate for visual analysis by a laboratory 
specialist. Each trap can contain hundreds of insects of different species. 
During the identification stage, dichotomous keys that specify the 
morphology of each species are used, such as the number of antenna 
segments, wing branches, and body shape. Due to the small size of the 
insects, a stereoscopic microscope (magnifying glass) is commonly used 
for analysis (Santos et al., 2019). 

The variety and quantity of insects captured in the traps significantly 
increase during the hottest times of the year, interfering with the 
detection of aphids and parasitoids. Thus, due to seasonal effects, the 
challenge of analyzing a sample to accurately recognize and count the 
elements of interest varies throughout the year. Therefore, manual 
identification is a time-consuming task, may generate fatigue, and its 
accuracy might be reduced due to the number of insects of interest 
(aphids and parasitoids), debris (soil, leaves, grains), and other insects 
(flies, bees, thrips, beetles). Samples with many elements cause con
nections, partial overlaps and changes in pose, which also hinder the 
analysis process. When there are large concentrations of objects, usually 
the manual counting of objects of interest is only estimated based on 
spatial proportions and the experience of the laboratory specialist 
(Embrapa Trigo, 2017; Embrapa Trigo, 2019; Nazri et al., 2018). 

Many studies address the use of computational resources to automate 
the process of identifying and counting objects in digital images, such as 
insect vectors and plant diseases. These studies also highlight that the 
manual identification process is considered an intensive, slow, tedious, 
error-prone, and low-precision activity, making its large-scale execution 
unfeasible (Akintayo et al., 2018; Ärje et al., 2020; Ding and Taylor, 
2016; Nazri et al., 2018; Pang et al., 2020; Partel et al., 2019; Sun et al., 
2018). In doing so, solutions based on Computer Vision (CV) and Arti
ficial Intelligence (AI) have enabled the automation of repetitive tasks 
(Kamilaris and Prenafeta-Boldú, 2018). These applications have also 
reached good results for counting and classifying insects in traps, 
arachnids in plants, leaf diseases in plants, and insect monitoring by 
sensors, helping experts and decreasing time in the decision-making 
process (Fuentes et al., 2017; Høye et al., 2021; Li et al., 2019; Zhong 
et al., 2018). 

For example, Lins et al. (Lins et al., 2020) partially automated the lab 
identification of aphid morphs (nymphs, wingless and winged adults) 
from the Rhopalosiphum padi L. species. In the study, a set of procedures 
for the collection of possible specimens retained in the traps was 
defined, and the CV tool called AphidCV (Lins et al., 2019) was devel
oped. The software has many features, such as counting, classification, 
and measurement of aphids from digital images, using an AI model. 

The results about precision in classification, location, and segmen
tation tasks highlighted in these recent studies and the FCIS challenge 
(Li et al., 2017), demonstrated the potential of the Mask R-CNN method 
(He et al., 2017) to solve the problem reported in this paper. As the 
problem considers identifying aphids and parasitoids in the images, and 
there may be cases of overlapping, pose variation, debris, and other 
insects with similar morphology, instance segmentation must be 
applied. Thus, the Mask R-CNN could handle these cases more accu
rately when compared to other methods, such as Faster R-CNN. (Ren 
et al., 2016). Mask R-CNN also makes it possible to use segmentation to 
compute the areas of all objects in samples, predicting levels of biolog
ical activity around a trap. Besides, it is possible to correlate the 
reduction in the number of insects of interest with the increase of resi
dues and other insects. 

The aim of this work is to present the InsectCV, a computational 
system to detect aphids and parasitoids regardless of species from trap 
images, using CV and AI techniques. The system includes the selection 
and pre-processing of a set of images, labeling of the objects of interest in 
each image, training, validation of the intelligent model based on the 

Mask R-CNN method, and the development of web services for inte
gration into the Trap System (Lazzaretti et al., 2021) monitoring plat
form. By this system, we intend to support warning systems collecting 
and processing data, facilitating and expanding the detection of varia
tions in population levels of these insects. 

This study is structured as follows: Section 2 presents related work 
about Faster R-CNN and Mask R-CNN; Section 3 describes the materials 
and methods used to develop the proposed solution and define the 
creation of the AI model for object detection; Section 4 shows the 
training results and validation experiments; Section 5 discusses the re
sults to assess the model's accuracy; and, finally, Section 6 presents the 
final considerations and future work. 

2. Related work 

Advances in artificial intelligence and computer vision have enabled 
the creation of software to solve many problems in different areas, 
including Agriculture (Kamilaris and Prenafeta-Boldú, 2018). The evo
lution of Deep Convolutional Neural Network (DCNN) architecture 
(LeCun et al., 2015) also provided a significant increase in performance 
and accuracy of these applications. According to Chen et al. (Chen et al., 
2018), the accuracy levels of the DCNNs indicate this technique repre
sents the state-of-the-art for image classification tasks (Krizhevsky et al., 
2012), object detection (Ren et al., 2016) and segmentation (Long et al., 
2015), with better results than traditional methods, in which the char
acteristics of the objects of interest are manually extracted (hand-crafted 
features) (Fischer et al., 2014). 

During last five years, literature reviews have been highlighting the 
use of DCNNs to automate repetitive tasks in agriculture, such as plant 
disease detection and insect identification, among other purposes. 
Kamilaris and Prenafeta-Boldú (Kamilaris and Prenafeta-Boldú, 2018) 
presented a selection of 40 studies from 2010 to 2017 that applied 
different AI techniques in agriculture; of these, 42% used DCNNs. 

In a recent survey by De Cesaro Júnior and Rieder (De Cesaro Júnior 
and Rieder, 2020), approximately 300 studies published in journals 
between 2015 and 2019 were found, corroborating the trend towards 
the use of DCNN's for the object detection task (Kamilaris and Prenafeta- 
Boldú, 2018). In the research, 33 studies were selected from the digital 
databases: ACM, IEEE, IET, DBLP, ScienceDirect, Scopus, SpringerLink, 
and Web of Science. These studies were investigated in order to verify 
the use of techniques for detecting small objects and handling connec
tions and overlaps. 

From selected studies by this survey for the object detection task, we 
verified that most of them used Faster R-CNN two-stage detector. Mask 
R-CNN extends Faster R-CNN by adding a branch for predicting an ob
ject mask in parallel with the existing branch for bounding box recog
nition (He et al., 2017). No selected study used Mask R-CNN. 
Considering only studies based on Faster R-CNN for insect recognition, 
four works proposed changes in the base implementation of this 
algorithm. 

Shen et al. (Shen et al., 2018) presented a Faster R-CNN-based 
method to identify six species of grain insects. Aiming at improving the 
extracted feature maps, the authors proposed a change in the creation 
network (inspired by He et al. (He et al., 2016)) to generate layered 
feature maps with 1/8 of the original image, making the network sen
sitive to small objects. The specimens and grains were manually posi
tioned to generate 739 images with a dimension of 1944 × 2592 pixels, 
enabling the control of connections and overlaps. In comparison with 
four other convolutional networks, the proposed approach presented an 
increase of 3.34% mean average precision (mAP) in insect identification. 

Yue et al. (Yue et al., 2018) proposed a super-resolution model based 
on the deep recursive residual network for image reconstruction (the 
image could be restored and up-sampled according to a scale only the 
target insect could adapt to the applied object detection method at the 
pixel scale). Experimental results show that the method improved the 
recall rate by 202%. In this work, Faster R-CNN was only used to 
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validate the proposed image interpolation model. Therefore, the objec
tive was to reduce the density of the camera layout of the agricultural 
Internet of Things (IoT) monitoring systems and reduce infrastructure 
costs. 

Liu et al. (Liu et al., 2019) proposed PestNet, a solution to assist in 
pest management, with pest detection and classification based on Faster 
R-CNN. The authors used a dataset with more than 80 k images and 
approximately 580 k insects, categorized in 16 classes (species). The 
experimental results showed the proposed approach performed well 
with a 75.45% (mAP). A three-stage architecture was developed: feature 
extraction (CSA), regions search (RPN, PSSM), and prediction (RoIs). 
According to the authors, a better accuracy was not possible due to the 
similarity between some species of insects. Because the trap has a 
cleaning system performed at 15-s intervals after image acquisition, 
cases of connections or overlapping objects were significantly reduced. 

Kalamatianos et al. (Kalamatianos et al., 2018) presented a system to 
automate the identification and counting of the olive fruit fly (Bactrocera 
oleae) based on images of the commonly used McPhail trap's contents. 
The dataset used for model training was relatively small, containing only 
542 images. Several deep learning methods were evaluated, achieving a 
performance of 91.52% (mAP). The images look similar to those 
captured in yellow traps by the aphid monitoring network (Engel et al., 
2021), representing a “pest soup images”. This scenario makes it hard to 
identify submerged insects and thus indistinguishable even by in situ 
experts, much less by remote observers through digital images. The 
authors also customized a trade-off between image attributes affecting 
detail, file size and complexity of approaches and mAP performance that 
can be selectively used to better tackle the needs of each usage scenario. 

Research has demonstrated the use of Mask R-CNN algorithm in 
agriculture to automate manual tasks, reduce costs and increase accu
racy in object identification, counting, and segmentation. To analyze the 
use of this algorithm, a literature review was carried out in the scientific 
database Science Direct. The search considered only studies published in 
English, from 2019 to 2020, that focused on agriculture and used two- 
dimensional images. The keyword “mask rcnn” was applied to find the 
studies published in journals. Approximately 250 studies were found, of 
which 10 were related to the focus of this paper (Bhattarai et al., 2020; 
Ganesh et al., 2019; Jia et al., 2020; Pang et al., 2020; Reyes-Yanes et al., 
2020; Ruiz-Santaquiteria et al., 2020; Vo et al., 2020; Wang et al., 2020; 

Xu et al., 2020; Yu et al., 2019). Table 1 shows a summary of these 
studies. 

The analysis of the methodology and the results presented in these 10 
recent studies showed that, initially, the image sets used for training and 
tests were relatively small, ranging from 126 to 3000 images. Most au
thors applied the technique of data augmentation and transfer learning 
to avoid overfitting in training. The most used feature extractors were 
the ResNet-50 and the ResNet-101. Regarding customizations, only two 
studies (Pang et al., 2020) (Wang et al., 2020) highlighted changes in the 
default implementation of He et al. (He et al., 2017). Regarding the 
techniques for treating connections or overlaps, we noted that none of 
the methods mentioned solve this problem. 

3. Materials and methods 

For the image acquisition for the training of the model, samples 
retained in the traps (yellow tray, 45 cm long x 30 cm wide x 4.5 cm tall) 
were used, collected according to Engel et al. (Engel et al., 2021). Each 
sample was filtered through two strainers. The resulting material was 
deposited in a 14 cm-diameter Petri dish and later digitized using a 
flatbed scanner. We used the same protocol developed by Lins et al. (Lins 
et al., 2020), generating and selecting 90 images. In addition, other 119 
new images were generated in the laboratory to create the image sets, 
contained only parasitoids (Hymenoptera: Aphelinidae, Braconidae, 
Aphidiinae) and winged aphids (Hemiptera: Aphididae), without debris. 

Two sets of images were defined for model training and testing. The 
first set consisted of 167 images and 14,809 labeled insects, 12,354 for 
training, and 2455 for model testing. To create the second set, the im
ages from the first set were used and new images were included, 
resulting in 209 images and 17,908 labeled insects. 

In each set, the images were organized into the following subsets: (i) 
winged aphids; (ii) parasitoids; (iii) winged aphids and parasitoids; (iv) 
winged aphids, parasitoids and debris; (v) winged aphids and debris. All 
objects of interest were labeled with the graphical tool LabelImg.2 The 
objects were classified into two classes: aphid or parasitoid. This task 
was supervised by an Embrapa researcher. 

In Table 2, each row represents a subset of images/insects. The 
Aphids and Parasitoids columns indicate the amounts of these labeled 
insects in each subset. The column Insects/Train. Images represents the 
number of insects and images used for training the models. The Insects/ 
Images Test. represents the number of insects and images used to test the 
models. The set contained 167 images, 134 for training and 33 for 
testing. Although this set is considered small for deep learning, a sig
nificant number of objects were labeled (14,809). Subsets (iv) and (v) 
contained only images generated by the screening process. The images 
were captured in field traps located in the cities of Passo Fundo, Coxilha, 
and Cruz Alta, RS, Brazil, from 2018 to 2020. The other subsets were 
created artificially with the manual insertion of specimens into the test 
plate without the presence of debris. 

Table 1 
Selected studies that applied Mask R-CNN for agricultural purposes.  

Authors Dataset Object Overlapping Customizations 

Reyes-Yanes et al. 
(Reyes-Yanes 
et al., 2020) 

1350 Romaine 
lettuce 

Not – 

Xu et al. (Xu et al., 
2020) 

750 Cattle Yes – 

Pang et al. (Pang 
et al., 2020) 

1000 Crop-row 
maize 

Not branch 
MaxArea_MaskIoU 

Vo et al. (Vo et al., 
2020) 

3000 Rock 
lobster 

Not – 

Jia et al. (Jia 
et al., 2020) 

1020 Apple Yes – 

Wang et al. (Wang 
et al., 2020) 

1500 Waxberry Yes dilated 
convolution 

Ruiz- 
Santaquiteria 
et al. (Ruiz- 
Santaquiteria 
et al., 2020) 

126 Algae Yes – 

Yu et al. (Yu et al., 
2019) 

1900 Strawberry Yes – 

Ganesh et al. ( 
Ganesh et al., 
2019) 

150 Orange Yes – 

Bhattarai et al. ( 
Bhattarai et al., 
2020) 

205 Blossom 
apple 

Not –  

Table 2 
First set of images for model training.  

Set Aphids Parasitoids Insects/Train. 
Images 

Insects/Test. 
Images 

Total 

1 4934 0 4688/ 44 246/ 2 4934/ 46 
2 0 6137 5942/ 43 195/ 2 6137/ 45 
3 1745 1611 1506/ 13 1850/ 15 3356/ 28 
4 77 15 10/ 1 82/ 5 92/ 6 
5 290 0 208/ 33 82/ 9 290/ 42 
Total 7046 7763 12,354/ 134 2455/ 33 14,809/ 

167  

2 Available in: https://github.com/tzutalin/labelImg 
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Table 3 lists the second set with 209 images. In this new set, to reach 
the proportion of 80% of images for training and 20% for testing, the five 
subgroups were balanced with the inclusion of new images. The test 
images were chosen according to the number of objects so the same 
proportion between images with different densities of insects could be 
achieved. They were classified as images of easy recognition (less dense) 
and medium recognition (dense). Thus, the number of labeled insects 
increased to 17,908, with 14,669 insects used for training and 3239 used 
for testing. 

For the generation of the intelligent model, this study used the 
implementation of Mask R-CNN developed by Abdulla (Abdulla, 2017), 
Python programming language, and OpenCV libraries,3 TensorFlow4 for 
machine learning and Keras,5 a neural network library. The hardware 
resources used were a computer with an Intel Core I7-6950× processor, 
32 GB of RAM, and the GeForce GTX Titan X graphics processing unit 
(GPU) with 12 GB of VRAM. 

Three web services were developed through the Django REST 
framework6 to make the intelligence model available. The registration 
of new images, deletion, and detection of insects (inference) were 
developed with Python. These services were integrated into the Trap 
System website,7 using the libcurl8 library and the PHP programming 
language. 

The registration service converts the original color image (RGB) to 
GrayScale format, applying the filter Gaussian Blur for noise elimination 
and clipping with the algorithm Hough Circles for the elimination of 
irrelevant areas. After this processing, the final image has a dimension of 
6156 × 6156 pixels, a horizontal and vertical resolution of 96 dpi, and 
an intensity of 8 bits. Finally, the original and final images are stored in a 
local agronomy database named AgroDB (Lazzaretti et al., 2016). 

The detection service receives the code of an image via the Trap 
System, performs the inference through the intelligence model, applies 
thresholds by class, and generates a new demonstrative image with the 
location of the bounding-boxes and the classification of objects. Next, the 
service returns a message in JSON with the image in Base64 format and 
the counting of the insects of interest. Finally, the Trap System stores the 
detection result in AgroDB tables. 

The deletion service removes a selected image. All services are hos
ted on a server at the Instituto Federal Sul-Rio-Grandense (IFSul), in 
Passo Fundo. This server has approximately 14 GB of RAM and 8 vCPUs. 
The implementation in the form of services allows other systems to ac
cess these functionalities. In addition to these services, a routine was 
developed to process the images already stored in AgroDB. 

According to Abdulla (Abdulla, 2017), the training of an intelligent 
model can be started with random weights starch, which implies 
changing the weights of all layers of the network or reusing transfer 
learning weights, where weights from an external model are used. 

Moreover, when applying transfer learning, only a subset of network 
layers can be trained, using fewer hardware resources, and reducing 
processing time. As this study predicted the use of grayscale input im
ages, the following subsets of layers were adjusted:  

• heads: conv1.*, mrcnn_.*, rpn_.* e fpn_.*;  
• 5þ: conv1.*, res5.*, bn5.*, mrcnn_.*, rpn_.* e fpn_.*,  
• 4þ: conv1.*, res4.*, bn4.*, res5.*, bn5.*, mrcnn_.*, rpn_.* e fpn_.*;  
• 3þ: conv1.*, res3.*, bn3.*, res4.*, bn4.*, res5.*, bn5.*, mrcnn_.*, 

rpn_.*, fpn_.*;  
• all: “.*”, 

Based on the available hardware resources, the input images could 
not be fully processed, due to their original size and dimension (6156 ×
6156 pixels). Therefore, this study resized the images to 1024 × 1024 
and 2048 × 2048 (square mode), and applied the random cropping 
technique (crop mode) of samples in the dimension of 2048 × 2048 
pixels. These modes are mentioned by Abdulla (Abdulla, 2017) and can 
be activated by parameters. 

The feature extractor used was the ResNet50 due to hardware re
strictions. The Batch Size was set at 1. Three sets of values were applied 
for the lengths of the anchor side of RPN (hyperparameter RPN_AN
CHOR_SCALES). The DETECTION_MAX_INSTANCES was set at 500, 
considering the possibility of images with hundreds of objects of inter
est. The MAX_GT_INSTANCES was set at 100, due to hardware re
strictions. The other parameters set by Abdulla (Abdulla, 2017) were not 
changed. 

Initially, five experiments were performed with a set of 167 images. 
Each experiment ran from 40 to 140 epochs (training), and each epoch 
had 623 steps. Due to the limited number of images, two compensatory 
techniques were applied to avoid the over-fitting problem. First, all layers 
of the network were started with the weights of the MS COCO (transfer 
learning) model, except the layers: mrcnn_class_logits, mrcnn_bbox_fc, 
mrcnn_bbox, mrcnn_mask, and conv1, that were initialized with random 
weights. The subset of retrained layers was 4+. The random geometric 
transformations of rotation (− 90, +90), horizontal (0.5) and vertical 
(0.5) inversion were applied in experiments 2, 4 and 5, to triple the 
number of images (data augmentation). 

The objective of these experiments was to find the configuration that 
achieved the highest mean precision (mAP) with the test images. Details 
of the experiments are shown in Table 4. The “Mode” column indicates 
the use of resizing of the original image: square or crop. 

According to the data in Table 4, the fifth experiment reached the 
highest average precision (68.3%), after running 40 epochs. Therefore, 
based on the best model of this experiment, two additional experiments 
were performed with the second set of images, involving 3+ layers and 
value variations for the hyperparameter RPN_ANCHOR_SCALES. The 
aim was to reduce the loss values and increase the precision in the 
classification and location of the insects of interest. Details are shown in 
Table 5. 

Experiments 6 and 7 performed another 60 epochs, resulting in 100 
epochs. From the 80th epoch, the hyperparameter RPN_ANCHOR_
SCALES received the values (4,8,16,32,64) in experiment 6 and 
(8,16,32,64,128) in experiment 7. The maximum number of instances 
per image was set to 466, using the hyperparameter MAX_GT_IN
STANCES. This value corresponds to the largest amount of labeling 
performed on a single image of the training set. The number of regions of 
interest was reduced in the second stage, from 200 to 100, in order to 
reduce the computational cost. The hyperparameter used was the 
TRAIN_ROIS_PER_IMAGE. 

The last two experiments were evaluated by the loss value generated 
at each epoch. The tool TensorBoard9 was used for this scenario, which 
showed that experiment 7 reached the lowest overall loss value, close to 

Table 3 
Second set of images used for model training.  

Set Aphids Parasitoids Insects/Train. 
Images 

Insects/Test. 
Images 

Total 

1 6101 0 5035/ 36 1066/ 9 6101/ 45 
2 0 6311 5154/ 36 1157/ 9 6311/ 45 
3 1950 1646 2884/ 23 712/ 6 3596/ 29 
4 1093 168 1042/ 34 219/ 8 1261/ 42 
5 639 0 554/ 38 85/ 10 639/ 48 
Total 9783 8125 14,669/ 167 3239/ 42 17,908/ 

209  

3 Available in: https://opencv.org/  
4 Available in: https://tensorflow.org  
5 Available in: https://keras.io  
6 Available in: https://www.django-rest-framework.org/  
7 Available in: http://gpca.passofundo.ifsul.edu.br/traps/  
8 Available in: https://curl.haxx.se/libcurl/ 9 Included in TensorFlow. 
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1.4 after the 100th epoch. According to Abdulla (Abdulla, 2017), the 
reference value for overall loss is 0.5. Therefore, experiment 7 deter
mined the choice of the best model for this study. 

After choosing the model, approximately 580 images stored in 
AgroDB were used to validate the selected model. The images were from 
the 2019 and 2020 wheat crops, from the Embrapa stations in Passo 
Fundo and Coxilha. We used the same protocol to generate images 
applied by Lins et al. (Lins et al., 2020). These images were organized 
into fifteen series: ten series of images to analyze the identification and 
counting of aphids, and five series to validate the model considering 
identification and counting of parasitoids. 

Thus, with the data obtained from the inferences of the 580 images 
processed by the detection service, three approaches were applied to 
analyze the model's performance: statistical coefficients, precision/ 
recall/F1 score, and cut-off points. Moreover, customizations were 
developed with the inclusion of hyperparameters and variations of 
confidence thresholds. 

The weekly sums obtained by manual counting performed by 
Embrapa's researcher were compared with the data generated by 
InsectCV to define the coefficients. The coefficient of determination (R2) 
was adopted, which indicates how well the model can explain the 
collected data; the slope, and intercept, which define the linear rela
tionship between two variables, and can be used to estimate an average 
rate of change. Thus, the intercept must be zero (0), and the slope must 
be one (1), showing that the model accurately estimates the number of 
insects of interest in the image. 

The precision metric shows the correct level of the model for objects 
classified as parasitoids. The recall metric shows how often the model 
finds examples of a given class. Finally, the F1 score, which is the ratio 
between recall and precision, generates a combined percentage. These 
metrics were only applied to identify parasitoids. The labeling process 
was performed with the researcher's assistance. 

Finally, to analyze the applicability and assertiveness of the model 
developed for the warning systems, we evaluated the temporal co
incidences between the visual assessment and the model regarding the 
achievement of cut-off points (or thresholds) pre-established as critical 
for decision-making in aphid pest management. These cut-off points 
were based on historical series of winged aphid captures in traps in the 
Southern Brazil (Engel et al., 2021). 

4. Results 

Since the traps were located in field conditions, there was a large 
amount of debris in the samples. During peak periods of aphid infesta
tion, high concentrations of insects that occupied all the space on the 
image capture slide were identified, mainly in traps type 1 located in 
Coxilha. Fig. 1 shows three image situations used for validation. Low 
complexity cases (Fig. 1 (a)) present a few insects and debris, facilitating 
the detection process (objects 1 and 2 were identified correctly as aphids 

and parasitoids, respectively). Medium complexity cases (Fig. 1 (b)) 
consider many insects, some connected or overlapped instances (objects 
3, 4, 5, 7, 8, 9, and 10 were identified correctly as aphids, and object 6 is 
a false positive). High complexity cases (Fig. 1 (c)) contain a significant 
presence of thrips (Thysanoptera) result in numerous connected or 
overlapped instances (only objects 11 and 17 were identified correctly as 
aphids, object 12 is a false positive, and objects 13, 14, 15, 16, 18, and 19 
are false negatives). 

Table 4 
Results from the initial experiments.  

Exp. Mode Set of Images Resolution Expanded Time Prec. train. Prec. test 

1 square 1 1024 × 1024 No 1d 4 h 47 m 87.0% 49.8% 
2 square 1 1024 × 1024 Yes 1d 15 h 39 m 71.1% 53.6% 
3 square 1 2048 × 2048 No 3d 19 h 16 m 84.5% 59.4% 
4 square 1 2048 × 2048 Yes 16d 1 h 15 m 85.2% 60.4% 
5 crop 1 2048 × 2048 Yes 15d 4 h 15 m 70.8% 68.3%  

Table 5 
Details of additional experiments 6 and 7.  

Exp. Mode Set of Images RPN_ANCHOR_SCALES Resolution Expanded Precision 

6 crop 2 4,8,16,32,64 2048 × 2048 Yes 76% 
7 crop 2 8,16,32,64,128 2048 × 2048 Yes 79%  

Fig. 1. Examples of low (a), medium (b), and high (c) complexity cases in the 
detection of winged aphids and parasitoids from samples from field traps 
scanned in the lab. 

T. De Cesaro Júnior et al.                                                                                                                                                                                                                     



Ecological Informatics 67 (2022) 101516

6

Fig. 2 shows the complexity during the identification of parasitoids. 
In this image, there are eight specimens. Objects 2, 3, 6, and 7 were 
correctly identified as parasitoids. Objects 1, 4, 5, and 8 are false neg
atives in different poses and variations in the angle of the tail about the 
rest of the body. 

Due to the three situations identified in the images used for valida
tion, and the additional complexity in detecting parasitoids, two 
hyperparameters were created to define the acceptance threshold 
(confidence) by class. Therefore, this study established different values 
for the classes of parasitoids and aphids. With the assistance of the 
researcher, empirical tests were performed to discover the acceptance 
thresholds that could be applied in this study. The defined acceptance 
thresholds were 0.985 and 0.976 for the respective classes. For an object 
to be considered a parasitoid or an aphid, the confidence level obtained 
by the model must be 98.5% and 97.6%, respectively. Nonetheless, high 
thresholds might cause false negatives and their reduction increases the 
probability of false positives. 

4.1. Coefficients 

In Table 6 and Table 7 ten validation series are listed, referring to the 
2019 and 2020 crops. In Table 8, five series are listed, referring to the 
2020 crops (07/01/2020 to 10/30/2020). Columns marked with the 
suffix VL represent the use of a threshold variation parameter. This study 
used images from different crops, since a significant amount of 

parasitoids was not identified in 2019. 
The greater the number of aphids in the sample, the greater the de

viation between the actual number of insects and the number detected 
by the model. Consequently, at times of peak population of aphids, de
viations are greater (Table 6). For trap 4 of 2019, the model achieved the 
best fit, with a slope coefficient of 0.67 and the R2 = 0.99. However, in 
trap 3, where 630 aphids were identified at the peak of infestation, the 
slope coefficient was only 0.39, and the coefficient R2 = 0.91. When 
counting the five series, the R2 = 0.89 and the slope coefficient of 0.50 
were achieved. In the second and third columns, the X value represents 
the manual identification. 

For the five series of 2020, the slopes and the R2 were lower than in 
2019, which indicates less accuracy from the model (Table 7). The line 
graph shown in Fig. 3 represents the relationship between the manual 
counting (blue line) and the data generated by InsectCV (red line) for 
aphids. Considering the time series of the relationship between manual 
counting and counting obtained by InsectCV, the results showed that the 
model correctly identified population fluctuations in the two analyzed 
crops (Fig. 3). For aphids, in the scatter plot shown in Fig. 4,considering 
the ten series, the slope coefficient was 0.35 and R2 = 0.81. 

According to the data shown in Table 8, the accuracy of parasitoid 
detection was not related to the peak of infestation. For this class, when 
counting the five series, the slope coefficient was 0.40 and the R2 = 0.78, 
according to the scatter plot presented in Fig. 6. 

The line graph shown in Fig. 5 illustrates the relationship between 
the manual counting (blue line) and the data generated by InsectCV (red 
line) for parasitoids. The model correctly identified the increases in 
population levels that occurred between weeks 28 and 34, the decline 
between weeks 35 and 38, as well as the small increase in week 41. 
However, due to the number of parasitoids found during the 2020 crop 
in the traps located in Coxilha, the analysis of the model's fit was 
hindered. 

A significant amount of false negatives in images with high 
complexity cases was identified from the results, as shown in Fig. 1 (c). 
To reduce this characteristic and offer another option for the researcher's 
analysis, a new parameter (threshold variation) was developed so that 
the user could inform the image type in each request made to the 
detection service. The image types were: (i) default image; (ii) high 
aphid population; (iii) high population of parasitoids; and (iv) high 
population of aphids and parasitoids. Thus, the threshold was reduced to 
75% in option (ii), and it was set to 70% in option (iii). In option (iv), 
both thresholds were reduced. With this new feature, the fifteen vali
dation series were reprocessed, applying thresholds of 75% and 70% in 
the images referring to the peak weeks of aphid or parasitoid infestation, 
respectively. 

The coefficients generated after reprocessing the series are also listed 
in Tables 6, 7, and 8, in the columns with the suffix (VL), representing 
the threshold variation. A significant increase in the slope coefficient can 
be observed, which represents a more accurate fit to detect variations in 
high aphid populations. 

Fig. 2. An example of scanned sample containing parasitoids in different poses 
and tail angles. Green bounding boxes represent true positives, and orange 
bounding boxes indicate false negatives. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 6 
Aphid coefficients in 2019.  

Trap Angular coefficient Angular coefficient (VL) Intercept Intercept (VL) R2 R2 (VL) Peak 

4 0.67 * X 0.92 * X + 1.22 - 0.84 0.99 0.99 144 
0 0.67 * X 0.93 * X + 3.00 - 1.34 0.99 0.99 271 
2 0.61 * X 0.98 * X + 2.01 - 3.26 0.98 1.00 276 
1 0.40 * X 0.81 * X + 10.77 + 1.58 0.90 0.99 614 
3 0.39 * X 0.75 * X + 10.71 + 5.63 0.91 0.98 630 
All 0.44 * X 0.81 * X þ 8.7 þ 2.45 0.89 0.98 1735  
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Table 7 
Coefficients for aphids in 2020.  

Trap Angular coefficient Angular coefficient (VL) Intercept Intercept (VL) R2 R2 (VL) Peak 

0 0.54 * X 0.68 * X +2.99 +2.13 0.91 0.83 79 
1 0.25 * X 0.64 * X +11.27 +6.17 0.65 0.95 324 
3 0.26 * X 0.56 * X +9.27 +6.27 0.77 0.82 484 
4 0.28 * X 0.59 * X +8.95 +5.12 0.77 0.92 604 
2 0.30 * X 0.59 * X +11.47 + 4.03 0.87 0.91 686 
All 0.28 * X 0.58 * X þ9.52 þ5.40 0.80 0.90 1954  

Table 8 
Coefficients for parasitoids in 2020.  

Trap Angular coefficient Angular coefficient (VL) Intercept Intercept (VL) R2 R2 (VL) Peak 

0 0.53 * X 0.73 * X + 0.12 + 0.44 0.89 0.93 24 
1 0.49 * X 0.63 * X + 0.64 + 0.60 0.80 0.85 14 
4 0.32 * X 0.67 * X + 0.67 - 0.23 0.64 0.92 29 
3 0.41 * X 0.72 * X + 0.21 - 0.03 0.92 0.85 30 
2 0.40 * X 0.77 * X + 0.13 − 0.03 0.75 0.92 38 
All 0.40 * X 0.73 * X þ 0.45 þ 0.07 0.78 0.90 129  

Fig. 3. Adjustment for aphids. Periods: week 27 to 48 of 2019, and week 27 to 44 of 2020. N = 200.  

Fig. 4. Relation between the number of aphids obtained by manual and automatic counting using InsectCV.  
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4.2. Metrics 

The results obtained with the application of the metrics precision, 
recall, and F1 score are presented in Table 9. 

The analysis of the metric values showed that, for objects classified as 
a parasitoid, the model was right in 85% of the tested cases. Neverthe
less, when an insect is indeed a parasitoid and the model did not detect 
them (false negatives), the frequency at which the model correctly 
classified the object was 41%. According to this finding, the strategy of 
using high thresholds reduced false positives. However, 60% of the 
parasitoids were not identified. By combining metrics of precision and 
recall, the value obtained for the F1 score was 0.55. 

4.3. Cut-off points 

One of the main applications of automated counting aphids in traps 
aims to expand the monitoring network, supporting warning systems 

used for the integrated pest management. Therefore, the assessment of 
accuracy and precision of the detection of epidemiologically established 
population critical points must be performed. Delays in detecting pop
ulations at these levels imply late adoption of management measures. 
With this in mind, three cut-off points were tested: 10, 20 and 50 aphids 
per trap. These cut-off points were established considering the historical 
oscillation patterns of populations of winged aphids trapped in Southern 
Brazil (Engel et al., 2021). Empirically, populations between 10 and 20 
aphids per trap indicate 10% of plants infested by aphids. This indicative 
is one of the parameters used for chemical application in the wheat crop 

in Southern Brazil, depending on the crop phenological stage. 
According to the dotted gray and solid black lines in Fig. 7, consid

ering aphid population dynamics in the 2019 crop, in the five validation 
series the peak was reached in week 35 (S35), with 347 aphids/trap/ 
week for the manual counting and 154 aphids/trap/week for InsectCV. 

Considering intermediate thresholds for management decision- 
making until reaching the peak, the threshold of 10 aphids/trap/week 
was exceeded in S30 for manual counting (14 aphids) and similarly for 
InsectCV (12.8 aphids). From that, the number of captured aphids 
increased rapidly and the threshold of 20 aphid/trap/week aphids was 
reached in S33 (127 aphids in the manual counting and 84 for the 
InsectCV), also exceeding the threshold of 50 aphids. 

In the 2020 wheat crop (weeks 27 to 44), considering the set of five 
series under analysis, as shown in the yellow and gray lines in Fig. 7, the 
peak was detected in S41 by both methods, with 391 aphids/trap/week 
for manual counting and 136 aphids/trap/week for InsectCV. Consid
ering intermediate thresholds for management decision-making until 

Fig. 5. Adjustment for parasitoids, 2020 crop. N = 90.  

Table 9 
Metrics for parasitoids.  

Trap True 
Positives 
(TP) 

False 
Positives 
(FP) 

False 
Negatives 
(FN) 

Precision Recall F1 
score 

1 32 9 29 0.78 0.52 0.63 
2 59 8 103 0.88 0.36 0.52 
3 46 6 63 0.88 0.42 0.57 
4 36 7 57 0.84 0.39 0.53 
All 173 30 252 0.85 0.41 0.55  

Fig. 6. Relation between the number of parasitoids obtained by manual and automatic counting using InsectCV.  
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reaching the peak, the threshold of 10 aphids/trap/week was exceeded 
in S29 for manual counting (10 aphids) and similarly for InsectCV (13 
aphids). 

From that moment on, there was a decrease in the number of 
captured winged aphids, reaching the level again in S33 (13 aphids in 
manual counting and 14 by InsectCV). Finally, there was a drop and then 
the curve resumed with sustained growth with the threshold of 10 
aphids in S37 (16,4 aphids in manual counting and 11 by InsectCV), and 
20 aphids in S38 (Manual 56 aphids, InsectCV: 43 aphids). Only for the 
threshold of 50 aphids per trap, there was a one-week delay between 
detection and counting methods (S38 for manual and S39 for InsectCV). 

5. Discussion 

The problem presented in this study was more challenging compared 
to the cited studies, as in the reported scenarios there was no possibility 
of false positives with similar morphology, pose variation and the 
presence of significant amounts of other objects or debris. After 
capturing the aphids and parasitoids, there was a natural process of 
decomposition and reaction with the detergent used in traps, which 
changed the insect's color. For this reason, grayscale images were used, 
which eliminated color variations, thus reducing the number of features 
available for model training. The analysis of this study was also more 
complex due to the significant confusion with other insects in the sample 
that were not objects of interest, compared with AphidCV (Lins et al., 
2019) that used images containing only the objects of interest (aphids). 

Compared to the studies listed in Table 1, InsectCV is similar to those 
that presented situations of occlusion and overlapping objects, marked 
as “Yes” in the “Overlapping” column, as well as related work that used 
the Faster R-CNN method. In addition, we also highlight the study of 
Kalamatianos et al. (Kalamatianos et al., 2018) because the use of im
ages with the “pest soup” aspect. However, in these studies, there was no 
significant presence of debris and/or similar insects, which could reduce 
the accuracy of the model. About the data set used for training, the 
number of images used in InsectCV was smaller compared to most of the 
other studies. The dimension of the images for training and inference 
was greater concerning the studies listed in Table 1. 

The option for Mask R-CNN, instead of Faster R-CNN, is also justified 
by the possibility of using the instance segmentation in future work, 
enabling to sum the areas of all objects in the sample to measure the 
levels of biological activity around the trap. Furthermore, we could 
correlate the reduction in the identification of insects of interest accu
racy to the number of residues and other insects increasing. 

The results obtained with the validation of the model showed that 
through a small set of images (209), a significant amount of labeled 
objects (17,908), and the application of customizations, a model was 
generated in this study, using the Mask R-CNN method. This model is 
capable of identifying variations in population levels of aphids and 
parasitoids in traps based on patterns found in images. 

For the detection of parasitoids, two additional factors related to 
aphids were identified, which reduced the model accuracy. According to 
the detection example presented in Fig. 2, the parasitoids are similar to 
other insects, such as flies and thrips (Thysanoptera), and may also have 
variations related to the angle of the tail, joining it with the insect body. 

Notwithstanding the low number of parasitoids in the images of 
2020, compared to aphids, this situation still allowed us to evaluate the 
model's performance based on the coefficients. However, the values 
found for the precision and recall metrics emphasize the need to balance 
this relationship with threshold adjustments. These metrics were not 
applied to aphids, as Embrapa performs the manual identification of 
physical samples with the aid of a magnifying glass or microscope to 
more quickly locate the morphological characteristics of the specimens, 
therefore, not labeling objects in digital images. In the case of parasit
oids, due to the smaller number, it was possible to manually count true 
positives, false positives, and false negatives, enabling the generation of 
metrics. 

Despite not having this information, we could conclude that the 
model can identify the variation in population levels of insects in traps 
according to the angular coefficient, distortion in the intercept, and 
coefficient of determination. These coefficients were obtained 
comparing the manual identification and at the cut-off points (Fig. 7: 
low deviation in the initial phases of the growth curve and the mainte
nance of the shape of this curve in the analysis of two wheat crop pe
riods). Furthermore, considering the coefficients presented in Fig. 4 for 
aphids and in Fig. 6 for parasitoids, we did not notice significant vari
ation, therefore, we understand that the values of precision (0.85), recall 
(0.41) and F1 Score (0.55) for parasitoids tend to be equivalent/close for 
aphids. 

The model was able to detect connected aphids, as shown in Fig. 1. 
However, in cases of dense agglomerations with several insects, the 
model was not able to recognize most of the insects in these regions. In 
general, considering the three types of images used for validation, the 
model obtained satisfactory accuracy based on the coefficients pre
sented, especially in the 2019 crop. According to Embrapa, in 2019 there 
was less proliferation of other insects compared to 2020, due to the 
drought periods that occurred in 2020. 

According to the results, the deviations between manual counting 
and InsectCV escalated with increasing population density. Despite 
these deviations, the shape of the winged aphid capture curve over time 
was the same for the two wheat crops analyzed. Examining the low 
deviation in the initial phases of the population growth curve and the 
maintenance of the shape of this curve, the use of InsectCV allowed the 
identification of the critical decision-making points for pest manage
ment. Moreover, InsectCV showed the epidemic peak with the same 
precision as the manual counting, even in weeks of high insect counting 
where the model underestimated the population. 

Due to the hardware resources available to perform the experiments 
(Intel Core I7-6950×, 32 GB RAM, and GeForce GTX Titan X GPU with 
12 GB VRAM) and the image size (6156 × 6156), the number of trained 
layers could not be increased, due to the need for more VRAM memory. 

The image inference process for model validation was also hindered 
by the lack of RAM and GPU memory in the IFSul server (Intel Xeon 
E31240, 8 vCPUs, 14 GB RAM). Consequently, the researchers had to 
resize the image to 5568 × 5568 pixels, which may have reduced the 
amount of information analyzed by the model. The time required to 
perform the inference of each image through the detection service 
ranged from 3 to 6 min. This time variation is usual in two-stage con
volutional approaches. 

The time to perform each training epoch was approximately 9 h, 
resulting in 35 days to complete experiment 7. As an alternative to 
reduce this time, studies can use the strategy mentioned by Bobba 
(Bobba, 2019). This strategy consists of using smaller image clippings 
(512 × 512) for faster updating of weights and applying larger clippings 
(2048 × 2048) in the final phase to adjust the parameters of the final 
model. Another possibility is to split the original image into smaller 
images and reposition the labels. To reduce inference time and eliminate 
resizing, the sliding window technique can be applied, performing the 
inference in smaller parts and repositioning the detected objects in the 
original image at the end of this process. 

By using the feature to adjust the thresholds based on the type of 
image, the angular coefficient (VL), Intercept (VL), and coefficient of 
determination R2 (VL), this study had a significant increase in the ac
curacy of the model for aphids and parasitoids in situations of high 
population density (Tables 7 and 8). This feature can be enhanced by 
using a color image to represent the detection result so that the 
researcher has more information to determine the proper threshold. 

Looking into the coefficients highlighted in bold in Tables 6 and 7, 
and examining the cut-off analysis, data shows the model correctly 
identified variations in population levels, based on the 580 images used 
for validation. However, at times of greater proliferation of insects and 
low levels of rainfall, the accuracy of the model tends to be lower, due to 
the presence of other insects and connections between aphids. Thus, the 
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importance of evaluating management procedures is emphasized to 
further improve the developed models. 

The reduction in accuracy when counting aphids in dense agglom
erations might be mitigated by adopting management procedures such 
as (i) splitting the sample into two or more images; (ii) relocation or 
elevation of traps; (iii) use of a larger Petri dish. These changes can 
contribute to the reduction of connections and the amount of debris, 
increasing the accuracy of the model. 

Systems such as InsectCV enable the availability of monitoring net
works on a larger scale. What would the implications be if this becomes 
reality? In theory, the use prophylactically or scheduled of insecticides 
would be reduced. On the other hand, showing data on aphid pop
ulations can raise awareness about phytosanitary problems not explic
itly perceived or diagnosed by farmers. So, the system itself would not 

reduce the number of applications but make them more assertive and 
efficient. 

Another aspect concerns the degree of development of monitoring 
tools. In the current version, InsectCV only allows the counting of total 
aphid populations, not discriminating between species that have 
different relevance in terms of damage to crop yield and, as a result, not 
discerning between viruliferous and non-viruliferous aphids. Thus, 
although there are similarities between the oscillation patterns of total 
populations and oscillations of some species (Engel et al., 2021), these 
are, without a doubt, limitations to be addressed in future advances 
needed for more accurate warning systems. 

In addition, the case study was demonstrated for winter cereal 
aphids. Concerning other winter cereals, such as barley and triticale, our 
experience indicates dynamics are very similar to wheat. Obviously, the 

Fig. 7. Aphid population progress curve for wheat crops in two years and two counting methods. (A) 2019 and (B) 2020. Data correspond to an average from 5 traps. 
Dotted gray: manual counting. Solid black: computer vision count (InsectCV). L20 gray dashed line, refers to the preset threshold of 20 aphids per trap per week. L50 
black dashed line, refers to the preset threshold of 50 aphids per trap per week. 
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entire calibration and validation process needs to be carried out for 
different cultures and at other times of the year. 

6. Conclusion 

This study presented InsectCV, a system for identifying and counting 
aphids and parasitoids from trap images. We generated the image 
dataset from digitized samples captured by Moericke-type traps at 
Embrapa's experimental stations. For the development of the intelligent 
model, we present an approach based on the Mask R-CNN method. The 
model demonstrated the ability to estimate the fluctuation of population 
levels for these insects in traps. In addition, it was able to distinguish 
cases of connections and overlaps in images that contained hundreds of 
objects. 

The main contribution of our work is related to the applicability of 
InsectCV as a means to facilitate the counting of insects in traps, auto
matic storage into an agricultural database, and contribute with data 
sources to support decision-making for aphid pest management. Like
wise, automated parasitoid counting is fundamental to estimate by 
models the suppression that this biological control agent exerts on 
aphids predicting aphid population growth. 

About the evolution of the developed system, one of the improve
ments concerns the precision adjustment of the acceptance threshold for 
parasitoids and aphids, which were initially defined as 0.985 and 0.976, 
respectively, through empirical tests performed with the researcher. We 
intend to label all images used for model validation and add new images 
from previous and later crop seasons, aiming at generating metrics and 
analysis of model performance with the presence of other insect species. 

Thus, new studies will be able to evaluate different threshold values 
using a precision-recall curve or a ROC curve (Davis and Goadrich, 
2006; Lee et al., 2018). Another suggestion is to increase the graphics 
processing capabilities with new GPUs. In addition, other algorithms 
should be tested to assess the ability to recognize connected and/or 
overlapping insects of the Mask R-CNN through the Intersection over 
Union (IoU) metric. 

Regarding the alternatives to increase model accuracy, the results of 
this study showed that new images containing parasitoids in different 
poses and with different tail positions should be added to the set of 
images for training. Considering trap screening and image collection, 
field procedures should be reviewed to reduce the generation of dense 
images, which represent a convoluted environment for analysis. 

Another future resource to the system could be counting the amount 
of material present in the sample, considering the sum of the area of 
objects in the image. This calculation could be performed with mask 
data, which was not explored in this study. The calculation would 
measure the levels of biological activity around the trap, and would also 
correlate the reduction in the accuracy of pest insects identification with 
the increase in the amount of debris and other insects. 
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