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A B S T R A C T   

A nanocomposite based on silver nanoparticles (AgNPs) and extract of Terminalia catappa was developed, 
characterized, and evaluated in in vitro and in vivo conditions against Saprolegnia parasitica infection. The 
nanocomposite contained spheroidal silver-nanoparticles (1–55 nm) and presented active compounds as gallic 
acid, ellagic acid, and α and β punicalagin. The nanoparticles remained stable for one year after its production. A 
synergistic effect was observed between AgNPs and extract under in vitro and in vivo conditions against different 
stages of fungal development. In an in vitro assay, the nanocomposite showed fungistatic and fungicide effects to 
the fungal mycelium in solid and liquid media, respectively, through an increase in the contact surface. In an in 
vivo bioassay, the lowest concentration of nanocomposite (T1 = 45.75 μg.L− 1 AgNPs +62.5 μg.L− 1 T. catappa 
extract) demonstrated similar efficiency as the positive control (methylene blue) in preventing zoospore infec-
tivity in eggs of angelfish (Pterophyllum scalare). The fungal zoospores were more sensitive to the nanocomposite 
than fungal mycelia. Our results exhibited the use of a nanocomposite containing AgNPs and T. catappa aqueous 
extract could reduce the required effective concentrations of AgNPs against saprolegniosis in fish eggs, thus, it 
may as an alternative to improve fish larval survival at the hatchery stage.   

1. Introduction 

Saprolegnia parasitica is one of the most significant fish pathogens 
from the genus oomycete, causing high rates of mortality for freshwater 
fish regardless of whether they live in natural environments or are 
reared in captivity (Van Den Berg et al., 2013; Lone and Manohar, 
2018). Freshwater angelfish (Pterophyllum scalare) is an economically 
important ornamental fish species with easy reproduction, but its eggs 
frequently suffer fungal infections (Chapman et al., 1997; Forneris et al., 

2003; Chambel et al., 2014). 
The fungus breaks up the chorionic membrane of the fish eggs, 

especially the non-fertilized and dead eggs. As the infection increases, 
the fungus infects the viable embryos consequently causing their mor-
tality (Liu et al., 2014; Songe et al., 2016). Without any chemical 
treatment, this mortality is common in the P. scalare eggs (see Eissa 
et al., 2013). 

Chemical compounds including formalin, malachite green, and 
methylene blue have been widely used as anti-saprolegniosis in fish 
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hatcheries until recently (Bassleer, 2011; Fuangsawat et al., 2011; 
Huang et al., 2015). Although the use of these compound is prohibited in 
the United States, Europe, and many other regions, their use is still 
permitted in the aquaculture sector in some countries, including Brazil 
(UEMS, 2016; Tancredo et al., 2019). 

The Malachite green is carcinogenic and induces oxidative stress on 
fish when it reaches the water (Majeed et al., 2014). The use of mala-
chite green is not approved by the U.S. Food and Drug Administration 
(Kwan et al., 2019) and is prohibited in aquaculture in the European 
Union due to its harmful effects on human health and the environment 
(EU regulation - EG1272, 2008). 

Methylene blue also provokes problems in humans, such as tachy-
cardia, vomiting, shock, cyanosis, and tissue necrosis (Razmara et al., 
2011; Salazar-Rabago et al., 2017; Dinh et al., 2019). Japan, United 
States, and Europe have forbidden its use in aquaculture (Li et al., 2016; 
Lieke et al., 2020); however, in Brazil methylene blue is still in use due to 
lack of legislation and clear protocols regarding its use. 

The use of metallic nanoparticles with antibacterial and anthelmintic 
may provide an alternative method to control fungal infections in fish 
(Swain et al., 2016; Vijayakumar et al., 2017). Studies about metal 
nanoparticles have proven them to be effective as an antifungal agent. 

Silver nanoparticles (AgNPs) stand out for their antimicrobial ac-
tivity, adhering to the cellular membrane, causing lipopolysaccharide 
degradation, increasing the permeability of membranes, and damaging 
the DNA as a result (Durán et al., 2016). A study found that silver 
nanoparticles show fungicidal effects against Saprolegnia spp. at 1800 
and 2000 mg.L− 1 (Johari et al., 2015a). However, their use can have 
toxic effects in aquatic environments (Hosseini et al., 2014; Johari et al., 
2015b). In response, a combination of silver nanoparticles and plant 
extracts (as nanocomposites) represent an eco-friendly alternative, since 
it reduces the concentration of AgNPs, replacing it with the plant extract 
action. Furthermore, the plant extract is quickly degraded in aquatic 
environments (Valladão et al., 2015). Thus, a more effective synergic 
effect is possible due the combination of nanoparticles and the plant 
extracts. 

The leaf of the almond tree Terminalia catappa is a viable option to 
produce a nanocomposite due its chemical profile, with flavonoids, 
terpenoids, and tannins that present antimicrobial and antifungal ac-
tivity in aqueous extracts (Chitmanat et al., 2005; Chansue and Assa-
wawongkasem, 2008; Claudiano et al., 2009). In addition, the 
production of this nanocomposite using fallen leaves, avoids the death of 
plants and reduces production costs (Coccaro et al., 2013). For these 
reasons, this study produced, characterized, and evaluated a nano-
composite constituted by AgNPs and an aqueous extract of T. catappa 
against S. parasitica in vitro and in vivo assays. 

2. Material and methods 

2.1. Synthesis of AgNP-PVA 

The silver nanoparticles were synthetized according to methodology 
adapted from Pencheva et al. (2012). Two formulations (AgNPs30 and 
AgNPs300) were synthesized using different concentrations of silver ni-
trate – AgNO3 (Labsinth® – N1011.01.AD;P.A.-A.C⋅S; 30 and 300 mg. 
L− 1). For the nanoparticle synthesis, 5 g of polyvinyl alcohol (PVA) was 
dissolved in 95 mL of deionized water under agitation at 80 ◦C. In 
parallel, 30 or 300 mg of silver nitrate was dissolved in 5 mL of water 
and then added dropwise, under agitation, into the solution of 95 mL of 
PVA (5%). Subsequently, the prepared solution was heated at 100 ◦C for 
1 h to form AgNP stabilized with PVA. 

2.2. Production of Terminalia catappa aqueous extract 

The T. catappa aqueous extract was produced and characterized ac-
cording to Meneses et al. (2020). Terminalia catappa dried leaf powder 
(25 g) was soaked in 500 mL of distilled water, and heated at 80 ± 2 ◦C, 

for 1 h. The extracted material was filtered and submitted to a re- 
extraction process using 500 mL more of distilled water. The extract 
was lyophilized using a Labconco Freezone® 4.5 and maintained in a 
desiccator. For the experiment, the lyophilized extract was re-suspended 
in water at a concentration of 5 g.L− 1. 

2.3. Synthesis of nanocomposite of silver nanoparticles and aqueous 
extract 

This study produced two formulations of the nanocomposite labeled 
F30 and F300 constituted of synthetized silver nanoparticles at different 
concentrations (AgNPs30 and AgNPs300) (Pencheva et al., 2012; Men-
eses, 2017) and aqueous extract of T. catappa (Meneses et al., 2020). 

To produce the nanocomposite, the colloidal dispersion of AgNPs 
(AgNPs30 or AgNPs300) were added dropwise, at room temperature, into 
the re-suspended aqueous extract of T. catappa (1:1 v:v). The nano-
composite was storage at 4 ◦C in the dark. 

2.4. Ultraviolet visible spectroscopy 

The morphology and the stability of nanoparticles within the nano-
composite were evaluated with an ultraviolet-visible (UV–Vis) spectro-
photometer (FEMTO 800xi) at a wavelength of 400 to 800 nm one week 
and one year after the synthesis (adapted from Ghozali et al., 2015). The 
aqueous extract and the AgNP dispersion were subjected to wavelengths 
between 200 and 800 nm. Subsequently, all data were plotted in the 
software Origin 6.0 Professional. 

2.5. Transmission electronic microscopy (TEM) 

A transmission electronic microscope TEM-MSC JEOL 2100 (200 kV 
acceleration) was used to measure nanoparticle size. The nanoparticles 
were directly dripped onto a copper grid and measured using the soft-
ware Image tool 3.0. All histograms were developed using the software 
Origin 6.0. 

2.6. Dynamic light scattering and zeta potential 

The nanoparticles within nanocomposites (F30 and F300) were 
characterized with dynamic light scattering (DLS) and zeta potential 
using ZetaSizer (Malvern®) at room temperature (25 ◦C), determining 
the diameter, the polydispersity index, and the stability of the colloidal 
dispersion (Nasiriboroumand et al., 2018). All samples underwent 
dilution in deionized water at a ratio of 1:100 (sample:water) to avoid 
any retro-mirroring effect (Bourezg et al., 2012; Namvar et al., 2015). 
The analysis was conducted at 0 h (synthesis moment), one week, two 
weeks, one month, and three months after the synthesis. 

2.7. Inductively coupled plasma optical emission spectrometry (ICP-OES) 

ICP-OES Varian 720-OES was used to measure and determine the 
silver ion concentrations in the nanocomposite with a standard solution 
of AgNO3 Merck® (AgNO3 at HNO3 0.5 mol.L− 1). The samples were 
diluted with nitric acid solution (3%) and the concentrations were ob-
tained at mg.L− 1. The concentration of AgNPs was calculated in terms of 
the difference between total silver and silver ions (Sun and Yang, 2014; 
Meneses, 2017). 

2.8. High performance liquid chromatography (HPLC) 

The chemical composition of aqueous T. catappa extract was deter-
minate by HPLC. The extract was diluted with methanol/m-q water 
50:50 v:v (4 mg.L− 1), submitted to an ultrasound sonicator (60 min) and 
then filtered at polytetrafluoroethylene membrane (0.45 μm). This study 
used chromatograph Shimadzu® containing one analytic column Phe-
nomenex Luna® (4.6 × 250 mm – 5 μm particle size). The injection 
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volume was 20 μL, and the mobile phase flow rate was 1.0 mL.min− 1 

with gradient A: 0.1% acetic acid in ultrapure water (milli-q system) and 
B: methanol (HPLC degree) (adapted from Bensaad et al., 2017). The 
chemical compounds were quantified according to calibration curves of 
standard solutions (gallic acid, ellagic acid, α and β punicalagin) 
(Meneses et al., 2020). Because the nanocomposite could not be directly 
evaluated in the chromatograph, the active compounds were deter-
mined indirectly through the pure aqueous extract concentrations. 

2.9. Minimum inhibitory concentration (MIC) and Minimum fungicidal 
concentration (MFC) assay 

Two in vitro assays were performed with different culture media (i.e., 
solid and liquid). The first in vitro assay (solid medium) had a completely 
randomized design with three treatments – one control and three rep-
licates for both formulations (F30 and F300) (Table 1). Petri dishes (80 
× 10 mm and 10 mL volume) received potato dextrose agar (PDA) 
culture medium plus concentrations of the nanocomposite. 

PDA medium discs of 9 mm diameter containing the mycelium of 
S. parasitica (GenBank accession no. KY418035) were inoculated in Petri 
dishes containing PDA and concentrations of the nanocomposite. 

Mycelial growth was evaluated every 24 h throughout the 96 h with the 
aid of digital pachymeter inox 150 mm LEE tools (adapted from Corrêa 
et al., 2013) (Fig. 1). At the end of the exposure time (96 h), new Petri 
dishes containing only PDA received the discs without any mycelial 
growth (more 96 h) to confirm a fungistatic or fungicidal effect (Fig. 1). 

The second in vitro assay (liquid medium) had the same experimental 
design. Potato dextrose broth (50 mL) containing concentrations of the 
nanocomposite received four discs with S. parasitica mycelium in 
Erlenmeyers (125 mL). The four discs remained in constant agitation 
(Cientec® CT-712RN) with 125 rpm rotation at room temperature (25 
◦C) (Fig. 1). 

Every day (until 96 h), one disc of each treatment was transferred 
into Petri dishes containing PDA without concentrations of the nano-
composite, to determine the fungistatic or fungicidal effect through 
mycelial growth, and observed for 96 h more (Fig. 1). 

2.10. Prophylactic treatment against zoospore of S. parasitica (infecting 
phase) on eggs of angelfish Pterophyllum scalare 

This study obtained the approval of the Brazilian Agriculture 
Research Corporation ethical committee for animals (CEUA/00262019). 

The experiment used 15 adult Angelfish couples, which were kept in 
glass aquariums (75 L) plugged into a water recirculation system. Every 
glass aquarium had one ceramic piece as substrate for spawning, and the 
fish were fed twice a day with commercial ration (Poytara® with crude 
protein at 32%). 

After spawning, the substrate was carefully removed and placed in a 
polyethylene incubator with a useful volume of 2 L. The incubator was 
placed into the parent’s aquarium containing water from the recircula-
tion system. The natural occurrence of fungal infections in eggs was 
recorded and photographed before and after experimental treatments. 
The experiment utilized a completely randomized design with a nega-
tive control (only the water of the system), a positive control (methylene 
blue – 1 mg.L− 1, Yeasmin et al., 2015; Rahman et al., 2017), and three 
concentrations of the nanocomposite F300 (based on the best results of 
the in vitro assays) with 6 repetitions (Table 2). The evaluation lasted 72 

Table 1 
Volume and the different concentrations for both formulations of nano-
composite evaluated in vitro against S. parasitica.  

Treatments Volume of 
Nanocomposite 

F30 Proportion 
between extract 
and nanoparticles 

F300 Proportion 
between extract and 
nanoparticles 

Solid 
medium 

Liquid 
medium 

AgNP 
(mg. 
L− 1) 

Extract 
(mg. 
L− 1) 

AgNP 
(mg. 
L− 1) 

Extract 
(mg. 
L− 1) 

Control 0 0 0 0.0 0.00 0.0 
T1 0.25 mL 1.25 mL 1.61 62.5 45.75 62.5 
T2 0.50 mL 2.50 mL 3.23 125.0 91.50 125.0 
T3 1.00 mL 5.00 mL 6.46 250.0 183.00 250.0 

AgNPs – silver-nanoparticles. 

Fig. 1. Experimental design for both in vitro tests (solid and liquid medium).  
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h, A total of 30 spawning with 503.77 ± 197.85 eggs was used in the 
experiment with each spawning considered a replicate. 

Photographs were taken every 24 h to count viable, nonviable 
(opaque) (Oberlercher and Wanzenböck, 2016), and infected eggs. 
Counting was carried out with the aid of the software image J®. In 
addition, live and dead larvae were counted at the end of the 
experiment. 

The water quality parameters such as temperature (YSI 55-12FT®), 
dissolved oxygen (YSI 55-12FT®), pH (AKROM KR20®), and electric 
conductivity (YSI 30-10FT®) were measured every day. Furthermore, 
total ammonia was determined at the end of the experiment using a 
colorimetric test. 

2.11. Statistical analysis 

In vitro data of solid and liquid media, after verification of normality 
(Shapiro Wilk Test) and homoscedasticity (Levene Test) assumptions 
were conducted of one-way analysis of variance (ANOVA) with post-hoc 
Tukey test for mean comparison. In vivo data about the angelfish eggs 
were submitted to non-parametric Kruskal Wallis test with post-hoc 
Mann Whitney for comparison of posts. All statistical analysis were 
performed on SISVAR 5.6, BioEstat 5.3, and Past considering 5% (p <
0.05) for any significant difference (Zar, 2009). 

3. Results and discussion 

3.1. Characterization of the nanocomposite 

The analysis in the UV–Vis region confirmed the presence of the 
nanoparticles in the nanocomposite (Fig. 2D and E). The AgNPs (Fig. 2B 
and C), and the extract showed interaction. The presence of aqueous 
extract of T. catappa (Fig. 2A) turned the nanocomposite solution darker, 
displacing the absorption peak (F300) to the red region of the wave-
length. The change of colour from yellow to brown in the nanocomposite 
was attributed to the collective oscillation of free conduction electrons, 
resulting in surface plasmon resonance by the electromagnetic field, as is 
common for AgNPs (Peng et al., 2010; Ajitha et al., 2015; Chandraker 
et al., 2019). 

As expected, nanocomposite F30 showed a lower concentration of 
AgNPs (64.60 mg.L− 1) with greater variation at maximum absorbance 
(Fig. 2D) compared to F300 at a higher concentration (1830 mg.L− 1) 
(Fig. 2E). 

For both formulations (F30 and F300), the nanoparticles demon-
strated a spheroidal morphology (Fig. 3A and C), which is the most 
common shape for colloidal dispersion owing to thermodynamic sta-
bility (Elaissari, 2008). F30 ranged from 1 to 45 nm, with a higher fre-
quency of 10–20 nm and a mean size of 19.93 ± 0.54 nm. F300 ranged 
from 1 to 55 nm, with a higher frequency of 5–10 nm and a mean size of 
12.97 ± 10.90 nm (Fig. 3B and D). 

The nanocomposite F30 presented reduced intensity of the plasmon 

band after one year, probably owing to the lack of silver ions and/or 
deposition of nanoparticles on the glass walls of the vessel (Pastoriza- 
Santos et al., 2000; Da Costa et al., 2011). In addition, the increased size 
of nanoparticle could be related to the excessive amount of aqueous 
extract without interaction with the silver ions (Bhainsa and D’Souza, 
2006), making it more unstable and uneven (Shipway et al., 2000; He 
et al., 2002) (Fig. 2A and B). 

The inverse occurred with the nanocomposite F300, as the amount 
(number) of nanoparticles increased, verified by the plasmon band after 
one year (Fig. 2E). This increase could be due to by the reduction of ions 
in the aqueous extract solution (Bhainsa and D’Souza, 2006; Da Costa, 
2011). The higher concentration of silver ions used to synthetize AgNPs 
(300 mg) probably had a greater interaction with the extract, increasing 
the number of nanoparticles (Fig. 3C and D). Thus, this formulation 
showed smaller and more uniform nanoparticles than F30 (Fig. 3A and 
B). 

Similar results were observed using aqueous extract of Pomegranate 
bark (Punica granatum) (contains the same majority compound as 
T. catappa extract – punicalagin), which effects the intensity of the 
plasmon band due to the extract concentration, reducing agglomeration 
and increasing the nucleation of nanoparticles (Nasiriboroumand et al., 
2018). In addition, the uniform distribution of free silver atoms with 
extract molecules results in the homogeneity of the nanoparticles and a 
low polydispersity index (PDI). 

All values of the PDI for both formulations remained below 0.7 
throughout the study period, indicating the homogeneity of the particles 
(Barani et al., 2010; Barani et al., 2014; Nasiriboroumand et al., 2018). 
However, despite the small variations, F30 showed the greatest alter-
ations from one month to three months (Table 3). 

In both DLS and TEM analysis, F30 displayed greater particle sizes; 
however, the former recorded larger nanoparticles than the latter, as 
also reported by Erjaee et al. (2017). The differences between the ana-
lyses (DLS and TEM) occurred because the method used in the latter 
measures size based on metallic nanoparticles without organic cover 
agent (Baalousha and Lead, 2007; Diegoli et al., 2008; Cumberland and 
Lead, 2009). DLS measures particle diameter considering the ions or 
molecules that are linked to the nanoparticle surface (Sapsford et al., 
2011). Thus, such ions or molecules associated to AgNPs appear larger 
on the Zetasizer than the transmission electronic microscopy. For this 
reason, the hydrodynamic size is always larger (Huang et al., 2007), 
rendering it an appropriate methodology to represent the 
nanocomposite. 

Both formulations remained stable with adequate zeta potential, 
<− 30 Mv. Its negative values confirmed the strong repulsion among the 
particles, which increase the stability of the colloidal dispersion (Rao 
et al., 2013; Anandalakshmi et al., 2016). Nanocomposite F30 exhibited 
greater variation for this index over time than F300 (Table 3). 

The aqueous extract of T. catappa showed the following concentra-
tions: ellagic acid 9.54 μg.mg− 1, gallic acid 7.36 μg.mg− 1, α punicalagin 
13.32 μg.mg− 1, and β punicalagin 22.87 μg.mg− 1. These compounds 

Table 2 
Different concentrations of nanocomposite F300 tested in vivo for eggs of Angelfish Pterophyllum scalare.  

Negative control Water of the system 

Positive control Methylene blue (1 mg.L− 1) 

Treatment with 
nanocomposite 

F300 

Concentration of 
nanocomposite (μL. 
L− 1) 
v:va 

Concentration of AgNPs 
within nanocomposite 
(μL.L− 1) 
v:v 

Concentration of 
extract on 
nanocomposite 
(μL.L− 1) 
v:v 

Concentration of AgNPs (μg.L− 1) 
in each nanocomposite 
concentration tested 
w:va 

Concentration of extract (μg.L− 1) 
in each nanocomposite 
concentration tested 
w:v 

T1 25 12.5 12.5 45.75 62.5 
T2 50 25 25 91.5 125 
T3 100 50 50 183 250  

a v:volume; w: weight. 
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Fig. 2. Spectrum at ultraviolet-visible for aqueous extract of T. catappa (A); AgNPs30 (B); AgNPs300; (C); Nanocomposite F30 (D); Nanocomposite F300 (E).  
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also occurred in the chemical profile of an aqueous extract of pome-
granate (Bensaad et al., 2017; Nasiriboroumand et al., 2018). In another 
study about the aqueous extract of pomegranate (produced with ethanol 
+ ether + water) and its characterization, the authors found similar 
compounds but at different concentrations: ellagic acid 34.5 ± 1.63 μg. 
mg− 1, gallic acid 3.37 ± 0.07 μg.mg− 1, α punicalagin 1.06 ± 0.02 μg. 
mg− 1, and β punicalagin 2.07 ± 0.03 μg.mg− 1 (Singh et al., 2014). The 
present study obtained lower concentrations only for ellagic acid. The 
chemical compounds and concentrations from the aqueous extract of 
T. catappa were calculated for the nanocomposite F300 (Table 4). 

3.2. Minimum inhibitory concentration (MIC) and Minimum fungicidal 
concentration (MFC) assay – solid medium 

For the in vitro test (solid medium), increases in nanocomposite 
concentration reduced the mycelial growth in any formulation at 24 h of 
exposure. Nonetheless, F300, showed the greatest inhibition value of 
2.81 ± 0.45 mm, highlighted as the most effective treatment in the 
fungus control. 

The lower concentrations of F30 promoted similar mycelial growth 
to the control group, but different from higher concentration of 

Fig. 3. Transmission electronic microscopy (TEM) of AgNPs in nanocomposite F30 (A), histogram with size distribution (B), TEM of AgNPs in nanocomposite F300 
(C), histogram with size distribution. 

Table 3 
Mean size of nanoparticle, polydispersity index, and zeta potential of nanoparticles into both nanocomposite formulations (F30 and F300) over time.  

Trial time F30 F300 

Mean size with DLS (d.nm) PDI Zeta (mV) Mean size with DLS (d.nm) PDI Zeta (mV) 

0 h 123.2 0.182 − 13.85 ± 3.6 54.76 0.299 − 14.46 ± 0.25 
1 week 107.7 0.212 − 11.76 ± 1.55 61.91 0.193 − 18.53 ± 1.96 
2 weeks 119.8 0.224 − 24.03 ± 0.11 75.72 0.359 − 14.53 ± 1.50 
1 month 92.7 0.261 − 18.56 ± 1.71 62.79 0.223 − 13.53 ± 0.46 
3 months 96.37 0.393 − 13.43 ± 5.51 61.28 0.232 − 14.93 ± 3.27  
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nanocomposite (48.92 ± 0.47 nm) at 96 h of exposure. The higher 
concentration of F300 promoted higher reduction of mycelial growth 
compared to control group, achieving a greater inhibition of growth 
(16.12 ± 0.43 nm) at the same exposure time. Nevertheless, the higher 
concentrations of both formulations did not demonstrate fungicidal ef-
fect, only fungistatic (Table 5). 

Another study using the ethanolic extract of snake jasmine (Rhina-
canthus nasutus) and galanga (Kaempferia galangal) showed fungistatic 
effects, but at higher concentrations (2500 and 5000 mg.L− 1, respec-
tively) (Udomkusonsri et al., 2007) compared to the present study at 24 
h of exposure. Fungistatic effects were observed in 48 h of exposure in 
other studies using the aqueous extract of Cnidium monnieri, Magnolia 
officinalis, and Aucklandia lappa (Xue-Gang et al., 2013), and ethanolic 
extract of Mentha longifolia, Satureja bachtiarica, Hyssopus officinalis, 
Tanacetum partheniu, and Myrtus communis (Pirbalouti et al., 2009) at a 
concentration of 500 mg.L− 1, which is a higher concentration than used 
in the present study. 

In a study using the same exposure method, Johari et al. (2015a) 
found a fungistatic effect at AgNP concentrations of 1000, 1200, 1400, 
and 1600 mg.L− 1 against S. parasitica, as well as a fungicide effect at 
concentrations of 1800 and 2000 mg.L− 1. In our present study, a lower 
concentration was used to promote the same fungicide effect, probably 
indicating a synergistic effect between the nanoparticles and the 
aqueous extract (AgNPs 183 mg.L− 1 + extract 250 mg.L− 1). 

3.3. Minimum inhibitory concentration (MIC) and Minimum fungicidal 
concentration (MFC) assay – liquid medium 

In the liquid medium assay, the greater surface contact between the 
fungus and the nanocomposite promoted increased efficacy in 

Table 4 
Concentrations of nanocomposite tested in vitro and in vivo and weight of active compounds present in each tested concentration (according to HPLC quantification of 
crude extract).  

Concentrations of nanocomposite tested in vitro and in vivo containing T catappa extract and AgNPsa Weight of active compounds present in each nanocomposite concentration 
tested in vitro (I⋅V) and in vivo (I.Vo) 

Gallic acid 
(μg) 

Ellagic acid 
(μg) 

α-Punicalagin 
(μg) 

β-punicalagin (μg) 

I⋅V I.Vo I⋅V I.Vo I⋅V I.Vo I⋅V I.Vo 

T1 of nanocomposite 460 0.46 600 0.60 830 0.83 1440 1.44 
T2 of nanocomposite 920 0.92 1190 1.19 1660 1.66 2870 2.87 
T3 of nanocomposite 1840 1.84 2390 2.39 3330 3.33 5740 5.74  

a in vitro (I⋅V) concentrations: T1: 45.75 mg.L− 1 AgNPs +62.5 mg.L− 1 T. catappa extract; T2: 91.50 mg.L− 1 AgNPs+125 mg.L− 1 T. catappa extract; T3: 183 mg.L− 1 

AgNPs +250 mg.L− 1 T. catappa extract; in vivo (I.Vo) concentrations: T1: 45.75 μg.L− 1 AgNPs +62.5 μg.L− 1 T. catappa extract; T2: 91.50 μg.L− 1 AgNPs+125 μg.L− 1 

T. catappa extract; T3: 183 μg.L− 1 AgNPs +250 μg.L− 1 T. catappa extract. 

Table 5 
Mycelial growth of S. parasitica on solid medium in the in vitro assay.  

Treatment 24 h 96 h 

F30 Diameter 
(mm) 

F300 Diameter 
(mm) 

F30 Diameter 
(mm) 

F300 Diameter 
(mm) 

C* 51.11 ± 0.77d 51.11 ± 0.77 d 73.31 ± 0.13 
b 

73.31 ± 0.13 d 

T1 34.41 ± 1.27 
c 

10.18 ± 0.39 c 73.42 ± 0.02 
b 

56.96 ± 0.69 c 

T2 22.38 ± 0.30 
b 

5.45 ± 0.48 b 73.26 ± 0.04 
b 

29.02 ± 0.35 b 

T3 10.07 ± 0.25 
a 

2.81 ± 0.45 a 48.92 ± 0.47 
a 

16.12 ± 0.43 a  

* C: control; T1: 45.75 mg.L− 1 AgNPs +62.5 mg.L− 1 T. catappa extract; T2: 
91.50 mg.L− 1 AgNPs+125 mg.L− 1 T. catappa extract; T3: 183 mg.L− 1 AgNPs 
+250 mg.L− 1 T. catappa extract; Different letters in the column means statistical 
difference by Tukey test (p < 0.05). 

Table 6 
Mycelial growth of S. parasitica exposed to nanocomposite (both formulations in 
vitro) into liquid medium for 24 h.  

Treatments Mycelial growth after 24 h of 
exposition to nanocomposite and 
24 h without nanocomposite 
(PDA) 

Mycelial growth after 24 h of 
exposition to nanocomposite and 
96 h without nanocomposite 
(PDA) 

F30 Diameter 
(mm) 

F300 
Diameter 
(mm) 

F30 Diameter 
(mm) 

F300 
Diameter 
(mm) 

C* 65.56 ± 0.90 
a 

65.56 ± 0.90 c 73.48 ± 0.10 
a 

73.48 ± 0.10 c 

T1 57.37 ± 2.04 
a 

51.86 ± 1.27 c 73.39 ± 0.10 
a 

73.24 ± 0.04 b 

T2 52.39 ± 3.33 
a 

36.08 ± 16.95 
b 

73.33 ± 0.05 
a 

73.34 ± 0.19 
bc 

T3 51.73 ± 1.69 
a 

0.00 ± 0.00 a 73.30 ± 0.03 
a 

0.00 ± 0.00 a  

* C: control; T1: 45.75 mg.L− 1 AgNPs +62.5 mg.L− 1 T. catappa extract; T2: 
91.50 mg.L− 1 AgNPs+125 mg.L− 1 T. catappa extract; T3: 183 mg.L− 1 AgNPs 
+250 mg.L− 1 T. catappa extract; Different letters in the column means statistical 
difference by Tukey test (p < 0.05). 

Table 7 
Mycelial growth of S. parasitica exposed to nanocomposite (both formulations in 
vitro) in liquid medium for 96 h.  

Treatments Mycelial growth after 96 h of 
exposition to nanocomposite and 
24 h without nanocomposite 
(PDA) 

Mycelial growth after 96 h of 
exposition to nanocomposite and 
96 h without nanocomposite 
(PDA) 

F30 Diameter 
(mm) 

F300 
Diameter 
(mm) 

F30 Diameter 
(mm) 

F300 
Diameter 
(mm) 

C* 56.45 ± 3.33 
b 

56.45 ± 3.33 c 73.38 ± 0.13 
a 

73.38 ± 0.13 b 

T1 55.78 ± 0.56 
b 

42.61 ± 4.91 b 73.37 ± 0.05 
a 

73.40 ± 0.04 b 

T2 60.29 ± 1.63 
b 

0.00 ± 0.00 a 73.24 ± 0.05 
a 

0.00 ± 0.00 a 

T3 39.53 ± 1.13 
a 

0.00 ± 0.00 a 73.32 ± 0.09 
a 

0.00 ± 0.00 a  

* C: control; T1: 45.75 mg.L− 1 AgNPs +62.5 mg.L− 1 T. catappa extract; T2: 
91.50 mg.L− 1 AgNPs+125 mg.L− 1 T. catappa extract; T3: 183 mg.L− 1 AgNPs 
+250 mg.L− 1 T. catappa extract; Different letters in the column means statistical 
difference by Tukey test (p < 0.05). 
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controlling the mycelial growth, different from that observed in solid 
medium assay. The F300 demonstrated a fungicide effect at concentra-
tion T3 (AgNPs 183 mg.L− 1 + aqueous extract 250 mg.L− 1) in the first 
24 h of exposure, confirmed by the absence of mycelial growth in me-
dium without the nanocomposite up to 96 h (Table 6). 

Nonetheless, after 96 h of exposure, the second concentration of 
F300 (T2 = AgNPs 91.5 mg.L− 1 + aqueous extract 125 mg.L− 1) achieved 
a fungicide effect without any mycelial growth in the pure medium 
culture (Table 7). 

Few studies have been conducted about the use of other nano-
composites against Saprolegnia sp. Johari et al. (2014) found a fungicide 
effect using a nanocomposite containing silver zeolite at concentrations 
of 1000 and 2000 mg.L− 1, 10 and 20 times greater, respectively, than 
the concentrations used in the present study with AgNPs. 

For this reason, the nanocomposite used here should be regarded as 
an appropriate and eco-friendly product for S. parasitica control because 
of the use of lower concentrations, due to a synergistic effect between 
nanoparticles and T. catappa extract. This is an important factor due to 
the harmful conditions cause by extended permanence of silver ions in 
the environment (Fisher and Wang, 1998; Bianchini et al., 2002) and 
their toxic effects on aquatic life, mainly when used directly in water 
(Asghari et al., 2012; Mathivanan et al., 2012; Johari et al., 2013; Asz-
temborska et al., 2014; Hosseini et al., 2014; Tavana et al., 2014; Johari 
et al., 2015b). 

3.4. Prophylactic treatment against zoospore of S. parasitica (infecting 
phase) in vivo for eggs of angelfish Pterophyllum scalare 

In addition to the effects of the nanocomposite in vitro, this study 
evaluated its potential to control fungus in angelfish eggs, which are 
naturally susceptible to the zoospores (infectious phase of the fungus). 
According to one previous study, in vitro concentrations had toxic effects 
on eggs, requiring a readjustment of the concentrations. The new con-
centrations were defined by a sensibility test according to Yang et al. 
(2018). 

The water quality parameters used were temperature (27.74 ± 1.47 
◦C), pH (7.01 ± 0.82), electric conductivity (0.16 ± 0.03 μS.cm− 1), 
dissolved oxygen (6.06 ± 0.88 mg.L− 1), and toxic ammonia with zero 
values. All of these remained within the required range for angelfish 
Pterophyllum scalare rearing (Pereira et al., 2016; Da Costa Sousa et al., 
2019). 

The percentage of viable eggs at 24 and 48 h showed statistical dif-
ferences (p < 0.05) among the treatments (Fig. 4A and B). The control 
group had the lowest number of viable eggs at 48 h, demonstrating the 
high pathogenicity of the fungus in naturally infected eggs. The two 
lower concentrations of the nanocomposite at 24 and 48 h yielded the 
highest viable egg rates, statistically similar to the methylene blue 
(positive control) (Fig. 4A and B). After 48 h of exposure, the highest 
concentration of the nanocomposite (AgNPs 183 μg.L− 1 + aqueous 

Fig. 4. Viable eggs rate in the different treatments at 24(A), 48(B), and 72 h(C). NC: negative control (water); PC: positive control (methylene blue); T1: 45.75 μg.L− 1 

AgNPs +62.5 μg.L− 1 T. catappa extract; T2: 91.5 μg.L− 1 AgNPs +125 μg.L− 1 T. catappa extract; and T3: 183 μg.L− 1 AgNPs +250 μg.L− 1 T. catappa extract. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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extract 250 μg.L− 1) produced a lower viable egg rate than the control 
group (only water), demonstrating the toxic effect in this concentration 
(Fig. 4B). 

The eggs hatched into the treatments with the nanocomposite after 
72 h (Fig. 4C), which is a normal time for this fish species. However, in 
methylene blue treatment for the same observation time (72 h), viable 
eggs were still founded, probably due to its retardant effect on embryo 
formation (Sanabria et al., 2009). Shapiro (1948) tested several chem-
icals for echinoderms in the initial stage of cleavage and observed that 
methylene blue retarded the first cleavage of sea urchin eggs. The toxic 
effect of methylene blue was reported in catfish (Ictalurus punctatus) and 
rainbow trout (Oncorhynchus mykiss) (Willford, 1966). In Cyprinus carpio 
eggs, increasing methylene blue concentration from 1 to 5 mg.L− 1 

reduced hatching (Yeasmin et al., 2015). 
The treatments did not differ statistically for the infected eggs rate at 

24 h, but after 48 h the negative control showed a higher infection rate 
(Fig. 5A and B), and the treatments (concentrations of nanocomposite 
and methylene blue) were statistically similar. 

After 72 h (Fig. 5C), the nanocomposite at a concentration of AgNPs 
91.5 μg.L− 1 + aqueous extract 125 μg.L− 1 achieved a similar effect to 
methylene blue, although its concentration was 10 times less than 
methylene blue 1000 μg.L− 1. 

The second treatment (T2) and the positive control (methylene blue) 
yielded more viable larvae (Fig. 6). The highest concentration (T3) ob-
tained less viable larvae probably due to a toxic effect. At the other end 
of the scale, the negative control (only water) also presented no viable 

larvae (Fig. 6). 
The freshwater angelfish achieve greater hatching rate in wild en-

vironments or in captivity when the eggs remain with the parents, due 
the parental care. The parents remove non-fertilized and non-viable eggs 
and constantly agitate the water to avoid proliferation of the pathogen 
(Degani and Yehuda, 1996; Farahi et al., 2011). However, in intensive 
production, the spawns that are away from their parents have a hatching 
rate of zero according to Chambel et al. (2014), mainly due the Sapro-
legnia infection (Ahmed et al., 1990). 

The utilization of prophylactic methods throughout egg development 
is crucial to avoiding Saprolegniosis. The fungus adheres and penetrates 
into the chorion, weakening eggs; absorbing nutrients, such as glyco-
protein or lipoprotein; and thereby preventing embryo growth, which 
ultimately leads to death (Almufrodi et al., 2013; Van Den Berg et al., 
2013; Humsari, 2017). 

The mycelium and zoospore were differently affected by nano-
composite, mainly to applied concentrations. For the in vitro assay, this 
study evaluated the effect of the nanocomposite against mycelium 
growth. However, for the in vivo assay, the target was the zoospore. This 
difference was reported by Sun and Yang (2014) with copper sulfate, 
using a concentration of 5 mg.L− 1 to control mycelium growth, 50 times 
greater (0.1 mg.L− 1) than that used to obtain a fungicide effect in 
zoospores. 

Another study (Xue-Gang et al., 2013) described the same difference 
using Cnidium monnieri plus petroleum ether (mycelium 62.5 mg.L− 1 

and zoospore 25 mg.L− 1), Magnolia officinalis (mycelium 62.5 mg.L− 1 

Fig. 5. Infected eggs rate with S. parasitica in the different treatments at 24(A), 48(B), and 72 h(C). NC: negative control (water); PC: positive control (methylene 
blue); T1: 45.75 μg.L− 1 AgNPs +62.5 μg.L− 1 T. catappa extract; T2: 91.5 μg.L− 1 AgNPs +125 μg.L− 1 T. catappa extract; and T3: 183 μg.L− 1 AgNPs +250 μg.L− 1 

T. catappa extract. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and zoospore 12.5 mg.L− 1), and Aucklandia lappa (mycelium 62.5 mg. 
L− 1 and zoospore 25 mg.L− 1) extracts against Saprolegnia, all of which 
reported higher concentration for the same effects in the mycelium 
stage. 

Thus, future studies using a nanocomposite to control mycelium at 
different life stages of fish must be conducted to determine toxic effects 
and ensure the fish’s safety. 

The use of aqueous extract of T. catappa improved the effect of the 
nanocomposite because its chemical profile with polyphenols (flavo-
noids) and tannins (gallic acid, ellagic acid, α and β punicalagin) has a 
fungicide effect, protecting eggs and avoiding fungal proliferation. Fla-
vonoids form complex compounds with proteins, which penetrate 
cellular membrane, lysing it, avoiding fungal growth (Sulistyawati and 
Sri, 2009). In the present study, these effects allowed the use of lower 
concentrations of nanocomposites than other studies using isolated 
compounds (extracts or metallic nanoparticles) (Table 8). 

The nanoparticle and the aqueous extract demonstrated a remark-
able synergistic effect, reducing the amount of product to control 
S. parasitica. This is an important factor because less the metallic 
nanoparticles reach the egg (Böhme et al., 2017). 

According to literature, silver ion is usually more toxic than nano-
particle due to different toxicity mechanisms for embryos (Zhao and 
Wang, 2011; Bilberg et al., 2012; Ribeiro et al., 2014). The chorion 
protected the eggs from external influences (Kimmel et al., 1995; Lee 
et al., 2007), it has pores (200 nm) (Hart and Donovan, 1983) that 
permit permeable gas and some nutrients (Rawson et al., 2000). How-
ever, the structure of chorion has negative charge, attracting and 
binding to positively charged metal ions (Hart and Donovan, 1983; 

Henn, 2011). 
The toxicity of Ag + causes ionoregulatory disorders by sodium 

blockade (Potassium ATPase), triggering disturbances in fluid volume 
and circulatory collapse, leading to death (Mosselhy et al., 2016). 
Mortality of rainbow trout eggs by silver nitrate was associated to ion-
oregulatory impairment, in which 60% of Na + and Cl- was lost from the 
egg (Guadagnolo et al., 2000). 

The transport of any particle across the chorion depends on size and 
particle properties, such as surface coating or stabilizers (Böhme et al., 
2017). Some studies found that a smaller particle creates a higher spe-
cific surface area, increasing bioavailability or surface activity, which 
increases the particles toxicity (Park et al., 2010; Lin et al., 2013). The 
nanoparticles coated by the plant extract can avoid the internalization of 
the nanoparticles by increasing the total size of nanocomposite and 
decreasing the toxicity. Sarkar et al. (2014) reported higher toxicity of 
nanoparticles synthetized by chemical method in comparison to nano-
particles obtained by biological method (reduction through vegetal 
material) in zebrafish Danio rerio. 

Silver nanoparticle accumulation in egg can also cause inadequate 
larval heart and caudal formation, as well as yolk sac edema at a con-
centration of 10 mg.L− 1 AgNPs, as reported in Danio rerio (Orbea et al., 
2017). Deformation and reduced physiological development of the 
embryo was observed at concentrations above 25 mg.L− 1, as well as the 
opacity of the chorion at 100 mg.L− 1 (AgNPs + polyvinylpyrrolidone) 
(Caloudova et al., 2018). However, none of these alterations were 
observed after treatment with the nanocomposite (silver-nanoparticle +
aqueous extract of T. catappa). Furthermore, the larvae development 
time and the number of viable eggs was not affected by exposure to our 

Fig. 6. Total viable larvae (A), dead larvae (B), and live larvae (C) among the different treatments at the end of experiment (72 h). NC: negative control (water); PC: 
positive control (methylene blue); T1: 45.75 μg.L− 1 AgNPs +62.5 μg.L− 1 T. catappa extract; T2: 91.5 μg.L− 1 AgNPs +125 μg.L− 1 T. catappa extract; and T3: 183 μg.L− 1 

AgNPs +250 μg.L− 1 T. catappa extract. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

J.O. Meneses et al.                                                                                                                                                                                                                              



Aquaculture 543 (2021) 736914

11

nanocomposite. 
Thus, despite the possible metal internalization (Böhme et al., 2017), 

it was not harmful to the fish in the present nanocomposite formulation, 
because the nanoparticles may not have reached the embryo or the 
concentration was not sufficient to block the oxygen transportation. 

Thus, the use of a nanocomposite allying AgNPs with the aqueous 
extract of T. catappa can reduce AgNPs concentration and hence its toxic 
effects for fish, the environment, or fish farmers, making it an eco- 
friendly alternative to improve larval survival in captivity conditions. 

4. Conclusion 

The nanocomposite (F300) showed silver-nanoparticles with small 
size and more stability, reflected in greater antifungal activity for both in 
vitro and in vivo tests. For prophylactic tests with eggs of angelfish 
Pterophyllum scalare, the concentration AgNPs 91.5 μg.L− 1 + aqueous 
extract 125 μg.L− 1 showed the best efficacy, providing a high rate of 
viable eggs, low rate of fungal infections, and greater larval survival. 
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Orbea, A., González-Soto, N., Lacave, J.M., Barrio, I., Cajaraville, M.P., 2017. 
Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to 
zebrafish. Comp. Biochem. Physiol. C 199, 59–68. https://doi.org/10.1016/j. 
cbpc.2017.03.004. 

Park, E.J., Yi, J., Kim, Y., Choi, K., Park, K., 2010. Silver nanoparticles induce 
cytotoxicity by a Trojan-horse type mechanism. Toxicol. in Vitro 24, 872–878. 
https://doi.org/10.1016/j.tiv.2009.12.001. 

Pastoriza-Santos, I.I., Serras-Rodríguez, C., Liz-Marzán, L.M., 2000. Self-assembly of 
silver particle monolayres on glass from Ag(+) solution in DMF. J. Colloid Interface 
Sci. 221 (2), 236–241. https://doi.org/10.1006/jcis.1999.6590. 

Pencheva, D., Bryaskova, R., Kantardjiev, T., 2012. Polyvinyl alcohol/silver 
nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid 
materials with included silver nanoparticles. Mater. Sci. Eng. C 32 (7), 2048–2051. 
https://doi.org/10.1016/j.msec.2012.05.016. 

Peng, S., Mcmahon, J.M., Schatz, G.C., Gray, S.K., Sun, Y., 2010. Reversing the size- 
dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. U. S. A. 107 (33), 
14530–14534. https://doi.org/10.1073/pnas.1007524107. 

Pereira, S.L., Gonçalves Junior, L.P., Azevedo, R.V.D., Matielo, M.D., Selvatici, P.D.C., 
Amorim, I.R., Mendonça, P.P., 2016. Diferentes estratégias alimentares na 
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