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Abstract: Sesquiterpenes (SS) are secondary metabolites formed by the bonding of 3 isoprene (C5) 
units. They play an important role in the defense and signaling of plants to adapt to the environ-
ment, face stress, and communicate with the outside world, and their evolutionary history is 
closely related to their physiological functions. This review considers their presence and exten-
sively summarizes the 156 sesquiterpenes identified in Vitex taxa, emphasizing those with higher 
concentrations and frequency among species and correlating with the insecticidal activities and 
defensive responses reported in the literature. In addition, we classify the SS based on their chem-
ical structures and addresses cyclization in biosynthetic origin. Most relevant sesquiterpenes of the 
Vitex genus are derived from the germacredienyl cation mainly via bicyclogermacrene and ger-
macrene C, giving rise to aromadrendanes, a skeleton with the highest number of representative 
compounds in this genus, and 6,9-guaiadiene, respectively, indicating the production of 
1.10-cyclizing sesquiterpene synthases. These enzymes can play an important role in the chemo-
systematics of the genus from their corresponding routes and cyclizations, constituting a new 
approach to chemotaxonomy. In conclusion, this review is a compilation of detailed information on 
the profile of sesquiterpene in the Vitex genus and, thus, points to new unexplored horizons for 
future research. 
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1. Introduction 
Volatile sesquiterpenes, like all terpenoids, are derived from the five-carbon pre-

cursor isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate 
(DMAPP) [1,2]. Plant species use two separate pathways to synthesize these precursors: 
the mevalonate acid pathway (MVA), which is located in the cytosol and partially in the 
endoplasmic reticulum and peroxisomes, and the methylerythritol phosphate pathway 
(MEP), which is located in the plastids [2–4]. 

For the biosynthesis of volatile sesquiterpenes, farnesyl diphosphate synthase (FDS), 
a branch point enzyme in the biosynthesis of these terpenoids, condenses a DMAPP unit 
with two IPP units to form the linear precursor farnesyl diphosphate (E,E-FPP, C15). 
This, by cleavage, forms a reactive carbocation, which undergoes electrophilic cyclization 
and rearrangements to form sesquiterpenes (SS) through a cascade of enzymatic reac-
tions catalyzed by families of functionally distinct enzymes of sesquiterpene synthase 
(sesqui (TPS)) and cytochrome P450 mono-oxygenase (P450), which are the main drivers 
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of skeletal formation and functional modifications, respectively [5–7]. The cascade of re-
actions generated by sesqui (TPS) proceeds through the intermediate carbocations, which 
serve as ramifications for specific pathways in the chemical cascade [1,8]. In general, the 
proposed reaction mechanism for SS formation consists of three main stages: (1) genera-
tion of a carbocation, (2) hydride changes and carbocation rearrangements, and (3) neu-
tralization of a carbocation by deprotonation or capture of a nucleophile (e.g., water) 
[9,10]. 

Alternatively, sesqui (TPS) can use a secondary carbocation formed from the isomer 
(E,E)-FPP, the (3R)-nerolidyl diphosphate (3R-NPP), and then proceed to the formation of 
the terpenoid skeleton. The first cyclization that occurs by attacking the double bond 
with carbocations derived from (E,E)-FPP or (3R)-NPP (farnesyl or nerolidyl cation) can 
be used to divide the sesquiterpenes produced by plants into seven groups, which can be 
1.10 or 1.11 of the farnesyl carbocation or 1.6, 1.7, 1.10, 1.11-cyclization of the nerolidyl 
carbocation (Figure 1) [11,12]. 

 
Figure 1. Biosynthesis of sesquiterpenes in Vitex species. 
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Sesquiterpenes have more than 7,000 identified carbon skeletons from different or-
ganisms [13]. In plants, volatile SS hydrocarbons are well known as constituents of es-
sential oils and play ecological roles in the plant’s interaction with pollinators and pred-
ators. Many of these compounds are released by flowers to attract pollinators [14] and 
play an important role in direct and indirect chemical defense against herbivores and 
phytopathogens [15–17]. They are the volatile constituents released by plants defense 
after attack by herbivores, attracting arthropods that attack or parasitize these herbivores 
[15,18–20]. In addition, they are also synthesized and accumulated in organs such as 
rhizomes and roots, participating in the attraction of nematode predators [17,21]. 

Vitex (Lamiaceae, Viticoideae) comprises c. 250 pantropical, subtropical, and some 
temperate species [22]. The most common species known for their medicinal properties 
are V. agnus-castus, V. rotundifolia, and V. negundo [22]. According to our survey, 21 Vitex 
species have essential oils reported in the literature database. These species have a di-
versity of volatile terpenes, mainly sesquiterpenes, which are present in great abundance 
[23–30]. This genus also has some nonvolatile sesquiterpenoids. Yao et al. [30] published 
a review of terpenes obtained from Vitex species. They reported that eight SS structures 
were obtained, including a structure containing a furan ring, three furanoeremophylane, 
and four sesquiterpenoids with an aromadendrane skeleton with a seven-membered 
ring. Interestingly, volatile SS varieties with a seven-membered ring aromadendrane 
skeleton were found in Vitex species in different regions of the world [25,30–34]. It was 
hypothesized that sesqui (TPS) that are being expressed in the genus Vitex, which are 
responsible for the formation of compounds with fused five- and seven-membered rings, 
may play an important role in chemosystematics [25]. 

There was great progress in recent years in the identification and functional char-
acterization of genes for the biosynthesis of SS and cyclase enzymes, which led to a 
greater understanding of the mechanisms and variability of biosynthesis of these terpe-
noids [7,35,36]. So far, a large number of sesqui (TPS) responsible for the formation of 
defensive SS were cloned and functionally characterized from various plants, such as 
corn, rice, sorghum, cotton, and tomatoes [7,37–40]. Defenses related to SS were well de-
scribed in these species of angiosperm, revealing several chemical mechanisms for re-
sistance against above and below ground stressors, providing much stronger evidence 
for the involvement of SS in plant defense [37,41–43]. This knowledge can be combined 
with versatile metabolic engineering approaches for the broader production of terpenoid 
bioproducts [44]. Although advances have occurred, there is still a vast field of 
knowledge about the gene structure, catalysis mechanism, and expression regulation for 
a large number of sesqui (TPS) from various plants, including Vitex species. 

In this context, this review addresses the possible sesqui (TPS) that are being ex-
pressed in the genus Vitex, the type of cyclization that occurs in the biosynthetic origin of 
SS, which were identified with frequency and high concentrations in species, and its 
correlation with the insecticidal activities and defensive responses reported in literature. 
This paper covers the literature database correlating sesquiterpenes/sesquiterpenes syn-
thases, Vitex species and insecticidal activities. This review is a valuable source of infor-
mation in the field of plant SS biosynthesis, and therefore we compiled detailed infor-
mation on the profile of SS in the genus Vitex and, thus, also indicated new unexplored 
horizons for future research. 

2. Volatile Sesquiterpenes in Vitex genus 
Usually, SS are classified based on different oxygen functions, such as alcohol, al-

dehyde, and sesquiterpene lactone. This is relevant to their physiological activities and 
physical and chemical properties [45]. They are also classified by the number of carbon 
rings in their chemical structure, such as acyclic, monocyclic, bicyclic, tricyclic, and tet-
racyclic [46]. In addition, SS can also be classified according to the number of carbons in 
the rings, with most rings containing 5, 6, 7, and up to 11 carbons [47]. 
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Several investigations were carried out on the chemical composition of different Vi-
tex species from different geographic regions. As far as we know, 156 volatile SS were 
identified in Vitex species (Figures 3, 4, 9 and 13), which are distributed in 37 skeletons 
(Figure 2). Among them, the bicyclic SS cadalane type is the one with the highest number 
of compounds identified in the Vitex genus followed by the eudesmane and the tricyclic 
aromadrendane. However, bicyclic caryophyllane-type compounds, such as 
(E)-β-caryophyllene (EβC), caryophyllene oxide, and the monocyclic α-humulene, were 
the most representative volatile SS within the Vitex genus, appearing in many species in 
high concentrations. 

 
Figure 2. Structures of parent carbon skeletons of all sesquiterpenes identified in Vitex. 
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Next, the SS of the Vitex species were classified based on the number of carbon rings 
and subclassified by the original carbon skeletons on which their chemical structures are 
based according to the work of [47], highlighting those that appeared more often and in 
high concentrations. Furthermore, the type of primary cyclization in the biosynthetic 
origin of these compounds was suggested. 

2.1. Acyclic Sesquiterpenes 
The acyclic group has the smallest number of members, with only 11 acyclic SS 

identified in Vitex species, and all containing a farnesane skeleton (Figure 3). Among 
them, the compound (E)-β-farnesene (EβF) stands out, which is reported in eight species, 
being one of the main components of V. agnus-castus in various regions of the globe 
[24,26,31,48–60]. Probably, EβF synthase is being expressed in this species. 

 
Figure 3. Structure of acyclic sesquiterpenes in Vitex species. 

The gene-encoding EβF synthase, which catalyzes the formation of EβF, was identi-
fied and characterized for the first time from Mentha piperita L. [61]. Later, orthologous 
EβF synthase genes were isolated from other plants, such as Citrus junos [62], Pseudotsuga 
menziesii [63], Matricaria recutita [64], and Artemisia annua [65,66]. 

The acyclic pathway begins with the addition of water or the loss of protons from 
the carbocation farnesyl or nerolidyl [12,36]. In this pathway, the carbocation does not 
undergo a cyclization process as in other pathways, being responsible for the production 
of several acyclic SS from the farnesane skeleton [47]. 
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2.2. Monocyclic Sesquiterpenes 
There are 24 monocyclic sesquiterpenes that were identified in Vitex species. They 

can be classified into four subcategories based on the carbon skeleton, such as humulane, 
germacrane, elemane, and bisabolane (Figure 4). 

 
Figure 4. Structures of monocyclic sesquiterpenes in Vitex species. 

2.2.1. Humulane Skeleton 
Four compounds with a humulane skeleton were identified (Figure 4). Among 

them, 𝛼-humulene, which was reported in 17 Vitex species, is one of the main compound 
in V capitata, V. megapotamica, V. rufecens [25,67], V. simplicifolia [68], and V. doniana [28]. 

Although α-humulene is a common SS in plants, only α-humulene synthase was 
identified in the species Zingiber zerumbet, Picea glauca, and Aquilaria crassna, catalyzing 
the formation of α-humulene as the main product and β-caryophyllene as the secondary 
product [69,70]. However, in Vitex species, α-humulene was identified as a secondary 
product or in smaller amounts and EβC was identified as the main compound, while 
α-copaene and β-elemene were also identified in smaller amounts. Interestingly, sequi 
(TPS) capable of producing these compounds in this way was described and identified in 
plant species Arabidopsis thaliana (AtTPS21) and Oryza sativa (OsTPS3) as 
(E)-β-caryophyllene synthase (EβCs) [16,71]. Other studies reported that this synthase 
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catalyzed the formation of EβC as a major product and α-humulene in smaller amounts 
[72–74]. 

The origin of these SS is the result of 1.11-cyclization to form a humulyl cation, 
which by deprotonation of C-9 can form α-humulene or promote the closure of 2.10 
generating EβC (Figure 5) [69,75]. 

 
Figure 5. Types of primary cyclization of α-humulene and β-caryophyllene. 

2.2.2. Germacrane Skeleton 
Germacrenes are a subclass of SS with a germacrane skeleton. Four compounds with 

this skeleton were identified in Vitex species (Figure 4). However, germacrene D is the 
most relevant compound, appearing in eleven species, and is the major compound in the 
essential oils of V. rivularis and V. ferruginea [29,30], with significant amounts in V. ru-
fescens and V. simplicifolia [25,68]. Due to the high concentration of this SS, germacrene D 
synthase is possibly being expressed in V. rivularis and V. ferruginea. The gene (FcTPS1) 
encoding this synthase in Ficus carica L. catalyzed the predominant formation of ger-
macrene D together with α-cubebene, EβC, γ-muurolene, α-muurolene, γ-cadinene, and 
δ-cadinene in smaller amounts [76], as can be seen in V. rivularis and V. ferruginea. 

Germacrene D is a biogenetic precursor of many SS. This pathway is considered one 
of the most important, being responsible for the biosynthesis of numerous sesquiter-
penes. It can also be classified into three subpathways: via cadinenyl cation, via 
muurolenyl cation, and via amophenyl cation [77]. The formation of this sesquiterpene 
occurs through 1.10-cyclization of the farnesyl cation. The subsequent reaction pathway 
was shown to involve different hydrogen displacements to provide germacrene D (Fig-
ure 6) [11,78–80]. 
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Figure 6. A type of primary cyclization of germacrene D. 

2.2.3. Bisabolane Skeleton 
The bisabolane skeleton had the largest number of compounds among the monocy-

clic sesquiterpenes. Thirteen compounds were identified in Vitex plants (Figure 3). Alt-
hough the compounds in this group did not show a relevant concentration and frequency 
among the species, γ-curcumene and β-curcumene were the secondary and tertiary 
products of V. rivularis [29], respectively. As mentioned earlier, germacrene D is the ma-
jor compound in this species. 

So far, only γ-curcumene synthase (PatTpsA) from Pogostemon cablin was identified 
in plants, generating γ-curcumene as the only product [81]. Studies by targeting amino 
acid residues mutation in the active site of the epi-isozyzaene synthase (EIZS) of Strep-
tomyces coelicolor converted this enzyme into new sesqui (TPS), including β-curcumene 
synthase (F95H EIZS) and F95Q EIZS (unidentified synthase), generating β-curcumene as 
the main product and the β and γ-curcumene regioisomers as the main cyclization 
products, respectively [82,83]. 

The proposed mechanism for cyclization of curcumene sesquiterpenes derives from 
1.6-cyclization to form the bisabolyl carbocation. The displacement of [1,2]-hydride forms 
the homobisabolyl cation which, due to the loss of the proton, forms the derivatives of 
curcumene (Figure 7) [82–84]. 
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Figure 7. Types of primary cyclization of γ-curcumene and β-curcumene. 

2.2.4. Elemane Skeleton 
Four elemane skeletons type compounds were identified in Vitex plants (Figure 3). 

However, only ß and γ-elemene have attracted attention. The first was identified in 10 
species, appearing in significant concentrations in V. quinate and V. rufecens [25,85] and in 
smaller amounts in V. capitata and V. megapotamica [25,67]. Its isomer, γ-elemene, appears 
as one of the main compounds in V. capitata and in V. megapotamica [25,67]. Interestingly, 
δ-elemene appeared as one of the major compounds of V. megapotamica collected in 
southern Brazil [67]. 

The sesqui (TPS) for ß-elemene, whose compound is predominant in plants, was 
identified only in rice [86]. However, ß-elemene is generally considered a transformation 
product from germacrene A, which is synthesized by germacrene A synthase (Figure 8) 
[21,87–89]. 

From a biogenetic point of view, many elemene-type sesquiterpenes are produced 
from the corresponding germacrenes via Cope rearrangement [90]. Studies showed that 
during isolation and analysis by gas chromatography (GC), germacrene A undergoes a 
Cope to β-elemene rearrangement induced by heating in the injector [91–94], while ger-
macrene B and germacrene C rearranges to γ-elemene [95] and δ-elemene [90], respec-
tively. However, germacrene A was not detected in any of the Vitex species. Instead, 
ß-elemene appeared as one of the secondary products. This compound probably comes 
from a single enzyme that uses a single substrate, giving rise to several products [7]. The 
multiple products are mainly due to the stochastic nature of the linked rearrangements, 
which follow the creation of the unusual carbocation intermediates before the reaction is 
terminated through deprotonation or nucleophile capture [7]. As mentioned earlier, EßCs 
are possibly being expressed in V. rufescens, V. capitata, V. megapotamica, and V. quinata. 
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This enzyme catalyzed several products in smaller amounts in other plants, including 
ß-elemene [16,71]. On the other hand, the significant concentration of γ-elemene and 
corresponding decrease in its precursor germacrane B in V. capitata and V. megapotamica 
[25] may be due to the high temperature of the injector port in the analysis of GC. 

The δ-elemene that appeared as one of the main products of V. megapotamica col-
lected in southern Brazil [67] is probably due to the expression of the gene encoding an 
δ-elemene synthase, emitting the δ-elemene as the main compound and β-elemene in 
smaller amounts. Uji et al. [96] was the first to identify a sesqui (TPS) (RlemTPS4) in 
plants, producing δ-elemene as a major product and β-elemene as a minor product. Re-
cently, δ-elemene synthase (FcTPS5) from Ficus carica was identified, which also cata-
lyzed the formation of δ and β-elemene as main products [76]. 

 
Figure 8. Types of primary cyclization of compound β-elemene and δ-elemene. 

2.3. Bicyclic Sesquiterpenes 
Bicyclic SS represent the largest group in Vitex species with 81 identified compounds 

and can be classified into 11 subcategories based on the carbon skeleton (Figure 9), with 
eudesmane, caryophyllane, cadalane, and bicyclogermacrene skeletons being the most 
prevalent. 
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Figure 9. Structures of bicyclic sesquiterpenes in Vitex species. 

2.3.1. Cadalane Skeleton 
Cadalane skeleton is the group with the highest number of compounds in Vitex 

plants, with 30 structures reported. Following the criterion adopted in this survey of high 
frequencies and concentrations, the compounds γ-muurolene and δ-cadinene are the 
ones that have these characteristics. The first appears in 12 species, while the second was 
identified in 13 species. Interestingly, both were the main compounds in V. megapotamica 
and V. capitata species [25,67]. Other species, such as V. rivularis, V. obovata ssp. obovata, 
V. obovata ssp. Wilmsii, and V. ferruginea, had significant amounts of one of these com-
pounds [29,30,33]. 

The entire series of cadalanes is generated by the protonation of an intermediate 
neutral germacrene D [97], which is a potent precursor of cadinenes and muurolenes [95]. 
Biosynthetic pathways for the formation of δ-cadinene and γ-muurolene via germacrene 
D in the legume Truncatula medicago were reported [98]. δ-cadinene occurs very fre-
quently in plants together with germacrene D when it is in higher concentrations [77]. 
This can be observed in the species V. rivularis, V. ferruginea, V. rufecens, and V. simplicifolia 
[25,29,30,68]. However, investigations of δ-cadinene synthase, which catalyzes the for-
mation of δ-cadinene as the main product, as well as a multitude of other sesquiterpenes 



Molecules 2021, 26, 6405 13 of 31 
 

 

were reported in the species of laurel (Leonurus sibiricus), fig (Ficus carica), cotton (Gossy-
pium hirsutum), not showing any germacrene D in the products [76,99,100], as well as V. 
megapotamica and V. capitata [25,67], which have δ-cadinene in larger amounts. 

Cadinene and muurolene skeletons may also result from an earlier rearrangement 
from farnesyl to the nerolidyl cation [40,101–104]. Germacradienyl cation forming by 
1.10-cyclization. Subsequently, a 1.6-electrophilic ring closure reaction generates the ca-
dinenyl cation from which δ-cadinene and γ-muurolene are formed (Figure 10) [98]. 

 
Figure 10. Types of primary cyclization of compounds δ-cadinene and γ-muurolene. 

2.3.2. Caryophyllane Skeleton 
SS with a caryophyllane skeleton have 11 compounds identified in Vitex species 

(Figure 4). EβC and caryophyllene oxide are the most relevant in this group. Further-
more, EβC is one of the most representative volatile SS in the Vitex genus, appearing in 15 
species, and is the major compound in six species: V. megapotamica, V. capitata, V. rufescens, 
V. negundo, V. trifolia, and V. agnus-castus [25,105,106]. Furthermore, it was identified in 
high concentrations in V. quinata and V. rivularis [29,85]. On the other hand, caryo-
phyllene oxide was reported in almost all Vitex species except for V. rotundifolia. It was 
one of the main compounds of V. gardneriana, V. negundo, V. rehmannii, V. obovata ssp. 
obovata, V. pooara, V. trifolia, and V. kwangsiensis [25,27,33,106,107]. 

EβCs were already identified and characterized in several plant species and were 
extensively reported in the literature [72–74,76]. Generally, this enzyme produces EβC as 
the main product and its α-humulene isomer in smaller amounts. EβCs are probably 
being expressed in Vitex species; EβC was identified as the main product and α 
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-humulene as the secondary product or in lower concentrations. On the other hand, there 
are no reports in the literature of specific shyntases for caryophyllene oxide; however, 
there is a consensus that it is formed by oxidation of EβC [108–110]. 

2.3.3. Eudesmane Skeleton 
There are 14 bicyclic sesquiterpenes in Vitex species that have the eudesmane pa-

rental skeleton (Figure 4). Among them, β-selinene appears in 13 species and is the mar-
jority SS in V. pooara [33]. ZmTps21 from corn (Zea mays) encodes β-selinene synthase, 
producing β-selinene as the dominant product along with β-elemene at lower concentra-
tions [111]. This can be observed in V. pooara, suggesting that this sesqui (TPS) is ex-
pressed in this species. β-selinene is simply formed by a deprotonation of a eudesmane 
carbocation, which was reported to originate from germacrene A to form 
5-epi-aristolochene [10,111,112]. It is suggested that the primary cyclization that occurs 
for the formation of β-selinene is of type 1.10 (Figure 11). 

 
Figure 11. A type of primary cyclization of β-selinene. 

2.4. Other Bicyclic Sesquiterpenes 
Bicyclogermacrene is structurally similar to germacrene with a classic bicycloger-

macrene skeleton. This compound appears in six Vitex species and is one of the main 
products of V. agnus-castus [24,55,56,59,113] and V. pseudo-negundo [34,105,114]. OvTPS4 
from oregano [115] and EgranTPS041 from Eucalyptus [116] were the first genes identified 
in plants responsible for the expression of a synthase that resulted in the production of 
bicyclogermacrene by heterologous expression. However, CmTPS1 from Citrus medica L. 
was the first gene responsible for the synthesis of bicyclogermacrene by homologous 
expression in vivo [117]. Although the gene responsible for the biosynthesis of bicy-
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clogermacrene in Vitex species was not identified, its precursor was confirmed to be the 
germacradienyl cation (1.10-cyclization) in other plants (Figure 10) [47,118,119]. 

6,9-guaiadiene has a guaiane skeleton, which is rarely reported in plants, with two 
fused rings of five and seven carbons, respectively. It appears in five Vitex species, and it 
is the major compound of V. gardneriana [25,120]. δ-selinene synthase identified and 
characterized from Abies grandis catalyzed the formation of 34 different sesquiterpenes; 
among them, 6,9-guiadiene was one of the secondary products, with germacrene C as a 
precursor [121]. Although guaiane-type sesquiterpenes are common in nature and some 
enzymes described as producing guaianes as secondary reaction products were de-
scribed [81,121], the guaiane synthases that catalyze the formation of this class of SS as 
their dominant reaction product were first reported in Aquilaria crassna [89]. Later, they 
were also found in Aquilaria sinensis, Vitis vinifera, and Stellera chamaejasme [122–125]. So 
far, α and δ-guaiene synthase were identified and characterized in these species with 
similar product profiles, with α or δ-guaiane as the main products and α-humulene and 
β-elemene in smaller amounts. In all these studies, germacrene A was the precursor of α 
or δ-guaiane. 

It is postulated that 6,9-guaiadiene is synthesized through two cyclization reactions, 
the first constituting 1.10-cyclization to produce germacradienyl cation, which undergoes 
deprotonation in germacrene C. The second cyclization event occurs between C2 and C6 
to generate the guaianyl carbocation followed by the subsequent deprotonation or addi-
tion of water (Figure 12) [89,122,125,126]. 

 
Figure 12. Types of primary cyclization of aromadrendanes, bicyclogermacrene, and 6,9-guiadiene. 

2.5. Tricyclic and Tetracyclic Sesquiterpenes 
Thirty-nine tricyclic SS were identified in Vitex species (Figure 13). The aromadren-

dane skeleton was the most representative of this group with 14 compounds reported. It 
was the skeleton with the highest number of compounds within the criteria adopted in 
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this work. Among them, allo-aromadendrane, spathulenol, globulol, viridiflorol, ledol, 
and viridiflorene were the most relevant. Allo-aromadrendene appeared in 10 species, 
with significant concentrations in V. rufecens [25] and V. agnus-castus [31,59]. Spathulenol 
was also identified in 10 species and is one of the main compounds of V. agnus castus 
[26,31], V. rehmannii [33], and V. obovata ssp. obovata (in lower concentrations) [33]. 
Globulol was reported in eight species and is the majority sequiterpene of the flowers of 
V. negundo [127] and the major SS in V. zeyheri [33]. Viridiflorol was identified in eight 
species and is the major compound in V. negundo [32,128]. It is also found in V. ag-
nus-castus at lower concentrations [31]. Ledol was present in nine species, the secondary 
product being in V. rufescens [25]. Finally, viridiflorene was reported in seven species and 
was found in V capitata, V. megapotamica, and V. rufescens in significant concentrations 
[25]. 

A small number of sesqui (TPS) specific for the formation of compounds from the 
aromadrendane skeleton in plants were identified. To date, α-gurjunene synthase from 
Solidago canadensis [129] and Taiwania cryptomerioides [130], viridiflorol synthase (MqTPS1 
and MqTPS2) from Melaleuca quinquenervia [131], and viridiflorene synthase (SlTPS31) 
from Solanum lycopersicum [132] were reported in plant species. This is probably because 
the aromadrendane skeleton has the largest number of representative compounds in Vi-
tex species, and specific synthases for the formation of these compounds may play an 
important role in the taxonomy of this genus. 

The aromadendrane skeleton is characterized by the fusion of the 
gem-dimethylcyclopropane ring with the hydroazulane ring [133]. Several authors pos-
tulated that bicyclogermacrene is the biogenetic precursor of sesquiterpenoids with a 
gem-dimethylcyclopropane ring, including aromadendranes [95,133,134]. In addition, 
bicyclogermacrene is used as an intermediate platform for biomimetic access to various 
aromadendrane sesquiterpenoids, such as ledene, viridiflorol, palustrol, and spathulenol 
[135]. It was suggested that in Psidium guineense Sw., Eucalyptus, Humulus lupulus, and 
Citrus junos species, bicyclogermacrene is the key intermediate for aromadendrene de-
rivatives [95,136,137]. However, in grapes and wines, the aromadendrane skeleton was 
reported to be structurally similar to the guaiane precursor. 6,11-cycloguaiane is referred 
to as an aromadendrane in which a cyclopropyl ring was formed by further cyclization of 
a guaiane precursor [46,47]. 

The catalysis of aromadrendanes in plants, the precursor being bicyclogermacrene 
or guaiane, as proposed in the literature, begins with 1.10-cyclization. This is supported 
by the previously proposed mechanism for the formation of viridiflorol based on quan-
tum chemical calculations, starting with type 1.10 cyclization [84]. It was also proposed 
that the initial cyclization that originates viridiflorol in fungi is of the 1.10 type, although 
it occurs via the (E,E)–FPP and (3R)–NPP routes [138,139]. This indicates that viridiflorol 
biosynthesis in fungi can occur via both pathways. 

The tetracyclic compound (Figure 13) identified was not representative within the 
criteria adopted in this review. 
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Figure 13. Structure of tricyclic and tetracyclic sesquiterpenes in Vitex species. 
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3. Insecticide and Response Activity of Sesquiterpenes Identified in Vitex Species 
Plants are often exposed to attack by a variety of herbivorous arthropods and 

pathogenic microorganisms. In response to pest attacks, plants developed defense 
mechanisms to protect themselves [17,140]. Chemical defense strategies involve second-
ary metabolites, including SS, which can act directly through allelopathic or antimicrobial 
activity [27,140] or by indirect activation of systemic defenses in host and neighboring 
plants. [17,141]. 

Sesquiterpenes are one of the main constituents of volatile mixtures released after 
damage by herbivorous insects or pathogens [140]. The induction of these compounds 
has frequently been reported as signaling molecules to attract natural enemies (predators 
and parasitoids) of herbivores, induce resistance responses against pathogens, and also 
act as precursors for the biosynthesis of sesquiterpenoid phytoalexins [13,17,111,140,142]. 
In addition, induced volatile mixtures can also play an important role in plant commu-
nication, functioning as airborne signals to induce defense in neighboring plants or to 
prepare unattacked plant tissue for defense responses to potential subsequent attack 
from herbivores [141,143,144]. 

Over the past two decades, studies showed evidence that sesqui (TPSs) and their 
corresponding products play a key role in defense in response to herbivory and phyto-
pathogenic systems [140,145]. As an example, the induced rice sesqui (TPS) (OsSTPS2) 
gene plays a role in the antixenosis mechanism against the infestation of the brown 
gecko, Nilaparvata lugens [146]. Sesqui (TPS) from Medicago truncatula (MtTPS10) was 
specifically expressed in its roots after inoculation with the pathogen Aphanomyces eu-
teiches, and its corresponding products inhibited mycelial growth and zoospore germi-
nation [145]. The longifolene synthase gene (PmTPS21) played a positive role in the de-
fense mechanism of Pinus massoniana against the nematode, Bursaphelenchus xylophilus 
[147]. Two sesqui (TPS) (CsAFR and CsNSE2) from Camellia sinensis tea plants were 
up-regulated by damage from Ectropis obliqua Prout herbivores, emitting α-farnesene and 
(E)-nerolidol [148]. 

All aforementioned studies clearly showed the modulation of the plant defense 
against herbivores and pathogens through sesqui TPSs and their enzymatic terpenoid 
products. The following section summarizes the insecticidal activities and defensive re-
sponses of the main SS found in Vitex species. 

3.1. Acyclic Sesquiterpenes 
EβF is the main component of the aphid alarm pheromone, which is released by 

most aphid species when disturbed in the presence of predators and parasitoids 
[149,150]. This compound is detected in the bark oil of Citrus junos and in the leaves of the 
wild potato Solatium berthaultii Hawkes and is expected to play a similar role in these 
plants [62,151]. EβF can also induce oviposition in an aphidophagous float [152]. It can be 
used for biological control of aphids, releasing it in the field due to its deterrent and re-
pellent effect in addition to attracting its natural enemies, such as predators and parasitic 
wasps (Hymenoptera: Braconidae) [153]. A previous study reported that inducible pro-
duction of EβF via engineered TPS in genetically modified wheat may be necessary for 
the successful recruitment of natural enemies of the parasitic wasp Aphidius ervi [154]. 
Transgenic Arabidopsis thaliana produced large amounts of EβF, which showed a repellent 
effect for Myzus persicae [155]. 

Recently, a study found the expression of PvTPS16 and PvTPS02 genes in 
Switchgrass (Panicum virgatum L.) leaves, which are strongly correlated by the emission 
of high amounts of EβF, after treatment with the salicylic acid phytohormone, which 
simulates herbivory or infection by pathogens, and after treatment by S. frugiperda larvae 
[42]. The constitutive expression of the tps 46 gene reported in rice that is responsible for 
biosynthesis and constitutive emissions of Eβf may play a crucial role in the rice’s defense 
against Rhopalosiphum padi [156]. “It was suggested that constitutive release of defensive 
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volatiles should occur when plants are growing in an environment where there is a high 
probability of herbivore attack”, [156]. 

3.2. Monocyclic Sesquiterpenes 
Recently, it was reported that 𝛼-humulene showed contact toxicity with high per-

sistence after 48 h and repellency against the wheat grain pest Sitophilus granarius [157]. 
This compound was responsible, at least in part, for the deterrent effect of the oil of 
Commiphora leptophloeos, a spiny deciduous tree native to South America, causing deter-
rence from the oviposition of A. aegypti [158]. Furthermore, α-humulene showed strong 
contact activity against the cigarette beetle (Lasioderma serricorne) and was one of the 
components of the essential oil of Piper aduncum responsible for repelling the Tetranychus 
urticae mite [159,160]. After treatment with methyl jasmonate (MeJa), an elicitor of plant 
defensive responses, the AcHS1–3 gene up-regulated 𝛼-humulene synthase expression in 
Aquilaria crassina cell culture [75]. 

Germacrene D was implicated in plant-insect interactions. It is used to select host 
plants by the antenna receptors of the caterpillar tobacco moth Heliothis virescens [161]. It 
can also act as an anti-attractant to protect plants from beetle attacks [162]. They are re-
pellent to aphids and bovine ticks [154,163,164]. Tozin et al. [165] identified a 126% in-
crease in germacrene D in glandular trichomes of Ocimum gratissimum after attacks by 
leaf-cutting ants, Acromyrmex rugosuse. 

Elemenes are natural sesquiterpenes present in essential oils in a mixture of 𝛽-elemene, γ-elemene, and δ-elemene. 𝛽-elemene showed significant toxic effects on fall 
armyworm Spodoptera exigua (Hubner) [166]. Taniguchi et al. [86] identified that the 
β-elemene synthase gene in rice was up-regulated by treatment with the plant hormone 
jasmonic acid (JA), which works as a signaling molecule in the regulation of plant de-
fense. In the same study, it was reported to have antifungal activity against the rice 
pathogen Magnaporthe oryzae. 

3.3. Bicyclic Sesquiterpenes 
Cadinene is a group of sesquiterpenes with isomeric hydrocarbons, including 

δ-cadinene, that were implicated in the defense of the cotton plant against pathogens and 
pests [40,167]. Several δ-cadinene synthases were already identified and characterized in 
cotton species and are responsible for producing δ-cadinene, the precursor for the bio-
synthesis of cadinane-type phytoalexins, such as gossypol [40,142]. This is an important 
arthropod resistance compound that provides constitutive and inducible defense against 
cotton pests and diseases [167,168]. The expression of the δ-cadinene synthase gene was 
induced by rhizosphere bacteria, and plants that produced δ-cadinene were considered 
resistant to Spodoptera exigua (Hubner) [168]. Oxidative cadinene showed significant an-
tifungal and antibacterial activities against phytopathogenic fungi and bacteria [169,170]. 

EβC is involved in the indirect defense of several plants, attracting the natural ene-
mies of above and below-ground pests [12,17,171,172]. The attack of herbivorous insects 
or treatment with MeJa induced the expression of genes responsible for the transcription 
of EβC synthase from corn (ZmTPS23), rice (OsTPS3), sorghum (SbTPS4), cotton 
(GhTPS1), and Switchgrass (PvTPS14), which were responsible for the emission of EβC, 
attracting herbivore parasitoids and entomopathogenic nematodes [16,42,172–175]. In 
addition, EβC can also act in direct defense against bacterial pathogens that invade floral 
tissues [27]. A previous study showed that caryophyllene-rich rhizome oil from Zingiber 
nimmonii has a significant inhibitory activity against Bacillus subtilis and Pseudomonas ae-
ruginosa bacteria [176]. Previous studies also reported that EβC and caryophyllene oxide 
decreased the growth and survival of Heliothis virescens and Hymenaea species [177,178]. 

Caryophyllene oxide showed toxicity against the aphid Metopolophium dirhodum 
(Hemiptera: Aphididae), and in mixtures with citral and EβC, it was also effective against 
the aphid Myzus persicae [108,179]. This compound also showed excellent repellent 
properties against A. aegypti and Anopheles minimus mosquitoes, with better performance 
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than the commercial repellent N,N-diethyl-meta-toluamide (DEET) [109]. Furthermore, it 
is one of the main constituents of the oil of Artabotrys hexapetalus Bhandari, which was 
shown to have strong repellent activity against females of Anopheles gambiae, a species of 
malaria vector in Africa [180]. 

Although sesquiterpenes belonging to the selinene family were widely reported in 
different plants, there are limited studies investigating the insecticidal activity of 
β-selinene. However, this compound was detected in corn only in the context of pathogen 
attack [181,182]. Ding et al. [111] reported β-selinene synthase (ZmTps21) in maize being 
transcribed after fungal elicitation, long-term root herbivory, and combined field pres-
sures. Its products β-selinene and its nonvolatile acid derivative, β-costic acid inhibited 
the growth of pathogenic fungi and corn root larvae (Diabrotica balteata). A previous 
study identified the presence of ZmTps21 in the transcriptome analysis of resistant maize 
lines associated with enhanced antifungal defenses [183]. It was suggested that 
α-selinene from TPS05 in switchgrass roots serves as a precursor of α-costic acid, which 
may exhibit similar functions in the antimicrobial defense of this plant. β-selinene also 
showed contact toxicity against the vinegar fly, Drosophila melanogaster [184]. 

There are no reports that bicyclogermacrene, as a nonoxygenated sesquiterpene, has 
insecticidal activity; however, its non-volatile oxygenated derivatives, such as Mandolin 
A and Parteniol, showed an inhibitory activity on acetylcholinesterase and fungistatic 
activity against the growth of Aspergillus niger [133,185,186]. 

6,9-guaiadiene was the major compound of the essential oil of V. gardneriana, which 
showed acaricide and larvicide activity against Aceria guerreronis and A. aegypty, respec-
tively [25,120]. Studies showed that the gene expression in Aquilaria species was 
up-regulated, encoding δ-guiene synthase in response to mechanical injury and MeJa 
treatment and inducing δ-guaiene production [126,187,188]. Recently, transcriptome 
analysis of western aspen-balsam infected roots (Populus trichocarpa) by Phytophthora 
cactorum (Oomycetes) revealed the induction of the PtTPS5 gene, forming the compounds 
(1S, 5S, 7R, 10R)-guaia-4(15)-en-11-ol and (1S, 7R, 10R)-guaia-4-en-11-ol [189]. 

3.4. Tricyclic Sesquiterpenes 
In this group of sesquiterpenes, some aromadrendane compounds showed insecti-

cidal activity due to the conformational rigidity that the gem-dimethylcyclopropyl group 
imposes, the lipophilic character of the methyl groups, and the variation in oxygen func-
tions between the compounds; it can favor the binding with lipoprotein receptors, trig-
gering several biological responses, including insecticidal activity [133]. The compound 
spathulenol, for example, showed toxicity against the aphid Metopolophium dirhodum 
(Hemiptera: Aphididae) and two types of insects from stored products, Tribolium casta-
neum and Lasioderma serricorne [190,191]. This compound also showed repellency against 
mosquitoes (A. stephensi and A. aegypti), a leaf-cutting ant (Atta cephalotes), a red flour 
beetle (Tribolium castaneum), and a smoke beetle (Lasioderma serricorne) [191–193]. Fur-
thermore, antifungal activity against the pathogen affecting cucumber crops, 
Cladosporium cucumerinum, was reported [194]. Allo-aromadendrane and its derivative, 
alloaromadendrane-4β,10β-diol, were effective inhibitors of the growth of the fungi 
Cladosporium herbarum and P. oryzae [195,196]. 

The compound viridiflorol also showed antifungal activity, inhibiting the growth of 
phytopathogenic fungi, Colletotrichum truncatum, Pyricularia oryzae, and Cladosporium 
cucumerinum [138,194,197]. A diet rich in this compound was able to reduce the fecundity 
and survival of melaleuca weevil larvae (Oxyops vitiosa) and influence the oviposition of 
Boreioglycaspis melaleucae adults [198,199]. Like the compounds mentioned above, glob-
ulol also showed activity against the phytopathogenic fungus C. cucumkrinum [194]. 
Furthermore, it was emitted in larger quantities in Eucalyptus benthamii after the her-
bivory of the bronze insect, Thaumastocoris peregrinus, indicating that this compound is 
involved in defensive strategies of this plant [200]. 



Molecules 2021, 26, 6405 21 of 31 
 

 

4. Discussion 
The diversity of sesquiterpenes in Vitex species draws attention to a possible signif-

icant expression of genes encoding sesquiterpene synthases. The most relevant and rep-
resentative sesquiterpenes of the genus Vitex mentioned in this review are derived from 
the germacredienyl cation, including the bicyclogermacrene pathway, which gives rise to 
aromadrendanes as the largest number of representative compounds in the genus, and 
the germacrene C pathway, which forms the rare compound 6,9-guiadiene in plants. This 
indicates that 1.10-cyclizing sesquiterpene synthases responsible for the formation of 
these compounds may play an important role in the taxonomy of the genus and in the 
chemosystematics among species. A previous study by our research group that used a 
metabolomic approach, molecular markers, and statistical analysis through a clustering 
algorithm identified a notable presence of aromadrendane compounds in four plants 
collected in northeastern Brazil, suggesting that aromadrendanes ring closure can be 
considered a more specific signature of the chemical profile for species in the Vitex genus 
[25]. 

Much was discussed in recent decades about the great taxonomic redelimitation of 
Lamiaceae and Verbenaceae. This was confirmed by [201] using morphological markers 
and later consolidated by [202] using molecular markers from conserved parts of chlo-
ropaste of different species distributed in several subfamilies. As a result, an important 
part of the Verbenaceae family was redistributed among several subfamilies in Lami-
aceae, including Viticoideae, which contains Vitex as the largest genus. However, Viti-
coideae was recognized as the least satisfactory among the subfamilies that were cir-
cumscribed, with morphological, phytochemical, and molecular evidence suggesting it 
as clearly paraphyletic and possibly polyphyletic [201]. In the phylogenetic study by 
[202], Neptododeae belongs to a clade very close to Vitcoideae, evidencing a genetic 
proximity between these subfamilies. Interestingly, aromadrendadanes were proposed 
as chemotaxonomic markers for the genera Marsypianthes and Hypenia, which belong to 
Neptododeae [203,204]. Therefore, it is suggested that sesquiterpene synthases and their 
cyclization mechanism for the formation of aromadrendanes may be correlated with this 
proximity of the clades, indicating a conserved base of genes among these subfamilies, 
constituting an interesting approach that can help in the development of a better under-
standing of the taxonomy of the family Lamiaceae. 

In addition to 1.10-cyclization, sesquiterpenoids derived from 1.6-cyclization as well 
as a 1.11-cyclization mechanism were also identified in Vitex. These enzymes were found 
to appear to group together not only according to gene sequence similarity but also by 
cyclization mechanism [205]. Phylogenetic analysis in fungi allowed us to offer a predic-
tive framework for the targeted discovery of new sesquiterpene synthases based on the 
cyclization mechanism of choice, streamlining the identification and cloning of new 
sesquiterpene synthases that produce desirable natural products [205,206]. The availa-
bility of an increasing number of sesquiterpene synthases characterized in plants opens 
the door to the application of computational predictive phylogenetic analysis to obtain 
information about this surprisingly diverse family of enzymes. This may contribute to a 
greater understanding of how this gene family is organized and how it has evolved over 
time. Additionally, by deepening our understanding of carbocation chemistry from the 
cyclization products of these enzymes, we can also develop tools for the biosynthetic 
production of relevant insecticidal compounds that may not be accessible by traditional 
chemical syntheses. 

5.Conclusions 
This review considers the strong presence of sesquiterpenes in Vitex species. The 

pathways and mechanisms proposed for the biosynthesis of identified sesquiterpenes 
were broadly summarized based on data found in the literature. This provides new in-
sights for a deeper understanding of taxonomy information about the biosynthesis of 
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sesquiterpenes in this genus through gene expression. Data and information on the ex-
pression for the formation of enzymes responsible for the biosynthesis of sesquiterpenes 
in Vitex plants are scarce and require further investigation. 

Modulation of plant defense against herbivores and pathogens through sesqui 
(TPSs) and their terpenoid enzymatic products indicate the importance and value of 
plants that are rich in sesquiterpenes. For a comprehensive understanding of sesquiter-
penes in Vitex species, further studies should focus on confirming their biosynthesis 
pathway and the influence of herbivores and pathogens on the gene regulation and ex-
pression mechanism, elucidating their importance in the defense process of the Vitex 
plant. 
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