

Anais do XII Congresso Brasileiro de Sistemas Agroflorestais ISBN: 978-65-81152-33-8 I XII CBSAF I sbsaf.org.br/xiicbsaf

<u>Henrique Bauab Brunetti</u>¹, José Ricardo Macedo Pezzopane¹, Willian Lucas Bonani¹, Cristiam Bosi¹, Rolando Pasquini Neto¹, Alberto Carlos de Campos Bernardi¹, Patrícia Perondi Anchão Oliveira¹

¹ EMBRAPA/ CPPSE, Empresa Brasileira de Pesquisa Agropecuária/ Centro de Pesquisa de Pecuária do Sudeste, São Carlos, SP

Resumo

Sistemas silvipastoris (SSP) são alternativas sustentáveis para a intensificação de pastagens. O desbaste de árvores aumenta a transmissão de radiação solar para as forragens, aumentando suas produtividades. A hipótese deste trabalho é que o desbaste de árvores em SSP proporciona condições para que a produtividade de forragem desse sistema seja semelhante à de um sistema intensivo de produção pecuária (INT). O estudo foi conduzido na Embrapa Pecuária Sudeste, em São Carlos, SP, de outubro de 2016 a março 2018. Foram avaliados a massa e o acúmulo de forragem em INT com capim Piatã (*Urochloa brizantha* cv. BRS Piatã) e em quatro posições do SSP (sob o renque Norte, a 3,75m, 7,5m e 11,25m de distância do renque Norte) com capim Piatã e arborizado com eucalipto (*Eucalyptus urograndis*) clone GG100. As linhas de árvores têm orientação próxima a Leste-Oeste e foram desbastadas para diminuição do espaçamento de 15 x 2 m para 15 x 4 m, totalizando 166 árvores ha⁻¹. O desbaste, aliado à menor "inclinação" solar, foi suficiente para garantir produtividades semelhantes no SSP e no INT, no primeiro verão avaliado. No segundo verão avaliado, o crescimento das árvores ocasionou menor massa de forragem nas posições do SSP em relação ao INT, indicando a necessidade de poda das árvores restantes do desbaste. Nas estações de outono e primavera, com maior "inclinação" solar, e no inverno, com baixo regime de chuvas, o desbaste não foi suficiente para igualar as massas de forragem entre os sistemas, principalmente nas posições próximas às árvores.

Palavras-chave: Brachiaria brizantha cv. BRS Piatã; Eucalyptus urograndis clone GG100; radiação fotossinteticamente ativa.

INTRODUÇÃO

Sistemas silvipastoris (SSP), caracterizados pela combinação de pastagens, árvores e animais na mesma área, são alternativas sustentáveis para a intensificação das pastagens (Bosi et al., 2020). Esses sistemas aumentam a eficiência do uso da terra e proporcionam benefícios para a produção agropecuária e para os serviços ambientais, sociais e financeiros por meio da venda de produtos de madeira à longo prazo ou por meio de mercados de sequestro e fixação de carbono, o que amplia as possibilidades de mitigação das emissões de gases de efeito estufa (Pezzopane et al., 2020a).

Entretanto, a presença do componente arbóreo ocasiona alterações no microclima da pastagem, especialmente na intensidade e qualidade da radiação solar (Bosi et al. 2020), determinante na produtividade das forrageiras (Pezzopane et al., 2019). Adicionalmente, em condições em que a quantidade de água no solo é limitante para o crescimento das plantas, a competitividade por água entre as árvores e a forrageira aumenta, resultando em redução da produção de biomassa de forragem (Tian et al., 2017). Nesse contexto, práticas de manejo de árvores como o desbaste auxiliam na redução da competição por água e radiação solar e, consequentemente, na produção equilibrada entre os componentes do sistema (Pezzopane et al., 2020b).

A hipótese deste trabalho é que o desbaste de árvores em um SSP proporciona condições para que a produtividade de forragem desse sistema seja semelhante à deem um SSP e um sistema intensivo de produção pecuária a pleno sol (INT). Dessa forma, o objetivo do trabalho foi comparar a produtividade do capim Piatã (*Urochloa brizantha* cv. BRS Piatã) cultivado em SSP após o desbaste de árvores de eucalipto (*Eucalyptus urograndis* clone GG100) com a produtividade desse capim cultivado em INT.

MATERIAIS E MÉTODOS

O estudo foi conduzido na Embrapa Pecuária Sudeste, São Carlos, SP (21° 57′S, 47° 50′W, 860 m alt.) de outubro de 2016 a março de 2018. O clima é classificado como Cwa (Köppen) e o solo como Latossolo Vermelho-Amarelo Distrófico de textura média/argilosa (Calderano Filho et al., 1998). Foi avaliada a produção de forragem em sistema intensivo de produção pecuária (INT) com capim Piatã e

Anais do XII Congresso Brasileiro de Sistemas Agroflorestais ISBN: 978-65-81152-33-8 I XII CBSAF I sbsaf.org.br/xiicbsaf

em sistema silvipastoril (SSP) com capim Piatã arborizado com eucalipto clone GG100. As árvores foram plantadas em abril de 2011 em renques com orientação próxima a Leste-Oeste e espaçamento 15 x 2 m. Essas foram desbastadas em julho de 2016 para espaçamento de 15 x 4 m, totalizando 166 árvores ha⁻¹, e, em outubro de 2017, tinham altura média de 27,8 m e diâmetro à altura do peito de 25,9 cm. A área de cada sistema foi de 6 ha, divididas em duas unidades experimentais, subdivididas em seis piquetes manejados sob lotação rotativa com 6 dias de ocupação e trinta de descanso, pastejados por animais da raça Canchim com lotação ajustada (Mott e Lucas, 1952).

A massa e o acúmulo de forragem foram avaliados uma vez por estação do ano entre dezembro de 2016 e março de 2018 em três piquetes por unidade experimental, totalizando seis repetições por sistema. No SSP a produção foi avaliada sob o renque Norte (SSP1), a 3,75m (SSP2), 7,5m (SSP3) e 11,25m (SSP4) de distância do renque Norte. A forragem foi amostrada, em pré e pós-pastejo, a nível do solo dentro de quatro quadrados metálicos (0,5 m x 0,5 m), pesadas, homogeneizadas e divididas em duas subamostras, uma para separação morfológica (folha, colmo e material morto) e outra para determinação do teor de matéria seca. Ambas foram secas em estufa de ventilação forçada (60°C por 72 horas) e, após subtração do material morto, foi obtida a massa de forragem (MF). O acúmulo de forragem foi calculado como: MFpré-pastejo (ciclo *n*) – MFpós-pastejo (ciclo *n-1*). A incidência de radiação fotossinteticamente ativa foi medida a 70 cm acima do solo nas mesmas posições estabelecidas para amostragem de massa de forragem, utilizando-se sensores lineares quânticos CQ311 (Apogee, Logan, Utah, EUA).

Os dados foram analisados segundo delineamento experimental inteiramente casualizado pela análise de variância e pela comparação individual das posições SSP1, SSP2, SSP3 e SSP4 com o INT pelo teste de Dunnett bilateral (p<0,05), utilizando-se o PROC GLM do SAS (SAS Inc., Cary, EUA).

RESULTADOS E DISCUSSÃO

A incidência de radiação fotossinteticamente ativa (RFA) no sistema intensivo (INT), que é semelhante à RFA acima dos renques de árvores no sistema silvipastoril (SSP), variou entre as estações do ano. A primavera e o verão de 2017 e o verão de 2018 tiveram os maiores valores que variaram de 9 a 10 MJ m⁻² d⁻¹. Entretanto, no inverno e outono de 2017 os valores registrados foram de apenas 8 e 6 MJ m⁻² d⁻¹, respectivamente. A transmissão de RFA variou entre as posições estudadas em cada estação do ano. No verão de 2017, a maior transmissão foi registrada no SSP3, seguida pelo SSP4, com valores de 70 e 65%, respectivamente. O SSP2 teve valores pouco menores que o SSP4, mas muito maiores que o SSP1 que teve valores de apenas 45%. Durante o outono de 2017, a transmissão de radiação na SSP4 foi maior quando comparada as demais posições, com valores de 55%, enquanto as posições SSP1, SSP2 e SSP3 tiveram transmissões de RFA de 45%. Durante o inverno de 2017, as transmissões no SSP2 e SSP1 foram de 60%, e maiores dos que as registradas para SSP3 e SSP4 que variaram de 50 a 55%. Na primavera de 2017, os valores do SSP2 e SSP3 foram de aproximadamente 70% e maiores quando comparados às outras posições. Durante essa estação, o SSP4 teve maior transmissão de RFA que o SSP1, sendo registrados os valores de 55 e 45%, respectivamente. Finalmente, durante o verão de 2018, a transmissão de RFA foi similar no SSP3 e SSP4 que apresentaram valores de 60%, seguidos das posições SSP2 e SSP4 que os valores registrados foram de 55 e 40%, respectivamente. Na comparação da massa de forragem pré-pastejo das quatro posições do SSP com o INT, as posições SSP1, SSP2 e SSP4 durante o outono de 2017, a posição SSP1 durante o inverno e primavera de 2017 e todas as posições do SSP durante o verão de 2018 apresentaram massa de forragem pré-pastejo menores do que o registrado para INT (Tabela 1). Entretanto, não houve diferença no acúmulo de forragem na comparação das quatro posições do SSP com o INT (Tabela 1).

Anais do XII Congresso Brasileiro de Sistemas Agroflorestais ISBN: 978-65-81152-33-8 | XII CBSAF | sbsaf.org.br/xiicbsaf

Tabela 1. Características produtivas de capim Piatã em sistema intensivo de produção (INT) e em quatro posições (SSP_1: debaixo do renque de árvores; SSP2: 3.75 m, SSP_3: 7.50 m, e SSP_4: 11.25m do renque norte das árvores) de um sistema silvipastoril (SSP) durante cinco ciclos de produção

Posição	Massa de forragem pré-pastejo (kg ha⁻¹)				
			Estação		
	Verão_17	Outono_17	Inverno_17	Primavera_17	Verão_18
INT	2900.2	2735.0	1241.6	2698.2	5088.2
SSP1	2507.9 ns	1581.8 *	449.8 *	1447.5 *	3024.8 *
SSP2	2988.4 ns	1764.0 *	723.1 ns	1897.2 ns	3283.2 *
SSP3	3373.0 ns	2339.4 ns	720.6 ns	2170.5 ns	3324.2 *
SSP4	2927.7 ns	1751.8 *	936.6 ns	1787.2 ns	3570.3 *
	Acúmulo de forragem (kg ha ⁻¹ ciclo ⁻¹)				
	Estação				
	Verão_17	Outono_17	Invemo_17	Primavera_17	Verão_18
INT	2341.3	1645.1	535.2	1794.4	2415.8
SSP1	1961.3 ns	392.5 ns	105.1 ns	851.3 ns	1639.9 ns
SSP2	2073.1 ns	769.8 ns	476.7 ns	1574.7 ns	2014.1 ns
SSP3	2882.7 ns	1985.8 ns	39.7 ns	1687.4 ns	1492.8 ns
SSP4	1953.0 ns	536.5 ns	471.1 ns	995.3 ns	1944.1 ns

^{*,} ns. significativo e não significativo, respectivamente, segundo o teste de Dunnett (p ≤ 0.05), comparando individualmente as posições SSP1, SSP2, SSP3 e SSP4 ao sistema INT, considerado como referência.

A transmissão de RFA neste estudo foi maior em todas as estações do ano quando comparada à de outro experimento realizado na mesma área experimental antes do desbaste (Bosi et al., 2020). Como consequência, não houve diferença em acúmulo de forragem entre as posições do SSP e o INT. A semelhança de acúmulo de forragem em sistemas sombreados quando comparados a pleno sol pode ser atribuída à adaptações morfológicas e fisiológicas das forrageiras sombreadas (Gomes et al., 2019). Adicionalmente, o aumento da transmissão de RFA para aproximadamente 70% nas posições SSP2, SSP3 e SSP4 resultou em massa de forragem pré-pastejo e acúmulo de forragem similares entre as posições do SSP e do INT no verão de 2017 (Tabela 1). Outros estudos confirmam o valor de 70% de transmissão de RFA como suficiente e limítrofe para manter níveis de produtividade de sistemas integrados similares a sistemas a pleno sol em situações sem estresse por seca (Pezzopane et al., 2019, Lopes et al., 2017, Bosi et al., 2014). Os altos valores de transmissão se devem, além do desbaste, à "inclinação" solar menor no verão quando comparado às outras estações do ano no local do experimento. No verão de 2018, por outro lado, a transmissão de RFA foi menor quando comparada à do ano anterior, resultando em menor massa de forragem pré-pastejo em todas as posições do SSP ao serem comparadas ao INT (Tabela 1). Esse fato é consequência do crescimento significativo da copa das árvores, uma vez que a competição por luz entre árvores diminuiu devido à redução do número de indivíduos após o desbaste. Em condições com menor massa de forragem o perfilhamento diminui e, portanto, deve-se adotar pastejos mais lenientes para evitar a redução do estande de plantas.

Apesar do aumento expressivo de transmissão de RFA, ao se comparar as estações de outono antes (Bosi et al., 2020) e após o desbaste, a transmissão de RFA através do renque das árvores foi menor do que o valor limítrofe de 70%. Como consequência, a massa de forragem pré-pastejo foi mais baixa nas posições SSP1, SSP2 e SSP4 quando comparadas ao INT (Tabela 1). De maneira similar, na primavera de 2017, as baixas transmissões de RFA em SSP4 e SSP1 resultaram em diferença em massa de forragem pré-pastejo da posição SSP1 quando comparada ao INT. Por outro lado, os valores de transmissão de RFA nessa estação nas posições SSP2 e SSP3 foram adequados e resultaram em massa de forragem pré-pastejo similares quando comparados ao INT.

No inverno de 2017, apesar da transmissão de radiação mais alta das posições SSP1 e SSP2 quando comparadas às SSP3 e SSP4, a posição SSP1 foi a única com massa de forragem pré-pastejo menor do que a registrada no INT. Provavelmente, esse fato se deve à alta competição por água entre árvores e forrageiras em locais próximos das árvores, como corroborado por Tian et al., (2017). O baixo regime de chuvas no inverno, característico do local do experimento, torna a água um fator limitante para a produção de forrageiras, mesmo a pleno sol (Pezzopane et al., 2020b). Esse efeito é potencializado em locais próximos das árvores onde há alta competição por água entre as árvores e a forrageira.

Anais do XII Congresso Brasileiro de Sistemas Agroflorestais ISBN: 978-65-81152-33-8 | XII CBSAF | sbsaf.org.br/xiicbsaf

CONSIDERAÇÕES FINAIS

O desbaste foi efetivo em aumentar a transmissão de radiação fotossinteticamente ativa (RFA) através das árvores no sistema silvipastoril em todas as estações do ano. Essa prática, aliada à menor "inclinação" solar da estação de verão, foi suficiente para que a transmissão de radiação tivesse nível adequado para manter a massa de forragem nas diferentes posições do sistema silvipastoril similar ao observado a pleno sol no primeiro verão avaliado. No entanto, no segundo verão avaliado, o crescimento das árvores reduziu a transmissão de RFA resultando em diferenças de massa de forragem entre o sistema silvipastoril e o sistema a pleno sol. Nas estações de maior "inclinação" solar como outono e primavera, e na estação do inverno, em que a alta "inclinação" solar é aliada ao baixo regime de chuvas, o desbaste não foi suficiente para igualar a massa de forragem das forrageiras nas posições do sistema silvipastoril às registradas no sistema a pleno sol, principalmente em posições próximas das árvores.

REFERÊNCIAS

Bosi, C. *et al.* Productivity and biometric characteristics of signal grass in a silvopastoral system. Pesquisa Agropecuária Brasileira, v. 49, p. 449-456, 2014.

Bosi, C. *et al.*. Silvopastoral system with eucalyptus as a strategy for mitigating the effects of climate change on Brazilian pasturelands. Anais da Academia Brasileira de Ciências, v. 92, 2020.

Calderano Filho, B. *et al.* (1998) Os solos da Fazenda Canchim, Centro de Pesquisa de Pecuária do Sudeste, São Carlos, SP: levantamento semidetalhado, propriedades e potenciais. Rio de Janeiro: Embrapa-CNPS; São Carlos: Embrapa-CPPSE, 2018. 95p.

Gomes, F. J. et al. Shading effects on Marandu palisadegrass in a silvopastoral system: Plant morphological and physiological responses. Agronomy Journal, v. 111, n.5, p. 2332-2340, 2019.

Lopes, C.M. et al. 2017. Plant morphology and herbage accumulation of signal grass with or without fertilization, under different light regimes. Ciência Rural, v. 47, p. 1-5.

Mott, G.O.; Lucas, H.L. The desing, conduct, and interpretation of grazing trials on cultivated and improved pastures. In: INTERNATIONAL GRASSLAND CONGRESS, Pennsylvania, 1952. Proceedings.. Pennsylvania: State College Press, 1952. p.1380-1385.

Pezzopane, J. R. M. et al. Forage productivity and nutritive value during pasture renovation in integrated systems. Agroforestry Systems, v. 93, n. 1, p. 39–49, 2019

Pezzopane, J. R. M. *et al.* Production and nutritive value of pastures in integrated livestock production systems: shading and management effects. Scientia Agricola, v. 77, n.2, e20180150, 2020a.

Pezzopane, J. R. M. *et al.* Reducing competition in a crop-livestock-forest integrated system by thinning eucalyptus trees. Experimental Agriculture, v. 56, n. 4, p. 574–586, 2020b.

Tian, S. *et al.* Switchgrass growth and pine-switchgrass interactions in established intercropping systems. GCB Bioenergy, v.9, p. 845–857, 2017.

Agradecimentos

Fapesp (Proc. 2016/02959-1), Associação Rede ILPF e Instituto Brasileiro de Desenvolvimento e Sustentabilidade–IABS.