

POTENCIAL REDUÇÃO DO ESTRESSE EM PÓS-LARVAS DE TILÁPIA DO NILO ALIMENTADAS COM HIDROLISADO PROTEICO DE FÍGADO DE AVES

Milena Xavier Barreto **Martins¹**; Amanda Caroline **Franco²**; Natalia Akemi **Takeshita³**; Cristiano Campos **Mattioli⁴**; Hamilton **Hisano⁵**

Nº 21414

RESUMO – O hidrolisado proteico é uma biotecnologia desenvolvida para melhorar as propriedades funcionais e nutricionais de subprodutos da indústria animal e transformá-los em ingredientes dietéticos com alto valor proteico e digestibilidade adequada para espécie, representando uma alternativa nutricional e também ambiental, pois permite o aproveitamento de material residual de difícil descarte. Neste estudo objetivou-se avaliar os níveis de glicose e tempo de recuperação pós estresse ao ar de pós-larvas de tilápia do Nilo, submetidas a dietas com diferentes concentrações de hidrolisado proteico de fígado de aves (0, 1, 2, 4 e 8%), além da dieta com ausência de hidrolisado. Foram utilizadas um total de 320 pós-larvas, distribuídas em 20 hapas de 30 L (com malha de 1 mm), distribuídas igualmente em cinco tanques de 250 L com sistema de recirculação próprio. As póslarvas foram alimentadas até saciedade aparente por seis vezes ao dia, sendo às 8h, 9h40min, 11h20min, 13h, 14h40min e 16h30min. Tratamentos com dietas que continham 4% e 8% de hidrolisado, apresentaram menores níveis de glicose sanguínea circulante. No tratamento com 8% de hidrolisado, os peixes se recuperaram em menos de três minutos após estresse ao ar, apresentando natação normalizada. Com base nos resultados do presente estudo, pode-se concluir que os animais alimentados com 4% e 8% de hidrolisado proteico de fígado de aves apresentam menores taxas glicêmicas, sugerindo melhores condições fisiológicas após o estresse por exposição ao ar.

Palavras-chaves: aquicultura, alimento alternativo, bioconversão, resíduos, glicose, homeostase.

¹ Autor: Bolsista CNPq (ITI-A): Graduação em Medicina Veterinária, UniFAJ, Jaguariúna-SP; milenaxb.mxb@gmail.com

² Colaborador: Bolsista CNPq (PIBIC): Graduação em Medicina Veterinária, UniFAJ, Jaquariúna-SP.

³ Colaborador: Médica Veterinária, UniFAJ, Jaguariúna-SP.

⁴ Pesquisador da Embrapa Meio Ambiente, Jaguariúna-SP.

⁵ Pesquisador da Embrapa Meio Ambiente, Jaguariúna-SP; hamilton.hisano@embrapa.br.

ABSTRACT – Protein hydrolysate is a biotechnology developed to improve functional and nutritional properties of animal industry by-products in dietary ingredients with high protein value and digestibility appropriate to the species, representing a nutritional as well as an environmental alternative, because it allows the use of waste material difficult to discard. This study aimed to evaluate the glucose levels and post-air stress recovery time of Nile tilapia post-larvae fed diets with different concentrations of broiler liver protein hydrolysate (0, 1, 2, 4 and 8%), besides the diet with no hydrolysate. Three hundred and twenty post-larvae were used, distributed in 20 hapas of 30 L (with a 1 mm mesh), equally distributed in five 250 L tanks with their own recirculation system. The post-larvae were fed until apparent satiety six times a day, at 8am, 9h40min am, 11h20min am, 1h pm, 2h40min pm and 4h30min pm. Treatments with diets containing 4% and 8% hydrolysate had lower circulating blood glucose levels. In the treatment with 8% hydrolysate, the fish recovered in less than three minutes after air stress, showing normalized swimming. Based on the results of the present study, it can be concluded that animals fed with 4% and 8% of broiler liver protein hydrolysate have lower glycemic rates, suggesting better physiological conditions after stress by exposure to air.

Keywords: aquaculture, alternative feedstuff, bioconversion, residues, glucose, homeostasis.

1. INTRODUÇÃO

A aquicultura tem demonstrado constante expansão e avanços na produção de pescado no Brasil. Em 2020, a piscicultura nacional aumentou em 4,4% suas exportações, além da crescente organização da cadeia produtiva da tilápia, que representa cerca de 90% das exportações de pescado (SILVESTRI *et al.*, 2020). Esta espécie apresenta carne branca, sabor agradável, e também rusticidade quanto à tolerância à temperatura, salinidade e oxigênio dissolvido na água, que são características importantes para a produção em larga escala e que impulsionaram a produção da tilápia em regiões tropicais e subtropicais em todo o mundo (FAO, 2020).

Na piscicultura, os manejos como a biometria, classificação e vacinação são rotineiros e podem provocar estresse aos peixes que interferem negativamente na manutenção da homeostase fisiológica (LI *et al.*, 2018). As respostas ao estresse podem ser divididas em primária, secundária e terciária. A primária corresponde em elevação dos níveis de corticosteroides e catecolaminas hormonais, as secundárias em alterações fisiológicas e bioquímicas e as terciárias refletem negativamente sobre o desempenho, comportamento e aumento da suscetibilidade a doenças (BRANDÃO *et al.*, 2006). A glicose é um indicador usual para o monitoramento do estresse (resposta

secundária) e pode ser aferido de forma simples com o uso de medidores comerciais antes e após o manejo de estresse (WELLS; PANKHURST, 1999).

Na produção aquícola é preciso fornecer dietas balanceadas com níveis adequados de aminoácidos e proteínas, evitando o estresse nutricional e diminuição na produção (WU *et al.*, 2020). Uma das fontes de proteína animal muito utilizada na piscicultura é a farinha de peixe, no entanto sua falta no mercado mundial leva a elaboração de um substituto adequado, como o hidrolisado de pescado (sardinha e de carcaça de tilápia), hidrolisado de fígado de suínos entre outros (SILVA *et al.*, 2012). Por outro lado, a bioconversão de resíduos sólidos das indústrias de processamento pescado e de outras carnes podem agregar valor ao material residual e proporcionar vantagens econômicas para as indústrias processadoras e de ração e minimizar o impacto ambiental (HISANO; BORGHESI, 2015). O hidrolisado proteico é uma biotecnologia desenvolvida para melhorar propriedades funcionais e nutricionais de subprodutos da indústria animal em ingredientes dietéticos com alto valor proteico e digestibilidade adequada da proteína, possibilitando a conversão de proteínas em peptídeos funcionais e com balanceamento de aminoácidos (BUI *et al.*, 2014).

A qualidade do hidrolisado proteico depende da fonte de enzima e condições de hidrólise, que permite explorar fatores antioxidantes, imunomoduladores e antimicrobianos dos peptídeos funcionais presentes em ingredientes proteicos de origem animal ou vegetal, usados na formulação de ração para peixes, como o hidrolisado de fígado de aves (WU *et al.*, 2020). O processo de hidrólise enzimática apresenta uma série de vantagens sobre a hidrólise química, como controle do grau de hidrólise, disponibilidade comercial para produção em larga escala, custo moderado e formação mínima de subprodutos (PEARCE, 1995; CLEMENTE, 2000).

Observa-se que a partir do eixo hipotálamo-hipófise-interrenal (HHI), já descrito por PANKHURST (2011), é o principal mecanismo que os animais utilizam para mobilizar energia diante de uma situação estressante. Durante o estresse, o eixo HHI regula a liberação do hormônio cortisol, que eventualmente causa a quebra do glicogênio nos peixes. O gasto energético ocorre devido a essa quebra do glicogênio hepático, com efeitos no fígado estimulando a glicogenólise e, portanto, aumentando a glicose plasmática (PANKHURST, 2011). Vários autores relataram esse aumento da glicose com o estresse da exposição ao ar por diferentes períodos de tempo. Cinco minutos de exposição ao ar de *Piaractus mesopotamicus* resultaram em aumento da glicose plasmática, enquanto após 24 h de exposição os valores foram iguais aos do controle (ABREU *et al.*, 2009). Este mesmo aumento ocorreu em *Piaractus brachypomus* exposto ao ar por 60 min. Segundo os autores desse estudo, os animais não conseguiram restaurar os valores de controle mesmo após 24 horas de recuperação (RORIZ *et al.*, 2015).

Justificando a relevância nutricional, funcional e também para ampliar o conhecimento da fase inicial da tilápia, objetivou-se neste estudo avaliar os níveis de glicose e tempo de recuperação pós-estresse ao ar de pós-larvas de tilápia do Nilo alimentadas com rações contendo diferentes concentrações de hidrolisado proteico de fígado de aves (0%, 1%, 2%, 4% e 8%), além da dieta controle sem a inclusão do hidrolisado.

2. MATERIAL E MÉTODOS

O experimento foi conduzido no Laboratório de Ecotoxicologia e Biossegurança (LEB) da EMBRAPA Meio Ambiente, Jaguariúna, SP. Todos os protocolos experimentais realizados neste trabalho, seguiram as formalidades que envolveram a aprovação da Comissão de Ética para o Uso de Animais (CEUA), protocolo: 011/2019, da Embrapa Meio Ambiente.

Pós-larvas de tilápia do Nilo (*Oreochromis niloticus*) recém eclodidas foram adquiridas em piscicultura comercial, localizada no município de Monte Mor, SP. Em delineamento inteiramente casualizado com cinco tratamentos e quatro repetições, foram avaliadas cinco dietas (0; 1%, 2%, 4% e 8%), formuladas à base de ingredientes de origem vegetal, suplementadas com níveis crescentes de hidrolisado proteico comercial por 30 dias consecutivos. Trezentas e vinte pós-larvas de peso médio inicial de 17,62 ± 2,81 mg e comprimento inicial de 10,50 ± 0,69 mm foram distribuídas em 20 hapas de 30 L (com malha de 1 mm), alojadas em cinco tanques de 250 L em sistema de recirculação, dotados de aeração, filtragem mecânica e biológica, temperatura controlada por aquecedores, em densidade máxima de estocagem de 16 pós-larvas hapa-1.

As pós-larvas foram alimentadas até saciedade aparente por seis vezes ao dia, sendo as 8h, 9h40min, 11h20min, 13h, 14h40min e 16h30min. A ração foi formulada com 38% de proteína digestível (PD) e 3.500 kcal de energia digestível (ED kg⁻¹) (Tabela 1). Os ingredientes foram homogeneizados e misturados manualmente, e em seguida peletizados em moedor de carne (modelo MCR-22-SS Gpaniz Indústria de Equipamentos para Alimentação Ltda., Caxias do Sul, Rio Grande do Sul – Brasil). A secagem da ração foi realizada em estufa com ventilação forçada a 55 °C durante 24 horas (modelo MA035/1, Marconi Equipamentos Para Laboratórios Ltda., Piracicaba, São Paulo – Brasil). Na sequência os péletes foram triturados em moinho analítico (modelo IKA®, IKA A 11, Campinas, Brasil), e peneirados em malha de 0,5 mm e armazenados em freezer a -20 °C.

O teste com a exposição ao ar em cada concentração do hidrolisado foi realizado individualmente, utilizando-se de uma ordem crescente de concentração, da menor (controle) para a maior. Ao final de 30 dias de alimentação com as dietas contendo diferentes níveis de hidrolisado proteico de fígado de aves, os peixes apresentaram intervalo de peso entre 0,598 g e 0,828 g.

Lisina

Triptofano

15º Congresso Interinstitucional de Iniciação Científica – CIIC 2021 01 a 02 de setembro de 2021 ISBN 978-65-994972-0-9

Utilizaram-se 8 peixes para cada concentração, sendo que cada peixe foi exposto ao ar e avaliado, individualmente. A avaliação dos padrões comportamentais de recuperação pós exposição ao ar foi adaptada de acordo com a metodologia descrita por Woody *et al.* (2002), sendo que se utilizou cronômetro digital para monitoramento do tempo de recuperação pós-estresse da posição normal de nado e da capacidade de nadar dos peixes avaliados.

Tabela 1. Composição e valores nutricionais das dietas experimentais com base na matéria seca.

Ingredientes (%)	0%	1%	2%	4%	8%
Glúten de milho	10,00	10,00	10,00	10,00	10,00
Farinha de peixe	23,00	22,00	21,00	19,00	15,00
Hidrolisado de Fígado de	0,00	1,00	2,00	4,00	8,00
Aves					
Fubá de milho	2,06	1,98	1,94	1,52	1,03
Farelo de trigo	7,00	7,00	7,00	7,00	7,00
DL - Metionina	0,16	0,16	0,16	0,16	0,17
Óleo de soja	2,18	2,18	2,18	2,18	2,18
Fosfato Bicálcico	0,60	0,46	0,35	0,19	0,00
Calcário	0,00	0,22	0,40	0,75	1,32
Premix vitam/min 1	0,50	0,50	0,50	0,50	0,50
Composição centesimal (%)					
Energia Digestível (Kcal Kg ⁻¹)	3500,03	3499,69	3500,03	3500,76	3500,95
Proteína Digestível	38,64	38,63	38,64	38,65	38,63
Proteína Bruta	41,61	41,53	41,61	41,79	42,07
Fibra Bruta	4,00	3,99	4,00	4,00	4,00
Extrato Etéreo	5,79	5,80	5,79	5,77	5,62
Cálcio total	1,05	1,05	1,05	1,05	1,05
Fósforo disponível	0,75	0,75	0,75	0,75	0,75
Metionina	0,75	0,74	0,75	0,75	0,76

Treonina 1,24 1,22 1,23 1,27 1,34

¹ Premix vitam/min, composição kg⁻¹ do produto: Selênio: 75,00 mg; Ferro: 15,00; Cobre: 2.000,00 mg; Cloreto de colina: 125,00 g; Manganês: 3.750,00 mg; Zinco: 20,00 g; Iodo: 125,00 mg; Niacina: 7.800,00 mg; Ácido fólico: 750,00 mg; Ácido pantotênico: 3.750,00 mg; Biotina: 125,00 mg; Vitamina C: 53,00 g; Vitamina A: 2.000.000,00 UI; Vitamina E: 15.000,00UI; Vitamina K3: 1.000,00 mg; Vitamina B1: 2.500,00 mg; Vitamina B2: 2.500,00 mg; Vitamina B2: 2.500,00 mg; Vitamina B3: 2.500,00 mg; Vitamina B3:

2,23

0,40

2,24

0,41

2,24

0.43

2,24

0.40

2,24

0.40

Foram realizadas dosagens de glicose sanguínea dos peixes por meio de tiras reagentes em aparelho monitor digital Accu-Chek Active (Roche®, São Paulo, Brasil). Para a aferição da glicose pré exposição utilizou-se 4 peixes por tratamento aplicado, posteriormente foi realizada a exposição ao ar por 5 minutos de 8 peixes por tratamento em papel secante, e novamente aferiu-se a glicose pós estresse.

O controle da qualidade de água foi obtido com filtros em sistema *air-lift*, bombeamento de água e renovação de água diária, com temperatura controlada por aquecedores e termostatos

(27°C). O monitoramento físico químico dos parâmetros de qualidade de água foi realizado diariamente durante todo o período experimental: temperatura $27,67 \pm 0,71$ °C, pH $7,32 \pm 0,53$, oxigênio dissolvido $5,32 \pm 0,96$ mg L⁻¹, condutividade elétrica $12,36 \pm 0,53$ mS cm⁻¹ obtidas com sonda multiparâmetros Horiba (U-53, Horiba Advanced Technology Center Ltd., Kyoto - Japan), junto com a análise de amônia tóxica (NH₃) $0,28 \pm 0,01$ ppm pelo teste comercial Labcon Test Amônia Tóxica Água Doce (Alcon®, Camboriú, Brasil). As médias dos parâmetros de dureza $50,0 \pm 0,0$ ppm e nitrito $0,15 \pm 0,02$ µmol L⁻¹ foram obtidas a partir de análises semanais através de teste colorimétrico rápido LabconTest (Alcon®, Camboriú, Brasil).

Os resultados obtidos para as diferentes variáveis e análises foram submetidos ao teste de normalidade e homogeneidade da variância, seguido por análise de variância (ANOVA). Quando significativo, aplicou-se o teste SNK (Student-Newman-Keuls) e o teste de Tukey a 5% de probabilidade. Os dados foram analisados no programa estatístico R versão 3.4.5.

3. RESULTADOS E DISCUSSÃO

Não foram observadas mortalidades de pós-larvas após 30 dias de fornecimento de dietas com hidrolisado proteico de fígado de aves e posteriormente ao teste de estresse por exposição ao ar. As respostas de pós-larvas de tilápia expostas ao ar demonstraram aumento significativo na glicose após os 5 minutos de estresse agudo, em comparação aos níveis basais pré estresse (Tabela 2). Além disso, a glicose apresentou diferença significativa entre tratamentos nas pós-larvas submetidas a exposição ao ar. As comparações entre tempos e tratamentos revelaram uma interação direta entre o efeito do estresse com a alimentação das pós-larvas. Tratamentos com dietas contendo 4% e 8% de hidrolisado, apresentaram menores níveis de glicose sanguínea circulante, em comparação a dieta controle (Tabela 2). Estes resultados corroboram com o estudo de Gomes (2020), que avaliaram a inclusão de níveis crescentes de hidrolisado proteico de fígado de aves (0; 1%, 2% e 4%) na alimentação de alevinos de tilápia do Nilo e observaram que em relação à proteção contra os danos decorrentes da exposição ao ar, a ração com 4% de hidrolisado proporcionou menor taxa de glicemia.

Assim, é possível observar na Tabela 2 que o menor tempo de recuperação após estresse ao ar foi no tratamento com 8% de hidrolisado, ou seja, com o teor máximo dentre os tratamentos.

Tabela 2. Médias (± desvio padrão) da glicose basal e pós-estresse ao ar e do tempo de recuperação das pós-larvas de tilápia do Nilo.

Tratamento (%)	Glicose basal (mg dl ⁻¹)	Glicose pós-estresse (mg dl ⁻¹)	Tempo de recuperação (min)
0	19,25 ± 2,50 ^{A b}	35,63 ± 5,50 ^{A a}	03:51 ± 00:55
1	20,25 ± 2,22 ^{A b}	31,57 ± 4,75 ^{AB a}	04:23 ± 01:38
2	$20,25 \pm 1,89$ Ab	$34,25 \pm 3,28$ A a	03:06 ± 01:24
4	$16,00 \pm 6,06$ A b	$26,38 \pm 2,33$ ^{C a}	04:29 ± 01:33
8	$14,25 \pm 0,96$ Ab	$28,38 \pm 3,07$ BC a	02:52 ± 01:07

Médias seguidas de letras distintas maiúsculas na mesma coluna e minúsculas na mesma linha, diferem pelo teste de SNK (P <0,05).

A exposição ao ar pode levar a graves distúrbios homeostáticos em peixes, incluindo aumento da glicose, conforme relatado por RORIZ et al. (2015) para Piaractus brachypomus; LIM e HUR (2018) para Paralichthys olivaceus e MATTIOLI et al. (2019) para Lophiosilurus alexandri. Sob o efeito do estresse, espera-se que ocorra a liberação do cortisol, que é um importante hormônio, atuante em situações de estresse, este hormônio estimula a glicogenólise e a gliconeogênese hepática, consequentemente aumentando os níveis de glicose sanguínea em situações estressantes (SILVA et al., 2012) que é considerado um efetivo indicador da resposta secundária de estresse.

Os hidrolisados proteicos de subprodutos de origem animal, além de fornecer nutrientes de alto valor biológico, podem melhorar o desempenho zootécnico, reduzir a mortalidade, melhorar a capacidade antioxidante e a função imunológica, por meio da ação de diversos peptídeos funcionais (BUI *et al.*, 2014; WU *et al.*, 2020), hipóteses essas que corroboram com os resultados encontrados neste trabalho, ampliando o entendimento entre a relações nutricionais e metabólicas com a homeostase de um animal após um período de estresse severo.

A atividade antioxidante para alevinos de tilápia do Nilo foi constatada por GOMES (2020), que observou que a suplementação com hidrolisado proteico de fígado de aves influenciou a atividade da enzima antioxidante catalase, e também reduziu os danos às proteínas celulares, por meio do menor teor de proteínas carboniladas. O mesmo autor conclui que apesar do hidrolisado proteico de fígado de aves não ter melhorado o desempenho produtivo, a inclusão de 4% em rações para alevinos de tilápia proporciona melhores condições para os animais enfrentarem situações de estresse pela exposição ao ar. Dessa forma, a característica nutricional e funcional dos peptídeos do hidrolisado proteico de aves podem explicar em partes, que os melhores resultados de respostas pós-estresse dos animais alimentados com 4% e 8% de hidrolisado proteico no presente estudo.

Dentre todos os parâmetros de qualidade de água, a temperatura foi o único parâmetro que apresentou diferença estatística significativa (P <0,05). Foi possível observar que o tratamento-

controle difere estatisticamente dos demais tratamentos utilizados, conforme apresentado na Tabela 3.

Tabela 3. Médias (± desvio padrão) da temperatura após 30 dias de experimentação.

Tratamento (%)	Temperatura (°C)		
1	27,21 ± 0,74 °		
2	27,71 ± 0,43 ^b		
4	27,39 ± 0,71 bc		
8	27,75 ± 0,64 ^b		

Médias seguidas de letras minúsculas distintas diferem pelo teste de SNK (P <0,05).

A partir desses resultados, pode-se observar que a temperatura do tratamento-controle apresentou a maior média em relação aos demais tratamentos. O tratamento com 1% de hidrolisado é estatisticamente semelhante ao tratamento com 4% de hidrolisado, e difere dos demais tratamentos. Observa-se ainda que o tratamento com 2% de hidrolisado assemelha-se estatisticamente ao tratamento com 4% e com 8% de hidrolisado, mas distingue-se dos demais tratamentos. Mas todos os tratamentos mantiveram-se entre 27 e 28 °C, sendo considerados como parâmetros recomendados para a espécie (SILVA *et al.*, 2012).

Diversos trabalhos científicos que avaliaram o incremento de hidrolisados proteicos na alimentação de organismos aquáticos, demonstraram que é possível obter ganhos de produtividade (HEVROY *et al.*, 2005; ZHENG *et al.*, 2012). Além do que, os hidrolisados proteicos podem exibir ainda ação imunomodulatória, aumentando a resistência dos peixes cultivados ao estresse e a doenças (DAVIS; ARNOLD, 2000), ao qual relaciona-se diretamente com os estudos fisiológicos concretizados neste trabalho, fortalecendo a cadeia produtiva da proteína animal como um todo. Segundo informações da EMBRAPA (2021), o Brasil é o terceiro maior produtor de frangos de corte do mundo e o primeiro em termos de exportação, e o aproveitamento de subprodutos dessa cadeia produtiva animal para o desenvolvimento de hidrolisados proteico é fundamental para a agregação de valor e diminuição do impacto ambiental, uma vez que esse alimento pode ser utilizado em outras cadeias a exemplo dos peixes.

No presente estudo, observou-se que a qualidade das pós-larvas de tilápia foi significativamente superior devido principalmente a robustez metabólica provida pela dieta, nos tratamentos em que hidrolisado proteico foi incorporado, tornando a sua utilização viável pela indústria e no qual leva-se a considerar pontos importantes da nutrição aquícola, como a escassez e alto custo da farinha de peixe como ingrediente proteico principal. O hidrolisado proteico de fígado de aves pode ser considerado um alimento alternativo/aditivo, pois segundo recomendações de

HISANO; PORTZ (2007) atendem alguns requisitos importantes para serem utilizados pelas fábricas de ração para organismos aquáticos com produtos nutricionalmente padronizados, grande volume e com produção contínua. No entanto, novos estudos devem ser conduzidos para melhor compreensão dos efeitos do hidrolisado sobre aspectos fisiológicos e de saúde dos peixes.

4. CONCLUSÃO

Pós-larvas alimentadas com 4% e 8% de hidrolisado proteico de fígado de aves apresentam menores taxas glicêmicas após estresse fisiológico agudo, sugerindo melhores condições metabólicas seguidas por manejo rotineiro em condições práticas de produção.

5. AGRADECIMENTOS

Os autores agradecem ao Projeto BRS Aqua e CNPq pela concessão da bolsa iniciação tecnológica e inovação e à Embrapa Meio Ambiente pelo suporte laboratorial para execução dos ensaios e análises.

6. REFERÊNCIAS

ABREU, J.S. *et al.* Biological indicators of stress in pacu (Piaractus mesopotamicus) after capture. **Brazilian Journal of Biology**, v. 69, n. 2, p. 415–421, 2009.

BUI, H.T.D. *et al.* Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. **Aquaculture**, v. 419, p. 11-16, 2014.

BRANDÃO, F.R.; GOMES, L.C.; CHAGAS, E.C. Stress responses of pirarucu (Arapaima gigas) during routine aquaculture practices. **Acta Amazonica. Zoologia**, v.36, n. 3, p. 349 – 356, 2006.

CLEMENTE, A. Enzymatic protein hydrolysates in human nutrition. **Trends Food Science Technology**, v. 11, n. 7, p.254 - 262, 2000.

DAVIS, D.A.; ARNOLD, C.R. Replacement of fish meal in pratical diets for the Pacific White shrimp, *Litopennaeus vannamei*. **Aquaculture**, v. 235, p. 291-298, 2000.

EMBRAPA Suínos e Aves. **Central de inteligência de aves e suínos**. Fonte: USDA/Foreign Agricultural Service, atualização: 05 de mai. de 2021. Disponível em: https://www.embrapa.br/suinos-e-aves/cias/estatisticas/frangos/mundo. Acesso em: 30 de jun. de 2021.

FAO no Brasil. **Notícias**: a pesca e a aquicultura são críticas para a transformação dos sistemas agroalimentares globais. 01/02/2020. Disponível em: http://www.fao.org/brasil/noticias/detail-events/pt/c/1371997/. Acesso em: 13 jun. 2021.

GOMES, J. R. Hidrolisado proteico de fígado de aves como aditivo em dietas para tilápia do Nilo. 2020. 70 p. Dissertação (Mestrado em Biologia Animal) - Universidade Federal de Viçosa, Viçosa.

HEVROY, E.M. *et al.* Nutrient utilization in Atlantic salmon (*Salmo salar* L.) fed increased levels of fish protein hydrolysate during a period of fast growth. **Aquaculture Nutrition**, v. 11, p. 301–313, 2005.

HISANO, H.; BORGHESI, R. Composição química e qualidade microbiológica de silagens ácidas de vísceras de surubim (Pseudoplatystoma spp.) preparadas com diferentes proporções de ácidos fórmico e cítrico. Dourados: Embrapa Agropecuária Oeste, 2015. (Embrapa Agropecuária Oeste. Boletim de pesquisa e desenvolvimento, 72).

HISANO, H., PORTZ, L. Redução de custos de rações para tilápia: a importância da proteína. **Bahia Agrícola**. v. 8, n. 1, nov. 2007.

LI, M. *et al.* Metabolic response of Nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress. **Aquaculture**, v. 495, p. 187-195. 2018.

LIM, H. K., HUR, J. W. Effects of Acute and Chronic Air Exposure on Growth and Stress Response of Juvenile Olive Flounder, Paralichthys olivaceus. **Turkish Journal of Fisheries and Aquatic Sciences**, v. 18, n. 1, p. 143-151, 2018.

MATTIOLI, C. C. *et al.* Physiological and metabolic responses of juvenile Lophiosilurus alexandri catfish to air exposure. **Fish Physiology Biochemestry**, v. 45, n. 1, p. 455-467, 219.

PANKHURST, N. W. The endocrinology of stress in fish: an environmental perspective. **General and Comparative Endocrinology**, v. 170, n. 2, p. 265–275, 2011.

PEARCE, R. J. Food functionality success or failure for dairy based ingredients. **Australian Journal of Dairy Technology**, v. 50, n. 1, p. 15-23, 1995.

SILVA, R. D. *et al.* Parâmetros hematológicos e bioquímicos da tilápia-do-Nilo (Oreochromis niloticus L.) sob estresse por exposição ao ar. **Pesquisa Veterinária Brasileira**, v. 32, sup. 1, p. 99-107, 2012.

WELLS, R. M. G.; PANKHURST, N. W. Evaluation of simple instruments for the measurement of blood glucose and lactate, and plasma protein a stress indicator in fish. **Journal of the World Aquaculture Society**, v. 30, p. 276-284. 1999.

WOODY, C. A.; NELSON, J.; RAMSTAD, K. Clove oil as an anaesthetic for adult sockeye salmon: field trials. **Journal of Fish Biology**, v. 60, p. 340-347, 2002.

WU, J. *et al.* Animal by-products with or without enzymatic hydrolysis completely replacement of fish meal in genetically improved farmed tilapia diets (Oreochromis niloticus). **Aquaculture Research**, v. 52, p. 291-301, 2021.

ZHENG, K. *et al.* Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). **Aquaculture Nutrition**, v. 18, p. 297–303, 2012.