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ABSTRACT: The development of efficient methods for genome–wide association studies 
(GWAS) between quantitative trait loci (QTL) and genetic values is extremely important to 
animal and plant breeding programs. Bayesian approaches that aim to select regions of single 
nucleotide polymorphisms (SNPs) proved to be efficient, indicating genes with important effects. 
Among the selection criteria for SNPs or regions, selection criterion by percentage of variance 
can be explained by genomic regions (%var), selection of tag SNPs, and selection based on 
the window posterior probability of association (WPPA). To also detect potentially associated 
regions, we proposed measuring posterior probability of the interval (PPint), which aims to select 
regions based on the markers of greatest effects. Therefore, the objective of this work was 
to evaluate these approaches, in terms of efficiency in selecting and identifying markers or 
regions located within or close to genes associated with traits. This study also aimed to compare 
these methodologies with single–marker analyses. To accomplish this, simulated data were 
used in six scenarios, with SNPs allocated in non–overlapping genomic regions. Considering 
traits with oligogenic inheritance, WPPA criterion followed by %var and PPint criteria were shown 
to be superior, presenting higher values of detection power, capturing higher percentages of 
genetic variance and larger areas. For traits with polygenic inheritance, PPint and WPPA criteria 
were considered superior. Single–marker analyses identified SNPs associated only in oligogenic 
inheritance scenarios and was lower than the other criteria.
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Introduction

The development of new sequencing and genotyping 
technologies has promoted the growth of molecular 
genetics, enabling breeding programs to carry out 
genome–wide association studies (GWAS) between 
quantitative trait loci (QTL) and genetic values of 
individuals. The selection of marker groups has been 
identified as a major advantage for GWAS because 
these groups tend to capture a higher proportion of the 
genetic variance, identifying more complex relationships 
between markers (Moore et al., 2010). According to Fan 
et al. (2011) and Fernando et al. (2017), to select the 
associated regions’ methods using the Bayesian approach 
is preferable as it offers significant advantages, such as 
the possibility of incorporating a prior knowledge and 
simultaneous estimation of marker effects.

Based on this, criteria using the Bayesian 
approach to select markers and associated regions 
that do not require major computational efforts are 
proposed. Among the existing criteria, selection by the 
percentage of variance explained by genomic regions 
(%var), selection criteria of tag single nucleotide 
polymorphisms (tag SNPs), and selection based on 
window posterior probability of association (WPPA) 
are the most notable. These approaches consider the 
genetic variance and differ in the criteria used for 
selecting the regions and thresholds determined for 
selection. 

Further, to detect potentially associated regions and 
select SNPs with greater effects, we propose measuring 
the posterior probability of the interval (PPint). The 
selection of these SNPs becomes viable, since, biologically, 
it is expected that S close to a QTL will have a greater 
effect because they are both close to the causal mutation 
(Habier et al., 2011; Meuwissen et al., 2016). Thus, PPint 
is based on the number of iterations of the Markov Chain 
Monte Carlo (MCMC), in which the region has at least 
one SNP with an effect magnitude greater than the value 
of the third quartile, considering the entire distribution of 
the absolute effects in that iteration.

Given the above, this paper aimed to propose the 
measure of PPint and compare it to the tag SNP, %var, and 
WPPA approaches to determine the efficiency in selecting 
and identifying markers or regions that are located within 
or near genes associated with traits of interest. This study 
also aimed to compare the results obtained by these 
methodologies with single–marker analyses. To achieve 
this objective, we used simulated data that considers 
six different scenarios, with SNPs allocated in non–
overlapping genomic regions.

Materials and Methods

Simulated Data

The data set was simulated using the Genes software 
program (Cruz, 2013). The genome consisted of ten linking 
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groups, with 20 centimorgans (cM) and 200 markers in 
each group. The SNPs were considered to be distributed 
approximately equidistant in the genome. In the analysis 
of gene linkage, an F1 generation was simulated, in 
which one parent was a dominant homozygote and the 
other, a recessive homozygote. From the genotypes of 
the F1 population, a population of F2 mapped with 1,000 
individuals was generated, considering 5,000 gametes, 
attributing the entire linkage disequilibrium (LD) to 
the linkage group. Quantitative traits were simulated 
considering a zero degree of dominance, mean equal 
to 100, and heritability levels which were selected to 
represent traits with high (ha

2 = 0.50 and ha
2 = 0.60), 

moderate (ha
2 = 0.30 and ha

2= 0.40), and low (ha
2 = 0.10 

and ha
2 = 0.20) heritabilities. Three genetic architectures 

were generated using three, ten, and one hundred loci 
controlling the trait, which explained equal parts of the 
genetic variance, these QTL being distributed in the 
regions covered by the markers. In the first architecture, a 
case was considered in which three QTL were randomly 
distributed among the ten chromosomes. In the second, 
ten controlling loci of the trait were assumed, in which 
one QTL was assigned to each of the ten chromosomes. 
In the third, traits controlled by many genes with 
small effects were considered, in which ten QTL were 
distributed in each of the ten chromosomes, totaling 100 
QTL. Additionally, according to Goddard et al. (2011), the 
proportion of genetic variation associated with the QTL 
explained by the markers (rmq

2 ) was ascertained by:

r
n

n nmq
QTL

2 =
+

                                                                                       (1)

where n was the number of SNPs and nQTL, the number 
of QTL. 

In this way, six different scenarios were used in 
the analyses: three genetic architectures × two different 
levels of heritability in each architecture. The description 
of the scenarios is presented in Table 1. Each type of 
scenario was simulated ten times to assess the efficiency 
of the methods, according to Lima et al. (2019). Thus, the 
measures used were calculated in each repetition of the 
simulation and thereafter the mean and standard error of 
these values were obtained.

BayesDp

The BayesDp method allowed a (1 – p) percentage of 

marker effects to be equal to zero, leading to a lower 
number of marker effects to be estimated, raising the 
accuracy of the estimation process since many of the 
markers do not have genetic effects or are not in LD 
with QTL (Habier et al., 2011). Consider the following 
linear model proposed by Meuwissen et al. (2001):

y = 1m + Wm + e                                                    (2)

where y was the vector of phenotypes (N × 1, N, the 
number of individuals), m was the general mean of the 
trait, 1, a vector of the same dimension of y with all 
elements equal to 1, m, the vector of additive genetic 
effects of the markers (n × 1, n, the number of markers), 
W (N × n), the additive incidence matrix and e (N × 1), 
the vector of errors of the model with e N e ( , )0 2σ  with 
σe

2 being the error variance. The W matrix was coded 
according to Vitezica et al., 2013.

In this method it was considered that a fraction 
(1 – p) of the markers had no effect on the trait and the 
remaining fraction p had effects with a prior distribution 
given by a normal with a specific variance σmj

2  for each 
marker being the variance of each marker from a 
scaled inverse chi–square distribution with υ degrees 
of freedom and scale parameter Sm

2 . Thus, the equation 
used was:

m N Nj m mj j
π π σ π σ 0 1 0 02 2, ,( ) + −( ) =( )   (3)

σ π χ υm mj
Scale inv S2 2 2

 − − ( ),   (4)

where π σ σm S Uj m e mj
, , , ,2 2 2 0 1 [ ]  and S Gammam

2
 ( , )α β

being a and b, respectively, as the hyperparameters of the 
a prior distribution. Note that this method allowed the 
specification of a prior distribution for the p probability 
and Sm

2  hyperparameter, considering them unknown 
parameters of the model for limiting the influence of 
subjectivity in the selection of markers and the shrinkage 
factor. The a posterior mean of the total genetic variance 
of the markers was given by ˆ ˆσ σg j j j mp q

j

2 22= ∑ , where pj 
and qj were the allele frequencies associated with “A” 
and “a” the alleles, respectively, of the j–th marker. 

BayesDp can be advantageously used in GWAS in 
relation to other Bayesian approaches because it assumes 
a specific variance for each locus to obtain information 
about the genetic architecture of the trait and estimates 
the value of probability p, which is considered unknown 

Table 1 – Description of scenarios with the proportion of quantitative trait loci (QTL) variation explained by the SNPs ( rmq
2 ), genetic architecture, 

number of QTL and narrow–sense heritability (h2).

Scenarios rmq
2 Genetic architecture Number of QTL h2

Scenario 1
0.99

3 QTL on 10 chromosomes 3 0.50
Scenario 2 3 QTL on 10 chromosomes 3 0.60
Scenario 3

0.99
1 QTL in each of the 10 chromosomes 10 0.30

Scenario 4 1 QTL in each of the 10 chromosomes 10 0.40
Scenario 5

0.95
10 QTL on each of the 10 chromosomes 100 0.10

Scenario 6 10 QTL on each of the 10 chromosomes 100 0.20
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and considers that most of the markers have small effects 
(or zero effect), except for those closer to the causal 
mutation that would have more influential effects, and 
bring more biological meaning to the analyses (Habier 
et al., 2011).

For inference about the posterior distribution of 
the estimated effects of SNPs, 320,000 iterations were 
used for the MCMC algorithms, of which 20,000 were 
discarded (burn–in) to guarantee the heating of the chain 
and selection of one in ten iterations (thin). Convergence 
analysis was performed using the criterion proposed by 
Geweke (1992).

Formation of Regions

On each chromosome, SNPs were allocated to non–
overlapping genomic regions of defined sizes, according 
to the mean LD between the markers and the QTL 
itself. Linkage disequilibrium values vary between 
zero and one, referring to the absence or complete LD, 
respectively. According to Zhao et al. (2007) and Viana 
et al. (2016), the effectiveness of locating QTL using 
LD between markers and QTL depends on the extent 
of LD and how it decreases according to the distance 
between markers and QTL in a population. In this study, 
two extensions of LD with values between 0.64 and 
0.81 were considered thresholds when determining the 
size of the regions. These values were chosen because 
they represent a high correlation of 0.80 and 0.90, 
respectively, between the QTL and markers. The shortest 
distance that LD provided between the QTL and marker 
following these two established LD extensions was used 
to define the size of the region in the scenarios. Thus, for 
each scenario, two sizes of region were used according 
to the extent of LD considered. For the LD extension of 
0.64, sizes of 4 cM, 5 cM, and 2.7 cM were established 
for scenarios 1 and 2, 3 and 4, and, 5 and 6, respectively. 
For LD of 0.81, sizes found for the respective scenarios 
were 2 cM, 1.5 cM, and 1 cM. The six scenarios were 
analyzed considering these region sizes and the five 
approaches to selecting SNPs/regions, single–marker 
analyses, %var, tag SNP, WPPA, and PPint.

Comparison of methodologies

To verify the efficiency of the analyzed criteria, the 
following measures described below were calculated:

i) False positive (FP) consisted of declaring a marker/
region as associated, when in fact this marker/region 
was not in LD with the QTL and was defined by the 
ratio between the number of SNPs/regions considered 
associated and that have no effect on the trait, and, 
equally, the number of SNPs/regions that have no effect 
on the trait.

ii) Detection power (PD) consisted of declaring a marker/
region effect associated when this marker/region was 

actually in LD with the QTL, and was defined as the 
ratio between the number of SNPs/regions considered 
associated and that affect the trait and, equally, the 
number of SNPs/regions that affect the trait.

iii) Percentage of genetic variance recovered was based on 
the percentage of genetic variance captured by the SNPs/
regions and was obtained by the ratio between the genetic 
variance of the SNPs/regions considered associated and 
a posterior mean of total genetic variance. According to 
Peters et al. (2012), genomic regions that contribute with 
greater genetic variances were considered those most 
associated with the trait of interest.

iv) Area under the curve obtained between false positive 
rates and detection power was calculated using the 
receiver operating characteristic curve (ROC) proposed 
by Metz (1978) to also compare the criteria. Previous 
studies (Gage et al., 2018; Liu et al., 2016) used ROC 
curves or similar visual aids to assess the effectiveness 
of different methods in GWAS. In an ROC curve, the 
detection power values are plotted against the false 
positive rate and, thus, the criterion that provides 
the highest area value below the curve is considered 
superior. The use of the area to compare the results 
in a single statistic allows for direct comparison of the 
results of the GWAS of traits with different simulation 
parameters (Gage et al., 2018).

Consequently, the methodology that presents 
lower rates of false positives, greater detection power, 
that captures a greater proportion of the genetic variance, 
and that has a larger area under the ROC curve was 
considered the most suitable for GWAS.

Selection Criteria for Regions or SNPs

Selection by proportion of genetic variance 
explained by genomic regions – %var 

The selection of SNP groups using the proportion of 
genetic variance explained by genomic regions (%var), 
was initially proposed by Wang et al. (2014) as an 
efficiency measure for comparing methods of selecting 
regions in GWAS. For the effects of estimated SNPs, the 
genetic variance associated with the k–th region was 
calculated using:

ˆ ˆσgk j k j j jp q m2 22= ∑ ∈                                                               (5)

where m̂j was the allelic substitution effect of the j–
th SNP belonging to the k–th region as estimated by 
BayesDp. The explanation percentage of the genetic 
variance for each region was obtained as follows:

 (6)

with σ̂g
2 being the posterior mean of the total genetic 

variance considering all markers.



4

Lima et al. GWAS via chromosomic regions

Sci. Agric. v.79, n.3, e20200202, 2022

The regions that presented proportion values of 
the genetic variance higher than the ratio between the 
posterior mean of the total genetic variance and the 
number of regions considered were selected as associated 
regions and subsequently used to explore and determine 
the possible QTL. A grid of values ranging from 100 % 
to 200 % of the ratio between the posterior mean of the 
total genetic variation and the number of regions was 
considered and the one that returned the least difference 
between the detection power and confidence level (an 
associated region was not declared when this region was 
not actually in LD with QTL) was considered in the results.

Selection of tag SNPs using Bayesian methods

This approach consisted of identifying associated regions 
in the genome and subsequently, selecting SNPs in those 
regions that supposedly had high LD with the QTL. 
In this method, the SNPs were allocated in genomic 
regions but not overlapping and thus, the regions that 
potentially contained QTL associated with the trait of 
interest were called top windows. Top windows were 
identified according to a threshold defined in terms of the 
contribution of the genetic variance of the markers that 
could be obtained through the estimated effects of all SNPs 
via BayesDp. Sollero et al (2017) considered all regions 
that explained proportions of genetic variance greater 
than five times the threshold described by Schurink et 
al. (2012) as top windows, which is obtained through the 
quotient between the a posterior mean of the total genetic 
variance by the number of regions considered. In this 
criterion, the same grid of values of the percentage of the 
posterior mean of the total genetic variance used in the 
%var criterion was considered, and, thus, the regions that 
presented genetic variances above this threshold were 
considered top windows. Again, the percentage used and 
considered in the analyses were those that provided the 
least difference between the power to detect an associated 
region and the level of confidence.

The effects of SNPs considered associated within 
each top window were called tag SNPs and were selected 
using the inclusion frequencies (IF) of the SNPs in the 
model, which is, the ratio between the number of saved 
iterations of the MCMC that include the SNP in question 
in the model and the total number of iterations saved. 
Thus, for each top window, the IF values were calculated 
for all SNPs and the tag SNPs selected were those SNPs 
that had the highest IF value. To also select the tag SNPs 
within each top window, t–like statistics (TL) were used, 
considering an approach similar to IF to assess the 
consistency of the SNPs effects. This measure is given 
by the absolute value of the posterior mean effects of the 
markers (only for the chains that included the SNP in the 
model) divided by the respective standard deviations of 
these effects, an approximation of Student’s t–statistic. 
Based on this statistic, SNPs considered significant (p < 
0.05) within each top window were also identified as 
tag SNPs.

Selection by the window posterior probability of 
association – WPPA

The WPPA measure was implemented using the effects 
of SNPs estimated via BayesDp and obtained from the 
proportion of the genetic variance explained by the 
markers of each genomic region. The genomic variance 
associated with the k–th region was estimated, in this 
context, by means of:

ˆ ˆσg j k j j jk
p q m2 22= ∑ ∈   (7)

where m̂j was the allelic substitution effect of the j–th 
SNP belonging to the k–th region estimated by BayesDp 
and pj and qj, the allele frequencies. From this, the 
proportion of the genetic variance explained by the 
markers in the k–th region, denoted by qk, was defined 
as: 

q
E

k
g

g

k

k

=
( )
σ̂

σ

2

2
   (8)

where E p q E mg j k j j jk
( ) ( )σ2 22= ∑ ∈ (in the absence of 

dominance), with

E m
nHj

g( )
( )2

2

=
σ

   

and σg
2, the genetic variance of the markers, n the number 

of SNPs, and H the mean of 2pjqj. If qk > 1, there was a 
causative mutation within the k–th region, since it had a 
greater than expected effect under the hypothesis of an 
equal distribution of genetic variance across the genome 
(Bennewitz et al., 2017; Peters et al., 2012). Thus, the 
WPPA measure was formulated from the ratio between 
the number of samples, where qk was greater than one 
and the number of samples saved.

Regions that had a WPPA above a pre–established 
threshold were selected as associated regions. According 
to Fernando and Garrick (2013) and Fernando et al. (2017), 
if WPPA values greater than 0.95 are used to declare 
associated regions, this will result in a proportion of false 
positives below 0.05. Bennewitz et al. (2017) considered 
the levels 0.85, 0.95, and 0.99, and found that the power 
to detect an associated region decreased with the increase 
of these levels. In this study, several threshold levels 
ranging from 0.50 to 1.00, with an increment of 0.01, 
were tested in the analyses and the value that provided 
the least difference between the power to detect a region 
and the confidence level was considered.

Selection by a posterior probability of interval – 
PPint 

Biologically, it is expected that SNPs close to a QTL will 
have a greater effect being close to the causal mutation 
(Habier et al., 2011; Meuwissen et al., 2016) and for this 
reason it becomes viable to select these SNPs in the search 
for associations between markers and QTL through the 
PPint measure that represents the probability SNPs with 
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great effects are included in the region. In addition, 
according to Resende et al. (2008), QTL can be located 
by adding the absolute effects of SNPs within each region 
and the regions with the largest sums of these absolute 
effects are likely to contain a QTL or be adjacent to a 
region containing a QTL and, thus, the position of the 
QTL can be found, and the discovery of QTL with great 
effect is facilitated. According to these authors, if there 
is no QTL in a given region, all estimates of the effects 
of SNPs within it will be small in magnitude. Thus, to 
also detect regions associated with the traits of interest, 
a new selection approach based on the effects of SNPs 
obtained in the MCMC samples was proposed and called 
a posterior probability of interval (PPint). PPint represented 
the probability of SNPs with large effects being included 
in the region and was calculated by the ratio between the 
number of iterations in which a given region had at least 
one SNP with an effect magnitude greater than the value 
of the third quartile, considering the entire distribution of 
the absolute effects in that iteration and the number of 
samples saved. 

Regions with PPint values greater than a pre–
specified threshold were selected as associated. In this 
study, threshold values also varying from 0.50 to 1.00 with 
an increment of 0.01 were tested and, thus, the value that 
provided the least difference between the detection power 
and the confidence level was selected. This threshold was 
chosen by the researcher and directly reflects the posterior 
probability of a QTL being in the region.

Single–marker analyses 

The mixed linear model of single–markers was used to 
estimate the effect of the j–th marker on the phenotype 
and was defined by:

y=1m +Z1g+Wjmj + e  (9) 

where y, m, and e have been defined previously; g (N × 
1) was the vector of polygenic genetic effects with an 
incidence matrix Z1(N x N), being g G N g( , )0 2σ  where 
G was the additive genomic relationship matrix, σg

2, the 
polygenic variance, mj the scalar, referring to the fixed 
effect of the j–th marker, and Wj the incidence vector 
of the j–th marker. The matrix of additive genomic 
relationship was given by (VanRaden, 2008):

G
WW

=
′

∑ =j
n

j jp q1 2
                                                                                                                     (10)

To estimate the polygenic genetic effects and the 
effect of the j–th marker, the mixed model equations 
(Henderson, 1973) were given by:
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where the components of variance, σg
2 and σe

2, were 
estimated via the restrict maximum likelihood (REML).

After estimating the effect of the j–th marker, 
the Wald test was performed to test the existence of an 
association between the marker and QTL. Thus, the null 
hypothesis (H0) was defined as when “the j–th marker 
had no effect on the phenotype”, and the alternative 
hypothesis (Ha) defined as “the j–th marker affected the 
phenotype”, that is, the j–th marker and the QTL were 
found in LD. However, this statistical analysis suffers 
from the occurrence of a high rate of false positives due 
to the occurrence of multiple tests. An alternative for 
controlling this fact is to monitor the number of false 
positives in relation to the total number of positive results 
through the false discovery rate (FDR) as presented by 
Fernando et al. (2004). One way of considering FDR in 
the significance test is through correction in the p–value, 
called the q–value (Storey and Tibshirani, 2003).

The sizes of regions obtained based on the LD 
between the marker and QTL were used to define a region 
that determined the number of SNPs that really affected 
the trait. Thus, the SNPs that were distant to the QTL 
on the chromosome, lower than these thresholds, were 
considered associated SNPs and were used to calculate 
false positive rates, detection power, percentage of the 
variance, and area under the ROC curve.

Computational Resources

The entire implementation of the methods used was 
performed based on R software (R Development Core 
Team, 2019) through the GenomicLand visual interface 
(Azevedo et al., 2019). Convergence analysis of the 
effects of SNPs was estimated via the BayesDp and 
was performed using the coda package (Plummer et al., 
2006). In single–marker analysis, the sommer package 
was used (Covarrubias–Pazaran, 2016). The codes and 
data are available at https://www.licae.ufv.br/codes–for–
association–analysis/. 

Results and Discussion

The results, considering the LD extension of 0.64 for 
determining the sizes of the regions, are shown in 
Table 2. In this simulation study, to identify superior 
procedures for the selection of associated regions, we 
first selected the criteria that presented the highest 
value points for detection power. These criteria were 
considered preferable, since they disclosed the true 
proportion of regions that had been detected and were 
actually associated (Bennewitz et al., 2017). The results 
in Table 2 revealed that for scenarios with oligogenic 
genetic inheritance (traits controlled by a few genes 
with greater effects – scenarios 1, 2, 3, and 4), the 
WPPA criterion followed by the %var and PPint criteria 
were higher than the tag SNP criterion, presenting 
higher and similar point values for the power to detect 
associated regions and, consequently, to capture higher 
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percentages of explanation of the genetic variance. For 
scenarios 1 and 2, the power to detect associated regions 
and the percentage of explanation of the variance were 
highest for the WPPA and %var criteria, elucidating the 
superiority of these methods in this genetic architecture.

Using a more general selection procedure, a copy 
of the one used by Gage et al. (2018), the WPPA criterion 
stood out in relation to the area under the ROC curve in 
scenarios with oligogenic inheritance, providing higher 
values compared to other methods. For false positive 
rates in scenarios 1 and 2, all criteria were similar, 
providing values of zero or close to zero. However, in 
scenarios 3 and 4, tag SNP was the method that showed 
superiority. Initially, to select tag SNPs, the frequency 
of inclusion of SNPs in the model (IF) and the t–like 
statistic (TL) were used. However, TL measures did not 
identify significant SNPs within the top windows and 
for this reason, only the results referring to the tag SNPs 
selected by the IF measure are shown in Table 2.

For the scenarios considering polygenic 
inheritance (traits controlled by many genes with small 
effects – scenarios 5 and 6), the PPint and WPPA criterion 
were more efficient, presenting maximum values of 
power in detecting regions and percentage of variance 

explained. These criteria were also superior with respect 
to the area under the ROC curve, providing larger areas 
compared to the %var and tag SNP criteria for these 
scenarios. Note that the %var criterion was lower in these 
scenarios, proving efficient only for traits controlled by 
a few genes. With regard to the rate of false positives, 
in these scenarios, all methods analyzed obtained the 
lowest possible values (zero), indicating that no SNP/
region was declared associated when it was not.

The WPPA and PPint criteria showed lower power 
values in scenarios 3 and 4 than in other scenarios, which 
may have been influenced by the size of the region, 
which was the largest among all scenarios. Notably, in 
the smallest distance size considered (scenarios 5 and 6), 
these criteria stood out. Braz et al. (2019) and Bennewitz 
et al. (2017) reported on the influence of the size of the 
windows on detection power. In their studies considering 
sliding windows to select haplotypes associated with the 
bovine genome, Braz et al. (2019) used a mixed linear 
model, showing that smaller window sizes detect more 
associated regions and that larger window sizes may be 
more likely to introduce analytical problems, resulting in 
an excessive number of haplotypes, creating noise and 
computer memory problems. Furthermore, the results 

Table 2 – Size of the regions (distance) in centimorgans (cM) found through the linkage disequilibrium (LD) between the markers and quantitative 
trait loci (QTL) in each scenario using the LD extension of 0.64 and the means and standard errors of the estimated p probability via BayesDp, 
false positive rates (FP), detection power (PD), percentage of genetic variance recovered (PE), area under the receiver operating characteristic 
curve (ROC) and threshold for selecting regions obtained by criteria %var, tag SNP, WPPA and PPint. 

Scenarios p Distance Criterion FP Power PE Area Threshold

 1 0.32 ± 0.03

4

%var 0.02 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.06 ± 0.01 2.90 ± 0.20
tag SNP 0.00 ± 0.00 0.02 ± 0.00 0.15 ± 0.03 0.01 ± 0.00 0.66 ± 0.09
WPPA 0.01 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.90 ± 0.03
PPint 0.06 ± 0.06 0.77 ± 0.10 0.85 ± 0.07 0.85 ± 0.04 0.93 ± 0.03

 2 0.16 ± 0.04

%var 0.01 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.02 ± 0.01 3.77 ± 0.33
tag SNP 0.00 ± 0.00 0.02 ± 0.00 0.33 ± 0.04 0.00 ± 0.00 1.82 ± 0.29
WPPA 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.60 ± 0.16 0.75 ± 0.07
PPint 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.60 ± 0.16 0.77 ± 0.07

3 0.45 ± 0.00

5

%var 0.16 ± 0.02 0.80 ± 0.03 0.90 ± 0.02 0.10 ± 0.01 1.12 ± 0.04
tag SNP 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.58 ± 0.03
WPPA 0.18 ± 0.02 0.79 ± 0.02 0.89 ± 0.01 0.89 ± 0.02 0.96 ± 0.00
PPint 0.40 ± 0.07 0.62 ± 0.06 0.68 ± 0.06 0.47 ± 0.04 1.00 ± 0.00

4 0.46 ± 0.00

%var 0.14 ± 0.02 0.82 ± 0.03 0.91 ± 0.01 0.09 ± 0.02 1.87 ± 0.12
tag SNP 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.94 ± 0.04
WPPA 0.17 ± 0.03 0.87 ± 0.02 0.94 ± 0.01 0.91 ± 0.02 0.96 ± 0.00
PPint 0.49 ± 0.09 0.78 ± 0.07 0.84 ± 0.05 0.44 ± 0.07 1.00 ± 0.00

5 0.46 ± 0.00

2.7

%var 0.00 ± 0.00 0.48 ± 0.01 0.63 ± 0.01 0.00 ± 0.00 0.73 ± 0.02
tag SNP 0.00 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.76 ± 0.02
WPPA 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.89 ± 0.01 0.85 ± 0.01
PPint 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.89 ± 0.04 0.84 ± 0.01

6 0.47 ± 0.00

%var 0.00 ± 0.00 0.49 ± 0.01 0.65 ± 0.01 0.00 ± 0.00 1.36 ± 0.02
tag SNP 0.00 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 1.39 ± 0.02
WPPA 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.94 ± 0.01 0.84 ± 0.00
PPint 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.94 ± 0.01 0.84 ± 0.00

Scenarios with oligogenic inheritance – 3 QTL: Scenario 1 (h2 = 0.50) and Scenario 2 (h2 = 0.60); 10 QTL: Scenario 3 (h2 = 0.30) and Scenario 4 (h2 = 0.40). 
Scenarios with polygenic inheritance – 100 QTL: Scenario 5 (h2 = 0.10) and Scenario 6 (h2 = 0.20 ); %var: proportion of genetic variance explained by genomic 
regions; WPPA: window posterior probability of association and PPint: posterior probability of interval.
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obtained by Braz et al. (2019) corroborate those obtained 
above, in which power decreased with increasing window 
size. However, they contradict the results obtained by 
Bennewitz et al. (2017), where they verified an increase 
in power with an increase in the size of the windows.

For the PPint criterion, detection power and the 
percentage of explanation of the variance increased 
with the increase in heritability for all scenarios with 
oligogenic inheritance (scenarios 1 for 2 and scenarios 3 
for 4). However, the area under the ROC curve decreased 
with the increase in this heritability in these scenarios for 
this method. The same trend was found in the power and 
percentage verified for the WPPA criterion in scenarios 3 
and 4 and for the tag SNP in scenarios 1 and 2. In the other 
scenarios, the values of power and percentage of variance 
were similar in relation to the increase in heritability 
for all criteria, including in scenarios with polygenic 
inheritance (scenario 5 to scenario 6). These results 
are in agreement with Shin and Lee (2015), in which 
they compared the statistical power according to the 
heritability for oligogenic and polygenic traits and found 
that the power difference between a heritability of 0.30 
and 0.50 increased in the scenario containing 20 causal 
variants but decreased when there were 100. According 
to Shin and Lee (2015), the power estimated empirically 
from the simulation study would be applicable to GWAS 
for quantitative traits with known genetic parameters, 
predicting the degree of false negative associations.

The power values for %var criterion decreased 
according to the increase in the number of loci 
controlling the trait, indicating again that this method 
can be used advantageously for scenarios with 
oligogenic inheritance. However, it becomes inferior 
when considering traits with polygenic inheritance. The 
PPint criterion stood out in scenarios controlled by many 
loci (polygenic inheritance), presenting lower rates of 
false positives, higher values for detection power, higher 
percentages of explanation of variance, and larger areas 
next to the WPPA criterion, which was also superior. 
Thus, the PPint and WPPA criteria can be widely used 
in GWAS for inheritance, especially considering that 
the inheritance of most agronomically important traits 
are controlled by many genes, which individually have 
small or rare alleles (Yang et al., 2010).

Bennewitz et al. (2017) reported that the WPPA 
criterion seemed to be an inadequate approach to control 
the rate of false positives, since it was not built for this 
purpose and for this reason, it sometimes presents 
values at very high levels for this measure. Conversely, 
as observed in this study, this method captured greater 
proportions of the genetic variance and, in most cases, 
had greater power to detect associated regions. Fernando 
et al. (2017) also stated that the high threshold values 
for WPPA can compromise false positive rates, which 
corroborates the results found under certain scenarios in 
this study (scenarios 3 and 4). The same can be observed 
for the thresholds considered in the PPint criterion under 
the same scenarios. Note that for the calculation of PPint, 

we used regions that had SNPs with effects greater 
than the third quartile; however, in future studies, the 
possibility of determining an improvement in the results 
should be verified when considering other quartiles.

The WPPA measure, which was different from 
PPint criterion, considers, for the calculation of the 
genetic variance of the regions, the allele frequency used 
to obtain the effects of the SNPs and the mean heterosis 
under the assumption of an equal distribution of the 
additive genetic variance and the dominance variance in 
all SNPs. Consideration of the allelic frequency in this 
criterion becomes feasible, since the detection power 
of SNPs is also determined by this measure (Shan and 
Purcell, 2014). According to these authors, a low allelic 
frequency influences a low detection power, unless 
there are relatively greater effects of SNPs. In addition, 
considering heterosis in GWAS can also satisfactorily 
affect the detection power of SNPs (Vidoti et al., 2019).

For all scenarios considered, the tag SNP criterion 
obtained false positive rates equal to zero. However, this 
criterion was the one that provided the least power to 
detect associated SNPs, compared to the other criteria. 
These results corroborate the information reported by 
Schmid and Bennewitz (2017), in which they stated that 
the decrease in the number of false positives in GWAS 
can compromise power. However, for scenarios 1, 2, 5, 
and 6, the criteria WPPA and PPint also presented false 
positive rates equal to zero and additionally, they were 
efficient in terms of detection power. According to Li et 
al. (2014), the occurrence of false positives in GWAS can 
be controlled but this is only possible at the expense of 
reducing the power to detect true positives or statistical 
power. In other words, establishing a strict threshold for 
the association criterion is an effective way to control 
the rate of false positives. However, this also reduces the 
number of true positives detected. A desirable solution 
would be to reduce false positives, without compromising 
the detection power of the analysis, as performed by the 
WPPA and PPint criteria in these studied scenarios.

The results also revealed that the p probability 
obtained by the BayesDp method varied from 0.16 to 
0.47 between the scenarios, indicating that the number 
of markers that are supposed to be in LD with the 
QTL varied from 320 to 940. According to Fernando 
and Garrick (2013), higher p values may be more 
discriminatory for the identification of QTL with the 
greatest effect, which is an important factor for the 
selection of SNPs. Additionally, Sollero et al. (2017), in 
studies to select tag SNPs related to tick resistance in 
cattle breeds, found that the decrease in the p probability 
value may cause an increase in the proportion of genetic 
variance explained by the SNPs, in accordance with the 
results obtained here for tag SNP criterion.

The results, considering 0.81 as a threshold for 
determining the regions in LD, are shown in Table 3. As 
for the detection power and percentage of explanation 
of the variance, the results were similar to those found 
using the LD of 0.64 (Table 2), in which the criteria 
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WPPA, %var, and PPint were superior to the criteria of 
selection by tag SNPs. In scenarios 5 and 6, the PPint 

criterion was the most efficient when compared to the 
others, once again showing its superiority in scenarios 
with polygenic inheritance. As regards the areas on the 
ROC curve, the rates of false positives, the detection 
power according to the increase in heritability, and 
the same results as those obtained previously were 
also observed. The resultant rate of false positives is 
in line with what was discussed by Moore et al. (2010), 
which highlighted the advantage of considering groups 
of markers together, since these sets tend to capture a 
greater proportion of the genetic variance.

Comparing Tables 2 and 3, in relation to the LD 
extensions considered, the results revealed that for the 
criteria %var, WPPA, and PPint, the detection power and 
the percentage of variance explained increased with 
the decrease in LD extension from 0.81 to 0.64, for the 
two scenarios analyzed with polygenic inheritance. The 
sizes of regions obtained, considering the LD extension 
of 0.64, exceeded those found with an extension of 0.81, 
and thus, the results reported when we increased the 
sizes of the regions there seems to be an increase in 
power for these three criteria. These results corroborate 

those obtained by Bennewitz et al. (2017), in which 
there was also an increase in power with the increase 
in the size of the regions. However, the optimum size 
of the genomic regions may differ from one study to 
the next or different QTL in the same study, depending 
on the extent of LD between the markers and QTL, the 
effective size of the population, and the detection power 
of each approach (Braz et al., 2019; Guo et al., 2016).

For scenarios with oligogenic inheritance, only 
the tag SNP criterion presented different power values 
between the two extensions of the LD, verifying an 
increase in these values with an increase in threshold. 
The results also revealed that the threshold obtained in 
the PPint and WPPA criteria decreased according to the 
increase in the sizes of the regions for scenarios with 
polygenic inheritance. However, Guo et al. (2016), also 
using a procedure to select regions with GWAS in pigs, 
found that for regions with sizes above 5 Megabases, 
there was no increase in the values for this threshold.

The results for the single–marker analysis are shown 
in Table 4 and reveal that this procedure identified SNPs 
associated only in scenarios with oligogenic inheritance 
in which three QTL were randomly distributed among 
the ten chromosomes (scenarios 1 and 2). The detection 

Table 3 – Size of the regions (distance) in centimorgans (cM) found through the linkage disequilibrium (LD) between the markers and quantitative 
trait loci (QTL) in each scenario using the LD extension of 0.81 and the means and standard errors of the estimated p probability via BayesDp, 
false positive rates (FP), detection power (PD), percentage of genetic variance recovered (PE), area under the receiver operating characteristic 
curve (ROC) and threshold for selecting regions obtained by criteria %var, tag SNP, WPPA and PPint.

Scenarios p Distance Criterion FP Power PE Area Threshold

1 0.32 ± 0.03

2

%var 0.03 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.08 ± 0.01 1.68 ± 0.09
tag SNP 0.00 ± 0.00 0.05 ± 0.00 0.21 ± 0.03 0.00 ± 0.00 0.27 ± 0.05
WPPA 0.01 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01 0.89 ± 0.03
PPint 0.22 ± 0.11 1.00 ± 0.00 1.00 ± 0.00 0.89 ± 0.06 0.91 ± 0.03

2 0.16 ± 0.04

%var 0.02 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.04 ± 0.01 2.11 ± 0.16
tag SNP 0.00 ± 0.00 0.04 ± 0.00 0.38 ± 0.03 0.00 ± 0.00 0.86 ± 0.15
WPPA 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.60 ± 0.16 0.72 ± 0.06
PPint 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.59 ± 0.16 0.73 ± 0.06

3 0.45 ± 0.00

1.5

%var 0.18 ± 0.02 0.83 ± 0.02 0.88 ± 0.02 0.17 ± 0.01 0.39 ± 0.02
tag SNP 0.01 ± 0.00 0.06 ± 0.00 0.07 ± 0.00 0.00 ± 0.00 0.06 ± 0.00
WPPA 0.19 ± 0.04 0.76 ± 0.06 0.82 ± 0.05 0.85 ± 0.02 0.96 ± 0.00
PPint 0.07 ± 0.01 0.53 ± 0.06 0.63 ± 0.06 0.75 ± 0.03 0.99 ± 0.00

4 0.46 ± 0.00

%var 0.15 ± 0.02 0.85 ± 0.02 0.91 ± 0.01 0.18 ± 0.01 0.67 ± 0.04
tag SNP 0.01 ± 0.00 0.06 ± 0.00 0.07 ± 0.00 0.00 ± 0.00 0.11 ± 0.01
WPPA 0.12 ± 0.02 0.83 ± 0.04 0.89 ± 0.03 0.91 ± 0.01 0.96 ± 0.00
PPint 0.10 ± 0.01 0.74 ± 0.06 0.82 ± 0.04 0.83 ± 0.02 0.99 ± 0.00

5 0.46 ± 0.00

1

%var 0.33 ± 0.01 0.42 ± 0.02 0.52 ± 0.02 0.07 ± 0.00 0.32 ± 0.01
tag SNP 0.02 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 0.30 ± 0.01
WPPA 0.46 ± 0.04 0.56 ± 0.05 0.62 ± 0.04 0.59 ± 0.01 0.93 ± 0.00
PPint 0.54 ± 0.04 0.75 ± 0.05 0.79 ± 0.05 0.63 ± 0.01 0.95 ± 0.00

6 0.47 ± 0.00

%var 0.31 ± 0.01 0.43 ± 0.01 0.54 ± 0.01 0.07 ± 0.00 0.57 ± 0.01
tag SNP 0.01 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.00 ± 0.00 0.54 ± 0.01
WPPA 0.42 ± 0.03 0.56 ± 0.04 0.65 ± 0.03 0.60 ± 0.01 0.92 ± 0.00
PPint 0.53 ± 0.05 0.76 ± 0.06 0.80 ± 0.05 0.64 ± 0.00 0.95 ± 0.00

Scenarios with oligogenic inheritance – 3 QTL: Scenario 1 (h2 = 0.50) and Scenario 2 (h2 = 0.60); 10 QTL: Scenario 3 (h2 = 0.30) and Scenario 4 (h2 = 0.40). 
Scenarios with polygenic inheritance – 100 QTL: Scenario 5 (h2 = 0.10) and Scenario 6 (h2 = 0.20); %var: proportion of genetic variance explained by genomic 
regions; WPPA: window posterior probability of association and PPint: posterior probability of interval.
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power, considering an LD of 0.64, was always lower 
than that obtained using an LD of 0.81. As regards the 
false positive rate, this method presented values equal to 
zero, indicating that the method considering oligogenic 
effects was efficient in identifying SNPs only when 
they were truly associated with the traits of interest. 
However, the area obtained under the ROC curve was 
zero for both scenarios.

Compared to the criteria considered in this study, 
the single–marker analysis was lower than the %var, 
WPPA, and PPint criteria, with less detection power, lower 
variance explained percentages, and smaller areas in 
scenarios 1 and 2 for both LD levels analyzed. However, 
this method showed higher values of power than the tag 
SNP criterion and similar percentages of explanation 
for the genetic variance. According to Resende et al. 
(2017), the single–marker method can capture a higher 
percentage of the genetic variance due to the fact that it 
generally overestimates the effects of the tags, since the 
estimation process is not done simultaneously.

Conclusions

Considering traits with oligogenic genetic inheritance, 
the WPPA criteria, followed by the %var and PPint 

criteria, were shown to be superior to the tag SNP 
criterion presenting higher values of detection power, 
capturing higher percentages of genetic variance, 
and larger areas under the ROC curve. For traits with 
polygenic inheritance, the PPint and WPPA criteria were 
considered superior to the others for the LD extension 
of 0.64 and the LD of 0.81, only PPint stood out as being 
more efficient. The single–marker analysis method 
identified SNPs associated only in oligogenic inheritance 
scenarios and was lower than the %var, WPPA, and PPint 
criteria. In general, the PPint and WPPA criteria can be 
widely used in GWAS, especially considering that the 
inheritance of most agronomically important traits are 
controlled by many genes, which, individually, have 
small or rare alleles.
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