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Abstract

Genomic prediction integrates statistical, genomic, and computational tools to improve the estimation of breeding values and increase
genetic gain. Due to the broad diversity in mating systems, breeding schemes, propagation methods, and unit of selection, no universal
genomic prediction approach can be applied in all crops. In a genome-wide family prediction (GWFP) approach, the family is the basic
unit of selection. We tested GWFP in two loblolly pine (Pinus taeda L.) datasets: a breeding population composed of 63 full-sib families
(5-20 individuals per family), and a simulated population with the same pedigree structure. In both populations, phenotypic and genomic
data was pooled at the family level in silico. Marker effects were estimated to compute genomic estimated breeding values (GEBV) at the
individual and family (GWFP) levels. Less than six individuals per family produced inaccurate estimates of family phenotypic performance
and allele frequency. Tested across different scenarios, GWFP predictive ability was higher than those for GEBV in both populations.
Validation sets composed of families with similar phenotypic mean and variance as the training population yielded predictions consistently
higher and more accurate than other validation sets. Results revealed potential for applying GWFP in breeding programs whose selection
unit are family, and for systems where family can serve as training sets. The GWFP approach is well suited for crops that are routinely geno-
typed and phenotyped at the plot-level, but it can be extended to other breeding programs. Higher predictive ability obtained with GWFP

would motivate the application of genomic prediction in these situations.
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Introduction

Genomic (Elshire et al. 2011), statistical (Meuwissen et al. 2001;
Gianola et al. 2009), and computational advances have allowed
significant increases in genetic gain by applying genomic predic-
tion in breeding programs across several species (e.g., Hayes et al.
2009; Fe et al. 2015, 2016; Gezan et al. 2017; Amadeu et al. 2020; de
Bem Oliveira et al. 2020). Taking advantage of the ever-reducing
cost of molecular markers (Wetterstrand, 2020), the concept of
genomic prediction was derived (Meuwissen et al. 2001) as an al-
ternative method to marker-assisted selection. Genomic predic-
tion utilizes a dense panel of molecular markers covering the
whole genome to predict genomic estimated breeding values
(GEBV) of individuals with no phenotypic records (Meuwissen
et al. 2001). Traditional genomic prediction pipelines involve de-
veloping a training set, for which available genotypic and pheno-
typic data is fitted to build a prediction model. This model is later
used to predict GEBV of selection candidates in a validation set,
composed of individuals that are genotyped but not phenotyped.

Cross-validation schemes are implemented taking sub-samples
from the training set to calibrate the model and then fit the
model into the remaining part of the training set to estimate and
evaluate its predictive ability, i.e., the correlation between GEBVs
and phenotypic values (Pérez-Cabal et al. 2012).

Genomic prediction has been quickly adopted in animal breed-
ing (Hayes et al. 2009) due to readily accessible genomic data,
large reference populations with accurate pedigree records, and
the impossibility of phenotyping sex-linked traits (Stock and
Reents 2013). In dairy cattle, genomic prediction can double the
genetic gain compared with selection based on progeny test (Xu
et al. 2020). On the contrary, the application of genomic prediction
in plants has been lagging behind due to less accessible high-
throughput genotyping methods, lack of accurate pedigree
records, and the wide range of variation in life cycle, ploidy level,
and mating systems found in plants (Hough et al. 2013). All these
plant-specific characteristics are key factors affecting predictive
ability in genomic prediction due to their influence in breeding
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methods, effective population size, population structure, and
linkage disequilibrium (Lin et al. 2014). Pioneer studies imple-
menting genomic prediction in plants were performed in major
crop species with traditional hybrid selection such as maize
(Combs and Bernardo 2013; Massman et al. 2013) and trees
(Kumar et al. 2012; Resende et al. 2012), or variety selection in self-
pollinating species (Poland et al. 2012). Genomic prediction
showed to be a powerful tool to achieve higher genetic gain in
plant breeding in many other species (Crossa et al. 2017; Lara et al.
2019; de Bem Oliveira et al. 2020; Esfandyari et al, 2020). Large
commercial breeding companies have been applying genomic
prediction; however, the success of the process depends strongly
on the species and the breeding program scheme (Voss-Fels et al.
2019; Xu et al. 2020).

Several species are bred as populations of large full or half-sib
families, and commercially used as populations of different lev-
els of relationship (i.e., synthetic cultivars) as in some forage spe-
cies, such alfalfa (Medicago sativa L.; Annicchiarico et al. 2015;
Biazzi et al. 2017) and ryegrass (Lolium perenne L.; Fe et al. 2016;
Cericola et al. 2018). In those species, the family (full or half-sibs)
is the basic unit for phenotyping (e.g., plot-level measurement for
yield rather than plant level) and selection. Thus, due to the mat-
ing system nature (allogamy), individual plants are of limited in-
terest because commercial varieties represent a homogenous
population composed of heterozygous individuals (Poehlman
1987). Also, it is not straightforward to link phenotypic data col-
lected on individual spaced-plants to plot-based swards in crops
such as forage and turfgrass, which are mostly allogamous
(Poehlman 1987), and single-plant performance has been shown
to poorly predict plot-based data (Wang et al. 2016). Therefore,
the application of genome-wide family prediction (GWFP) would
be advantageous for traits that are phenotyped using family
pools in swards or plots. The phenotypic data collection at the
plot level could be extended to other organisms grown and evalu-
ated in families, such as turfgrasses (L. perenne L.), forages (M. sat-
wa L.), sugarcane (Saccharum officinarum L.), cassava (Manihot
esculenta L.), honey bees, and to aquaculture species such as
shrimp (Litopenaeus vannamei; Barbosa et al. 2012; Wang et al. 2017;
Jia et al. 2018; Pembleton et al. 2018; Brascamp and Bijma 2019;
Torres et al. 2019) . The application of GWFP has already been
reported for crops that are bred and farmed as family pools, such
as cross-pollinated forage species (Annicchiarico et al. 2015; Fé
et al. 2015, 2016; Biazzi et al. 2017; Cericola et al. 2018; Guo et al.
2018; Jia et al. 2018).

The GWFP approach considers family-pools as the measure-
ment unit. Here, both allele frequencies and phenotypic records
are expressed as a single-average record of a given family.
Therefore, the additive genetic variance in full-sib families is half
of the additive variance between individuals. Full-sibs share the
same parents, hence the mean genotypic value of a full-sib fam-
ily is equal to the mean breeding value of the two parents: 1/4(V,
+Vy) = 14V,. This 14V, variance represents the additive genetic
variance among full-sib families, whereas the other 14V, is the
variance within a family, i.e., the variance between individuals
(e, only 50% of the genetic variation is exploited in GWFP;
Falconer and Mackay 1996). As a result, higher predictive ability
was reported in family pools when compared with GEBV (Ashraf
et al. 2014). Despite the initial efforts to test the predictive ability
of GWFP using empirical data, there is a need to explore further
implementation of GWFP in breeding schemes. As a first aspect,
it is essential to compare the predictive ability of GEBV vs GWFP
models, and to develop strategies to combine both approaches.
For this, datasets that contain family structures but genotyped

and phenotyped at the single-plant level are ideal. Another as-
pect is the understanding of the influence that family/pool size
and phenotypic variances in training/validation sets have in the
predictive ability for various traits.

In order to evaluate these aspects, two loblolly pine (Pinus
taeda L.) populations were studied: (1) an observed breeding popu-
lation composed of 63 families (CCLONES_real), and (2) a simu-
lated population that reproduced the same pedigree as
CCLONES_real. The objectives of this study are: (i) to identify the
minimum number of individuals per family required to calculate
allele frequency and phenotypic mean values with reasonable ac-
curacy; (il) to investigate the effect of contrasting phenotypic
mean and variance between training and validation sets on pre-
dictive ability; and (iii) to assess the predictive ability of GEBV and
GWFP. Loblolly pine is not normally bred in family pools, but
existing real and simulated datasets were used to compare GEVB
and GWFP approaches.

Materials and methods

Loblolly pine real population data

The phenotypic data from the loblolly pine (P. taeda L.) population
known as “comparing clonal lines on experimental sites”
(CCLONES_real), which have previously been used for predicting
the performance of individual trees (Resende et al. 2012), was
used to assess the efficiency of the GWFP. In this study, GWFP
was tested by pooling individual trees belonging to the same full-
sib family. The population is composed of 923 individuals from
70 full-sib families obtained by crossing 32 parents in a circular
diallel mating design with additional off-diagonal crosses
(Baltunis et al. 2007). The number of individuals per family ranged
from 1 to 20, with an average of 13 trees per family (standard de-
viation = 5). In this study, families with less than five individuals
were removed, and 63 full-sib families were used for analyses.
Data collection was described in detail in Resende et al. (2012) and
Munoz et al. (2014). In summary, all 923 genotypes from
CCLONES_real was phenotypically characterized in three repli-
cated studies and was genotyped using an Illumina Infinium as-
say (Illumina, San Diego, CA, USA; Eckert et al. 2010) with 7216
SNPs, each representing a unique pine EST contig. In this study,
four traits representing growth, quality, and diseases were se-
lected based on their narrow-sense heritability and genetic archi-
tecture as reported by Resende et al. (2012). These correspond to:
(1) lignin concentration (Lignin) (h? = 0.11, polygenic trait), (2) tree
stiffness (Stiffness) at year 4 (km?/s?) (h? = 0.37, polygenic trait),
(3) rust susceptibility (Rust) caused by Cronartium quercuum Berk.
Miyable ex Shirai f. sp. Fusiforme (h? = 0.21, oligogenic trait), and
(4) diameter at breast height (Diameter) at year 6 (cm) (h? = 0.31,
polygenic trait).

Simulated population

A simulated population (CCLONES_sim) exhibiting similar ge-
netic properties as CCLONES_real was also considered in this
study, aiming to assess the efficiency of GWFP for two different
traits and to predict the performance of the next generation. The
description for the simulation, and the results for genomic pre-
diction approaches using individual trees (GEBV) were previously
reported for this synthetic population (de Almeida Filho et al.
2016, 2019). In summary, the base population was created
(GO =1000 diploid individuals) by randomly sampling 2000 haplo-
types from a population with an effective size of N. = 10,000
(Johnson et al. 2001) and a mutation rate of 2.5 x 1078, Then, the
10% highest phenotypic values from GO were selected and
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randomly mated to generate the first breeding generation (G1).
From G1, 42 individuals were selected and used in a circular dial-
lel mating design that reproduced the pedigree as in
CCLONES_real (G2), comprised of 923 individuals and 71 full-sib
families. However, only 63 families, with more than five individu-
als, were used in this study. Subsequently, 42 individuals were se-
lected from G2 and used in crosses to the next generation (G3,
CCLONES_sim_prog), a population composed of 1176 individuals
and 71 families. Only the 63 families with more than 5 individuals
were used for analyses.

The simulated genome had 12 chromosomes, each with 100
cM, and 10,000 polymorphic loci were randomly selected to repre-
sent the entire genome, and only the scenario exhibiting an ab-
sence of dominance (d° = 0.0) and h? = 0.25 were used for
analyses in this study. Two traits with different genetic architec-
tures were simulated: (1) oligogenic: 30 QTL were sampled from a
gamma distribution with rate 1.66 and shape 0.4, with positive or
negative QTL effects (Meuwissen et al. 2001), and (2) polygenic:
1000 QTL were used, and their additive effects were sampled
from a standard normal distribution (Hickey and Gorjanc 2012).
The simulations were run using Macs (Chen et al. 2009) and in the
software R using scripts developed by the authors.

Pooling phenotypic and genotypic data at the
family level
In both populations, phenotypic and genotypic data were pooled
at the family level in silico. We assumed that the family pheno-
type was the average of all individuals in a family. Hence, the
phenotypic value for each individual was pooled at the family
level in silico by calculating the family mean, without considering
the experimental design. Therefore, the average phenotypic value
by family was used as the response for all analyses.

In the case of the genomic data, the allele frequency (p) was
calculated for each SNP per family, considering the reference al-
lele (A) as follows:

P = (2naa; + Nag;) /2Ny,

where pj refers to the allele frequency for SNP 1 in the j family;
Naa, and 2N, are number of individuals with genotype AA and
Aa respectively for SNP i in the family j; Nj are number of individ-
uals in family j with non-missing genotype data for SNP i. Missing
values for allele frequency were imputed at the family level using
the average allele frequency for that given SNP across families.
Markers were excluded from analyses when more than 50% of
the families exhibited missing values, and SNPs were not re-
moved based on minor allele frequency. A total of 4740 polymor-
phic SNPs (CCLONES_real) and an average of 5000 polymorphic
SNPs for CCLONES_sim and CCLONES_sim_prog (average across
simulated replicates) were used in the analyses.

Minimum number of individuals per family to
estimate allele frequency and family phenotypic
mean

A total of 10 families from CCLONES_real and CCLONES_sim with
at least 15 individuals were selected to evaluate the minimum
number of individuals required to estimate allele frequency and
phenotypic family means with the most reasonable accuracy.
Families were specifically selected to represent segregation ratios
(1:1 and 1:2:1) for 10 SNPs. Allele frequencies per family and fam-
ily phenotypic means were calculated varying the number of
individuals per family from one to 15. These values were used to

compute the squared deviations between the mean value
obtained with i number of individuals (i=1-15) and the mean
value obtained with the entire family (15 individuals), under the
assumption that 15 individuals per family provide accurate esti-
mates of allele frequencies and phenotypic mean in our families.
This assumption can be validated using the concept of genetic
representativeness, given by the effective population size (Ng)
(Vencovsky and Crossa 2003). The estimator of the N, within a
full sib family is given by Ne = [2n/(n+ 1)] (Resende and Barbosa
2006). The maximum (when n goes to infinite) N, within a full sib
family is 2. With n equal to 15 individuals the N, is 1.88, which is
94% of this maximum of 2.

Statistical methods for genomic prediction

Marker effects were estimated at the individual (GEBV) and fam-
ily (GWFP) levels with two distinct whole-genome regression
approaches using the package BGLR (Perez and de los Campos,
2014) in R (R Development Core Team 2018): (1) Bayes B which
considers that markers have heterogeneous variances, i.e., many
loci with no genetic variance and a few loci explain a large por-
tion of the genetic variation (Meuwissen et al. 2001; Pérez and de
Los Campos 2014); and (2) Bayes RR a Bayesian method that
assumes common variance across all loci; therefore, SNPs with
the same allele frequency explain the same proportion of vari-
ance and have the same shrinkage effect (Gianola, 2013; Pérez
and de Los Campos 2014).

In total, 20,000 Markov chain Monte Carlo iterations were
used, of which the first 5000 were discarded as burn-in, and every
third sample was kept for parameter estimation. We fitted the
following model for individual and family models:

y=1lu+Zm+ e,

where y is the vector of the averaged phenotype by family in the
case of GWFP and by individual in the multiple clones in the case
of GEBV, nis the overall mean fitted as a fixed effect, mis the vec-
tor of random marker effects, and e is the vector of random error
effects, 1 is a vector of ones, and Z is the incidence matrix indicat-
ing allele frequencies in the case of GWFP (ranging from 0 to 1),
and marker dosage (0, 1, and 2) for GEBV.

After fitting the model described above for each trait, the
GWFP and GEBV of family/individual j (g;) were obtained using
the following expression:

p
5= 3 2m.
i

where Z; is the allele frequency/marker dosage of the ith marker
on family/individual j, and p is the total number of markers,
andr; is the estimated effect of ith SNP.

Cross-validation schemes

The prediction models for GEBV and GWFP were validated using
10-fold cross-validation and leave-one-out approaches, for both
populations and all traits. For the 10-fold cross-validation, data
was randomly partitioned into ten subsets, and training set popu-
lations were created with 90% of the families/individuals,
whereas the remaining 10% of families/individuals were used as
validation set. This scheme was repeated until the ten subsets
were used as validation set. In the leave-one-out approach, mod-
els were constructed using Nt —1 families (where Nt = is the total
number of families) in the training set. The validation set was the
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single family not included in the training group. This scheme was
repeated Nt times until all 63 families were used as the training
set.

Each time the models were fitted using a different validation
set, the model’s predictive ability was estimated calculating a
Pearson’s correlation between the observed/simulated pheno-
types and the GWFP/GEBV estimates for the families/individuals
included in the validation set.

Creating training/validation sets using
contrasting phenotypes

To assess the effect that the validation set structure has in the
predictive ability of the models, both populations were divided in
three different phenotypic classes for each trait: the smallest
10%, the largest 10%, and values between both extremes. Five
validation sets were created for each trait using these phenotypic
classes: (1) Low: 10% families with the lowest phenotypic values;
(2) High: 10% families having the highest values; (3) Low+High:
combining four families from Low and three families from High;
(4) Middle: seven families showing phenotypes around the popu-
lation mean, (5) Combined: two families from Low, two families
from High, and three families from Middle. For the populations
Low+High (3), Middle (4), and Combined (5), three replicates were
created by taking random samples from each phenotypic class.
The other 56 families were used as training sets to build predic-
tion models.

Split-families as training/validation sets

Two scenarios were created to explore the ability of the GWFP
models to predict the performance of individuals and family
pools. All families with more than 10 individuals (59 families in
total) were randomly split into 2 equivalent size groups. For one
group of individuals phenotypic and genotypic data were pooled
at the family level and used as the training set for GWFP models.
The other group of individuals was used as the validation set
based on two approaches: (1) predicting the performance of indi-
viduals trees not included in the training set (GWFP_Fam_Ind),
and (2) pooling individuals at the family level to predict perfor-
mance of families composed of individuals not included in the
training set (GWFP_Fam_Fam).

Prediction in the following generation using GEBV
and GWFP in the simulated population

The genomic prediction models were developed by using the G2
CCLONES_sim population as the training set. These training
models were used and validated in the G3 generation using GEBV
and GWFP, and models were assessed by calculating predictive
ability and prediction accuracy. Predicted ability was estimated
by calculating a Pearson’s correlation between the phenotypic
values and the estimated breeding values, and prediction accu-
racy was estimated by calculating a Pearson’s correlation be-
tween the real breeding value and the estimated breeding value.

Results

Minimum number of individuals per family to
estimate allele frequency and family phenotypic
mean

The minimum number of individuals per family was calculated
assessing allele frequency and phenotypic mean deviations using
families with at least 15 individuals. For genotypic and pheno-
typic data, the lowest number of individuals needed to accurately
estimate allele frequency and family means was six (Figure 1).

Allele frequency deviations (Figure 1, A-D) and mean phenotypic
deviations (Figure 1, E and F) indicated that families with less
than six individuals were not providing accurate estimates of the
family’s genotypic and phenotypic means in both populations.
We assumed that the observed values based on 15 individuals
per family provides with a reasonable estimation of allele fre-
quency and phenotypic mean for a diploid species. Therefore, all
63 families with six or more individuals were used for further
analyses in this study. Both populations showed similar trends
for the genotypic and phenotypic estimates (Figure 1). The aver-
age allele frequency deviations were lower for SNPs exhibiting a
1:1 ratio in both populations (Figure 1, A and B), compared with
SNPs segregating into a 1:2:1 ratio (Figure 1, C and D). For pheno-
typic data, CCLONES_sim showed slightly smaller deviations, es-
pecially for a lower number of individuals (Figure 1F), compared
with CCLONES_real for the trait diameter (Figure 1E). Other traits
in CCLONES_real exhibited a similar behavior (data not shown).

Predictive ability of statistical methods for
genomic prediction and for different
cross-validation schemes

Two Bayesian statistical methods (Bayes B and Bayes RR) and two
cross-validation approaches were used to test the predictive abil-
ity of GWFP in four traits measured in CCLONES_real (Figure 2).
Both statistical methods yielded high and similar predictive abili-
ties for the four traits (Figure 2, A and B). However, standard
errors for predictive ability were larger with the leave-one-out ap-
proach (Figure 2, A and B). Additionally, GWFP predictive abilities
obtained with the leave-one-out approach were slightly lower
than for the 10-fold cross-validation scheme (except for trait
Stiffness) (Figure 2, A and B). Therefore, the 10-fold cross valida-
tion approach was selected to perform further analyses.

Predictive ability of GWFP using training/
validation sets with contrasting phenotypes

The effect of phenotypic data in the predictive ability of GWFP
was explored by creating five validation sets using contrasting
sets of phenotypic data between training set and validation set
(Figure 3A). The predictive ability for GWFP for all traits were
least accurate and had larger standard errors when the validation
set was composed of families exhibiting small and large pheno-
typic values (bottom and top classes; Figure 3B). When validation
sets were composed of families exhibiting phenotypes corre-
sponding to the middle class, predictive ability increased for all
traits, but standard errors were still large (Figure 3B). As expected,
there was an increase in predictive ability and a large reduction
in standard errors when validation sets were composed of fami-
lies showing similar phenotypic mean and variance to the train-
ing set, corresponding to the classes “Low+High” and “Combined”
(Figure 3B).

Predictive ability of GEBV and GWFP

Predictive ability obtained with Bayes B using different methods
and schemes (Table 1) is presented in Figure 4 for the 63 families
from both populations. The traditional genomic prediction ap-
proach with individuals in the training set and validation set
(GEBV) was contrasted with predictive ability obtained with the
family-based (GWFP) method following a 10-fold cross validation
scheme. The scenarios GWFP_Fam_Ind and GWFP_Fam_Fam
were run only once because CCLONES (real and simulated) had a
limited number of individuals per family.

Predictive ability was always greater for GWFP methods in
both populations and all traits, except for the scenario
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Figure 1 Average allele frequency deviation (A-D) and family mean phenotypic deviation (E and F) in CCLONES_real (real breeding population composed
of 63 families) (A, C, and E) and CCLONES_sim (simulated breeding population exhibiting similar genetic properties of CCLONES_real) (B, D, and F)
calculated by increasing the number of individuals from 1 to 15. Five families exhibiting genotypic segregation ratios 1:1 (A and B) and 1:2:1 (C and D) for
single nucleotide polymorphisms were included in the analysis. The CCLONES_real phenotypic deviation is for the trait stem diameter (E).

GWFP_Fam_Ind that showed similar or lower accuracy than
GEBV for most traits (Figure 4). Additionally, predictive ability
was greater for traits with higher heritability (Figure 4).
Specifically, GWFP provided predictive abilities at least 40%
greater than traditional GEBV for most of the traits in both popu-
lations. Moreover, GWFP_Fam_Fam exhibited similar or greater
predictive ability than GWFP for most traits in both populations,
except for rust (Figure 4). Both sets of traits from the simulated
CCLONES population exhibited very similar accuracies for all
schemes (Figure 4).

Predictive ability and accuracy of GEBV and GWFP
in the following generation

Accuracy and predictive ability of GEBV and GWFP were obtained
with the prediction models built with the CCLONES_sim (G2) pop-
ulation as the training set, and models were validated in the fol-
lowing generation (G3). The GEBV showed higher accuracy than
GWEFP for the oligogenic trait, and similar accuracy for the poly-
genic trait (Figure 5). Predictive ability for the oligogenic and poly-
genic traits were higher for GWFP (Figure 5). Additionally, greater
predictive ability and accuracy were observed for the oligogenic

trait, and the difference between accuracy and predictive ability
was greater for the oligogenic trait (Figure 5).

Discussion

We quantified the predictive ability of GWFP in real and simu-
lated loblolly pine breeding populations for different traits and
cross-validation approaches. Moderate to low predictive ability
values were obtained with the traditional genomic prediction ap-
proach, as previously reported for both populations, using indi-
vidual trees as the basic phenotypic and genotypic unit (Resende
et al. 2012; de Almeida Filho et al. 2016). In general, GWFP outper-
formed GEBV in the predictive ability for most traits; including
the predictive ability for the oligogenic and polygenic traits in
CCLONES_sim when using the following generation (G3) as the
validation set.

Effect of family size in genomic prediction

The size and structure of the training population affects the ac-
curacy of genomic prediction models (VanRaden et al. 2009;
Daetwyler et al. 2010; Habier et al. 2010; Grattapaglia and Resende
2011; Edwards et al. 2019; de Bem Oliveira et al. 2020). In our study,
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Figure 2 Average predictive ability using family pools (GWFP) in four
traits in the loblolly pine breeding population CCLONES obtained with
10-fold and leave-one-out cross-validation schemes using Bayes B (A) and
Bayes RR (B).

the size of the training set refers to the number of families and
the number of individuals within a family. The number of fami-
lies was fixed and limited to 70 families, so we did not focus on
studying the effect of a variable number of families. However, the
minimum number of individuals per family to obtain reasonable
accurate estimates of family allele frequency and family pheno-
typic mean was found to be six. When studying the effect of size
and composition of training population in blueberry (Vaccinium
spp.), de Bem Oliveira et al. (2020) found a high predictive ability
using six individuals per family for some traits. Thus, in their
study family variance was accurately represented with six indi-
viduals per family in this autotetraploid species. Using the esti-
mator of the N within a full sib family, given by N, = [2n/(n+ 1)]
(Resende and Barbosa 2006), the maximum (when n goes to infi-
nite) N, within a full sib family is 2. With n equal to 6 individuals
the N, is 1.71, which is 86% of the maximum 2. So, n=6 appears
adequate to represent genetically a full-sib family, corroborating
our results.

The effect of number of individuals within families on accu-
racy of genomic prediction models was also demonstrated in pe-
rennial ryegrass (Pembleton et al. 2016, 2018). The authors stated
that 48-60 individuals per population are necessary to accurately
represent the genetic diversity within a ryegrass population. As
an allogamous species, multiple parents are used to create syn-
thetic populations in perennial ryegrass; hence, multiple individ-
uals with a high number of loci in heterozygosis are contributing
to the variation in the synthetic population. Perennial ryegrass is
commonly bred using families and GWPF has been exploited in
the species for various traits (Fe et al. 2015, 2016; Cericola et al.
2018; Guo et al. 2018).

Simulation studies with variable numbers of families and
individuals per family would help identify the optimum

training population sizes for GWFP. Generally, a larger training
population (more families in the training population) yield
higher accuracy (Voss-Fels et al. 2019; de Bem Oliveira et al.
2020), but this is associated with higher costs. Therefore, the
definition of the optimum number of families, and number of
individuals per family are a crucial point for the genomic pre-
diction process. Fé et al. (2015) studied the effect of the number
of families in the accuracy of genomic prediction for heading
date in ryegrass; the authors found high accuracies with a low
number of families (<100). The authors showed that increasing
the number of families to 500 leads to higher accuracy, and
more than 500 families did not yield to significant improve-
ment.

Efficiency of statistical methods and
cross-validation schemes

Models considering different Bayesian methods were similar in
predicting GEBV in traits measured in the real breeding popula-
tion and the simulated population in this study. Resende et al.
(2012), reported a slightly greater predictive ability in the real
population for rust incidence with Bayesian methods over RR-
BLUP, because fewer genes with large effects control this trait.
de Almeida Filho et al. (2016), using the simulated population,
reported a slightly lower predictive ability in the oligogenic
trait using Bayes RR than Bayes B. In this study, Bayes B and
Bayes RR were tested to compare their performance in GWFP
because prior distributions and assumptions for both methods
are contrasting (Pérez and de Los Campos 2014). Our results
showed that both Bayesian methodologies were very similar in
predicting family-pools, even for rust incidence in the real pop-
ulation and for the oligogenic trait in the simulated population.

Both cross-validation schemes, leave-one-out and 10-fold,
produced similar results in predicting GWFP with a slight advan-
tage for the 10-fold scheme, due to the large variation in the
leave-one-out scheme. Resende et al. (2012) reported similar
results with the real data set for GEBV, wherein 10-fold and
leave-one-out resulted in no significant differences in their pre-
dictive ability. Also, similar predictive abilities between the 10-
fold and leave-one-out scheme have been reported in wheat
(Triticum aestivum L.) (Edwards et al. 2019).

Predictive ability of GWFP using contrasting
phenotypes

When the families in the validation set had phenotypic values
outside the range of phenotypes presented in the training set
(bottom and top classes), lower and much more variable predic-
tive abilities were obtained. Interestingly, higher predictive abili-
ties were obtained when families in the validation set had the
same phenotypic range as the training set. The impact of the
phenotypic variance on prediction was demonstrated by Edwards
et al. (2019), which reported that the accuracy of genomic predic-
tion in wheat showed higher predictions for crosses (validation
set) with higher phenotypic variance. Wirschum et al. (2017)
reported equivalent results in triticale (x Triticosecale Wittmack),
in which higher accuracy was detected for the traits of plant
height and biomass in cases in which families with a large pheno-
typic variation were included in the training/validation set popu-
lation.

The differences in predictive ability among the scenarios for
phenotypic values in the validation set could also be related to
the composition of the training sets. For the extreme scenarios
(Low and High), the training sets did not have the extreme phe-
notypic values and alleles frequencies, which could have
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Figure 3 Phenotypic distribution for testing (orange) and validation (white) sets for fours traits measured the CCLONES_real population and two traits
simulated using CCLONES_sim (A). Average predictive ability obtained with Bayes B using GWFP for four traits in the CCLONES_real (lignin, stiffness,
rust, and diameter), and two traits with different genetic architecture (Oligogenic and Polygenic) in the CCLONES_sim populations (B). Five scenarios
were tested by creating training (56 families) and validation (7 families) populations using phenotypic data: (1) Low: validation set is composed of seven
families with lowest phenotypic records; (ii) High: validation set is composed of seven families with highest phenotypic records; (iii) Middle: validation
set is composed of seven families with phenotypic records similar to the family mean; (iv) Combined: two families from Low, two families from High,
and three families from Middle; and (v) Low + High: four families from Low and three families from High.

Table 1 Scenarios implemented to design training and validation sets to test predictive ability of genomic prediction models

Scenario Set

Training Validation
GEBV 830 individuals 93 individuals
GWFP 56 families 7 families
GWFP_Fam_Ind 59 families 422 individuals
GWFP_Fam_Fam 59 families 59 families
GWFP_Low 56 families 7 families with lowest phenotypic values
GWFP_High 56 families 7 families with highest phenotypic values
GWFP_Low_High 56 families 7 families, 4 low and 3 high phenotypic values
GWFP_Middle 56 families 7 families with values similar to the overall mean
GWFP_Combined 56 families 7 families (2 low, 2 high and 3 middle scenarios)

GEBV, genomic estimated breeding value; GWFP, genome-wide family prediction; CV, cross-validation.

resulted in poor estimations of markers effects. Studying the op- be improved, in cases when training set and validation set are
timization process for genomic prediction in wheat, Norman not related, by increasing the genetic diversity in the training
et al. (2018) showed that the genomic prediction accuracy could set.
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estimated and true breeding values as _BV.

Predictive ability of GEBV and GWFP for different
traits and scenarios

Predictive ability was always greater for GWFP methods than
GEBV in both the real and simulated populations and for all
traits, except when the model was built with family pools, and in-
dividual performance was predicted (GWFP_Fam_Ind) (Figure 4).
Although the full sib families average explores only half of addi-
tive genetic variance, the error variance is mitigated with larger
number of observations due progeny replication, when compared
with single observations (Hallauer et al. 2010). Then, this higher

precision of phenotypic value in family bulks could explain the
higher accuracy in genomic prediction of families.

The higher accuracy in the GWFP method was expected since
the additive genetic variance explored in this method is just 50%
of the additive genetic variance compared with the GEBV. The ge-
notypic value of a family is equal to the mean breeding value of
the two parents: Y/4(V, +Va) = 14V, (ignoring the dominance and
epistasis effects), so the additive variance among full-sib families
is only 50% of the total additive variance, whereas the other 50%
represents the variance within a family, which leads to higher ac-
curacy and heritability (Casler and Brummer 2008; Ashraf et al.
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Figure 6 Scheme for the different genomic prediction scenarios: (A) GEBV: genomic estimated breeding values for individual trees; (B) GWFP_Fam_Fam:
genome-wide family prediction for families prediction; (C) GWFP_Fam_Ind: genome-wide family prediction applied in the selection of individuals.

2014). Besides, relatedness between the training set and the vali- ability found in the GWFP_Fam_Fam and GWFP, compared with
dation set also influence the predictive ability. The relationship the GEBV and GWFP_Fam_Ind.

between the training set and the validation set has a crucial role Nevertheless, the predictive ability for most traits obtained
in the model predictive ability (Lorenz and Smith 2015; de Bem with GWFP_Fam_Ind scheme was of the same order of magnitude

Oliveira et al. 2020), it can help explain the higher predictive compared with GEBV, except for the traits stiffness and rust.
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Therefore, using the numbers from this study as example, con-
sidering the significant reduction in costs incurred in DNA extrac-
tion and genotyping 56 families (training set for GWFP), instead
of 844 individuals (training set for GEBV), the approach
GWFP_Fam_Ind could still be an affordable option for imple-
menting genomic prediction in breeding programs that select in-
dividual plants, but have limited budgets to phenotype and
genotype all individuals in the training set.

Reduced investments to implementation of genomic predic-
tion with higher predictive ability accuracies can be obtained
with the GWFP approach compared with GEBV. A larger number
of families can be included in the models, which, for the present
population, would likely result in higher predictive abilities as
reported in perennial ryegrass for heading date (Fé et al. 2015).
Additionally, including more than 10 individuals per family will
reduce the sampling variability of the allele frequency and phe-
notypic mean, resulting in higher genomic accuracies (de Bem
Oliveira et al. 2020).

Application of GWFP in a breeding program

Genomic prediction has the power to shorten the time of a breed-
ing process, which leads to a higher genetic gain per unit time,
and can allow a reduction in phenotyping process and costs
(Grattapaglia and Resende 2011; Crossa et al. 2017; Voss-Fels et al.
2019). However, in some cases, breeders need to genotype a large
number of individuals (>10,000) to implement genomic predic-
tion in their programs, increasing costs significantly (Voss-Fels
et al. 2019). The high genotyping costs due to large population
sizes can make it impracticable to implement genomic prediction
in minor crops, particularly in public breeding programs.

For breeding programs with limited budgets, the GWFP can be
an alternative to GEBV due to the reduction in phenotypic and ge-
notypic costs to develop prediction models. GWFP has been used
in several forage species that are bred in family bulks and whose
phenotyping for critical traits is conducted at the sward/plot level
(Fé et al. 2015, 2016; Annicchiarico et al. 2015; Biazzi et al. 2017; Jia
et al. 2018; Cericola et al. 2018; Guo et al. 2018). In a GEBV ap-
proach, the data (phenotypic and genotypic) is collected at the in-
dividual level and models are built to estimate the performance
of individuals (Figure 6A; Resende et al. 2012; de Almeida Filho
et al. 2016, 2019). The GEBV requires significant more resources
(labor, economic, and computational) to collect and analyze data.
Under a GWFP approach, the number of genotypic samples
(bulked DNA and a single-sequencing effort per family) will be
the exact number of families, representing a significant reduction
in the number of samples compared with the traditional GEBV
process (Figure 6B). The phenotyping process will also be per-
formed at the family/plot level, which is the ideal scenario for
critical traits in some crops such as forage and turfgrass species.

Breeders may also be interested in employing the
GWFP_Fam_Ind approach, where family bulks are used as train-
ing set, but individuals are the selection unit (Figure 6C). In this
study, the GWFP_Fam_Ind approach showed similar accuracy to
GEBV for most traits, with the addition of lower needs for pheno-
typic and genotypic data for the model development. Finally,
GWFP models could be exploited in scenarios when remnant
seeds might be available for the same family, and the goal
would be to predict the performance of the family or individuals
within the family. The remaining seeds from the selected fami-
lies can be used later to test their merits in further replicated
field trials. For perennial allogamous crops, families used in the
training set can be used as a new crossing block to start a new
selection cycle.

Conclusion

Despite the limitation in number of families and number of indi-
viduals per family tested in this study, less than six individuals
per family produced inaccurate estimates of family phenotypic
performance and allele frequency. Validation sets with similar
phenotypic mean and variance as the training set showed greater
predictive ability and more accurate predictions consistently
across traits. These results revealed great potential for using
GWFP in breeding programs that select family bulks as the selec-
tion unit, GWFP is well suited for crops that are routinely geno-
typed and phenotyped at the plot-level. The GWFP approach can
also be extended to breeding schemes where family bulks can
serve as training sets, while individuals are the selection target.

Data availability

All phenotypic and genotypic data utilized in this study have
been previously published as a standard data set for development
of genomic prediction methods (Resende et al. 2012; de Almeida
Filho et al. 2016). Simulated data available from the Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.3126v.
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