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ABSTRACT. The quality of fit of a multiple linear regression model 
often encounters multicollinearity and high dimensionality problems, 

making it impossible to obtain stable estimates through the traditional 
method of estimation based on ordinary least squares. To overcome 
such challenges, dimensionality reduction methods have been 

proposed, because of their simple theory and easy application. We 
compared three dimensionality reduction methods: Principal 

Components Regression (PCR), Partial Least Squares (PLS), and 
Independent Components Regression (ICR). An important step for 
dimensionality reduction and prediction is selecting the number of 

components, as it affects the linear combinations of the explanatory 
variables. The linear combinations are inserted into the model to 
predict the response based on a reduced number of parameters. We 

examined the criteria for the selection of the number of components. 
The dimensionality reduction methods were applied to genomic and 

phenotype data. We evaluated 370 accessions of Asian rice, Oryza 
sativa, which were genotyped for 36,901 SNPs markers considered to 
predict the genomic values for the number of panicles per plant trait. 

http://dx.doi.org/10.4238/gmr185
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This data set presented multicollinearity and high dimensionality. 
The computational time for each method was also recorded. Among 
the methods, PCR and ICR gave the highest accuracy values, with 

ICR standing out for presenting estimates of the least biased genomic 
values. However, ICR required more computational time than the 
other methodologies. 

 
Key words: Principal components; Partial least squares; Independent 

components; High dimensionality; Multicollinearity 

INTRODUCTION 
 

The linear relationship between a response variable Y and the numerous 

explanatory variables X (𝑋1, 𝑋2, , … 𝑋𝑚)  is established using a multiple linear regression 

model. The main method for estimating the parameters of a statistical regression model is 
based on Ordinary Least Squares (OLS). The necessary assumptions for the estimation are 
linearity between Y and X variables and the values of these variables must be fixed and 

orthogonal with the errors, which must have zero mean, be homoscedastic, and independent. 
If these assumptions are verified, the OLS method will lead to BLUE (Best Linear Unbiased 

Estimator) type estimators: linear, non-biased, and minimal variance estimators (Puntanen 
and Styan, 1989) 

However, frequently, the explanatory variables have some degree of linear 

association, called multicollinearity, which can be caused by several factors, including 
inadequate data collection, restrictions in the model or the sample population and super-
parameterized models, as observed in real situations when there is high dimensionality 

(Montgomery et al., 2012). This effect increases considerably the variance associated with 
the parameter estimates, as the correlation coefficient of the explanatory variables 

approaches a high value, either positive or negative. Thus, the components of variance 
become high, the estimators become biased, and the statistical regression model is no longer 
appropriate for the prediction since it leads to unstable estimates (Gunst and Webster, 

1975). 

High dimensionality is detected when the number of observations (𝑛) is less than 

the number of parameters (𝑚) to be estimated in the statistical model. The existence of 

𝑚 > 𝑛 does not preclude the use of the method based on ordinary least squares, but the 

generalized inverse should be used instead of the classic one, which will lead to infinite 
possible estimates for the coefficients. Another alternative to use the ordinary least squares 
in these situations would be to estimate each effect in isolation and perform hypothesis tests 

to verify the statistical significance of these effects. However, such a practice is inefficient, 
as it causes an overestimation of the parameters' effects and consequently obtains a low 

predictive accuracy value (Resende et al., 2012).  
The dimensionality problem can also be solved through the use of variable selection 

methods, including Stepwise, Forward and Backward, which use statistical tests to remove 

or maintain explanatory variables in the model. However, such methodologies are 
inadequate in some circumstances. For example, when the explanatory variables are genetic 
information that controls some trait, biologically, the response variable still depends on 

many variables and it does not make sense to remove them (James et al., 2013). Likewise, 
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in some situations, the objective is to estimate the parameters' effects, but also 
concomitantly, identify the variables that explain the response variable, such as the 
theoretical economic and genomic association models (Camarero et al., 2015; He and Lin, 

2011). In these procedures, the order in which explanatory variables are included or 
removed from the model throughout the procedure's application is not associated with the 
degree of explanation of the variable concerning the response variable. The methods of 

selecting variables are also inappropriate since importance ranking of the variables is not 
related to the order in which they were included or removed during the method's 
application. Furthermore, in high dimensionality situations, for computational reasons, the 

selection of the best subset of variables may face statistical problems such as overfitting 
(over-training) and high variance of the coefficient estimates (Liu and Gillies, 2016). This 

explained by the fact that the larger the research space, the greater the probability of finding 
models that fit well to the training data, even if they do not have the power to predict future 
data. 

Given the OLS method's statistical problems, it is necessary to search for 
methodologies that overcome these challenges and guarantee an efficient prediction in the 
face of more interpretable models. Several methods have been proposed for this purpose, 

mainly with emphasis on regularization methods such as Least Absolute Shrinkage and 
Selection Operator (LASSO) (Tibshirani, 1996), Bayesian methods,  such as the Bayesian 

version of LASSO denoted by BLASSO (Bayesian LASSO) (Kimeldorf and Wahba, 1970; 
Tibshirani ,1996) and dimensionality reduction methods,  notedly on Principal Components 
Regression (PCR) (Kendall, 1957; Hotelling, 1957), Partial Least Squares (PLS) (Wold, 

1975) and the Independent Components Regression (ICR) (Jutten and Hérault, 1991; 
Comon, 1994). Among these, the dimensionality reduction methods stand out for their great 
applicability and relatively simple theory when compared to the other methods applied in 

the estimation of parameters in the presence of multicollinearity and high dimensionality. 
The PCR and ICR regression methods are based, respectively, on the Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA). These 

methodologies consist of building linear combinations of the explanatory variables to 
reduce the dimensionality of the problem studied. These latent variables are called 

orthogonal (uncorrelated) components in the PCA and independent in the ICA. Thus, in 
PCR and ICR, after building the components, in a number less than the number of 
observations and with the absence of multicollinearity, it is possible to perform a multiple 

linear regression between the variable Y and these components. In the PCA, the 
components are built to maximize their variance, while in the ICA, they are built to 
maximize the independence of the components. Unlike these methods that consider only the 

variables X in the construction of the components, the PLS method was developed as a 
regression methodology. Thus, it considers the explanatory variables X and the response 

variable Y to maximize the covariance between Y and the components. 
Furthermore, the applications in biometrics, environmental and agricultural data of 

regression methods based on dimensionality reduction are observed in the genomic 

selection (Azevedo et al., 2013a; Azevedo et al., 2013b; Azevedo et al., 2014; Azevedo et 
al., 2015; Silveira et al., 2017), gene expression (Nascimento et al., 2017), spectroscopy 
analysis NIR (Near Infrared) (Morgano et al., 2005; Teófilo et al., 2009), sensory data 

(Westad, 2005), climatic data (Lim et al., 2015) and process control data (Han et al., 2003), 
among others. However, dimensionality reduction methods can be applied whenever 
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multicollinearity and high dimensionality are present, and the the study is aimed at 
regression. 

Theoretical aspects related to obtaining estimators via the method of ordinary least 

squares and dimensionality reduction methods will be presented below, with focus on the 
main problems faced in the estimation process via OLS and the alternatives to determine the 
number of components to be inserted into the model. 

MATERIAL AND METHODS 

Estimation using the ordinary least squares method 
 

Consider the linear model: 
 

                                         𝑦 =  1µ +  𝑋𝛽 +  𝑒,                                             (Eq. 1) 
 

 where  𝑦 is the vector of observations of the response variable with dimension 𝑛 ×  1, 

where is 𝑛 the number of observations; μ is the overall average; X is a matrix whose 

columns contain the explanatory variables with dimension 𝑛 ×  𝑚, where 𝑚 is the number 

of parameters; 𝑒 is the vector of random errors: 𝑒~𝑁(0, 𝐼𝜎𝑒
2) where 𝐼 is the identity matrix 

(𝑛 × 𝑛) and 𝜎𝑒
2 is the residual variance. 

The estimates of the coefficients via OLS present several advantages, including 

easy understanding in the geometric and mathematical approach since the method is based 
on Euclidean distance. Also, it is not necessary to assume distributions for the parameter 

estimators. Estimates are obtained by minimizing the sum of squares of errors, given by: 

𝑆  𝛽 =   𝑦 −  𝑋 𝛽 ′   𝑦 −  𝑋𝛽  , which results in (𝑋′𝑋)𝛽 = 𝑋′𝑦. Thus, it is essential to 

obtain the classic inverse of the matrix X′X, so that by multiplying the factor (𝑋′𝑋)
-1

 on both 

sides of the equation, we obtain a single estimate for the parameters: 𝛽  =  (𝑋′𝑋)−1𝑋′𝑦. In 
cases where the matrix X presents perfect linear dependence between variables, the 

determinant of the matrix X′X becomes null, and the inverse of this matrix cannot be found. 

Consequently, it is impossible to obtain the estimates 𝛽  through the OLS method using the 

classical inverse. When the linear dependency is not perfect, the estimators' variance 
components become high, and the parameter estimators are biased. 

In the sets of observations formed by molecular markers, NIR spectroscopy data, 

among others, the matrix X presents not only multicollinearity, but high dimensionality. In 

other words, the number of observations (𝑛) is lower that the number of explanatory 

variables (𝑚). Thus, in the linear model, expression (1), where we have the number of 

explanatory variables equal to 𝑚  and the average, there are, in total, 𝑚 + 1 parameters 

(number of explanatory variables + the general average) to be estimated. Whether we have 

only 𝑛 observations (𝑛 <  𝑚 + 1), we have a mathematical problem of solving a system, 

with 𝑛 equations with 𝑚 + 1  unknown, which hinders the obtainment of single estimates 
for the parameters. Thus, the high dimensionality prevents the obtaining of parameter 

estimates by the method of ordinary least squares. Other methodologies that address these 
challenges of statistical analysis should be used. Alternatively, the dimensionality reduction 
methods described below are proposed. 

Dimensionality reduction methods 
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The regression methods by dimensionality reduction are carried out in three steps: 
the first consists of transforming the explanatory variables into latent variables, the so-
called components; the second consists of performing a regression between the response 

variable Y and the constructed components, and no longer the explanatory variables; and 
the third is used to estimate the coefficients associated with the explanatory variables X. 
The theory of each method guarantees the orthogonality between the components. In 

addition, the number of components is always less than the number of observations, which 
makes it possible to adjust high-dimensional and multicollinearity-free regression models. 

In the context, the most prominent methodologies are regression via principal 

components, partial least squares, and regression via independent components. These 
methods differ from each other in the way they build the components. In the PCR, the 

components are built to maximize the variance of the X variables, in PLS, it aims to 
maximize the covariance between Y, and the components and in the ICA, the components 
are built to maximize component independence. The three methodologies are detailed later. 

Principal Components Regression  
 

The PCR was introduced by Kendall (1957) and Hotelling (1957) and defined the j-

th principal component 𝑧𝑗  as:   𝑧𝑗 = 𝑝𝑗1𝑥1 + 𝑝𝑗2𝑥2 + ⋯+ 𝑝𝑗𝑚 𝑥𝑚 = 𝑝𝑗
′𝑋 , where 𝑥𝑗 ′s are the 

matrix columns X and 𝑝𝑗
′  is an unknown vector that establishes the j−th linear combination, 

so that 𝑗 = 1,2,… ,𝑚. The PCA's main objective is to find the components 𝑍𝑗 ′s through the 

variables X (𝑋1, 𝑋2, … , 𝑋𝑚) that maximize the principal components' variability. For such, 

the variance of 𝑍𝑗  and the covariance of 𝑍𝑗  and 𝑍𝑘  (𝑗 ≠ 𝑘) are given, respectively, by: 
 

𝑉𝑎𝑟(𝑍𝑗 ) = 𝑉𝑎𝑟 𝑝𝑗
′𝑋 = 𝑝𝑗

′𝑉𝑎𝑟 𝑋 𝑝𝑗 = 𝑝𝑗
′𝛴𝑝𝑗    and                 (Eq. 2) 

 

𝐶𝑜𝑣(𝑍𝑗 , 𝑍𝑘) = 𝐶𝑜𝑣 𝑝𝑗
′𝑋, 𝑝𝑘

′ 𝑋 = 𝑝𝑗
′  𝑉𝑎𝑟 𝑋 𝑝𝑘 = 𝑝𝑗

′𝛴𝑝𝑘               (Eq. 3) 
 

where 𝑉𝑎𝑟 𝑋 = Σ, that is, the explanatory variables' variance and covariance matrix. 

Besides, to maximize the variance of 𝑍𝑗 , it is observed that the expression (2) corresponds to 

a quadratic form and according to the theorem of maximization of quadratic forms, if 𝛴 is a 

symmetric matrix (𝑚 × 𝑚), so the maximum  𝑝𝑗
′𝛴𝑝𝑗  under restriction 𝑝𝑗

′𝑝𝑗 = 1 is given by 

the largest of the eigenvalues 𝜆𝑗  of 𝛴, 𝑗 = 1, 2,… ,𝑚, and the corresponding eigenvector 𝑝𝑗  

which are solutions of the system of homogeneous equations,  𝛴 − 𝜆𝑗 𝐼 𝑝𝑗 = 0.  

Thus, we define the latent variables  𝑍𝑗  (𝑗 = 1,2, … ,𝑚) as linear combinations of the 

explanatory variables X (𝑋1, 𝑋2, … , 𝑋𝑚): 
 

𝑍 = 𝑋𝑃,                                                      (Eq. 4) 
 

where 𝑃 =  𝑝1 𝑝2 … 𝑝𝑚  ′ (𝑚 × 𝑚) is the eigenvector matrix of the covariance matrix 

of X (𝑛 × 𝑚), and 𝑍 (𝑛 × 𝑚) is the matrix whose columns are the principal components 

𝑍𝑗 ′𝑠. The construction of the matrix 𝑃 requires the approach of concepts related to the 

variance and covariance matrix, eigenvectors, and eigenvalues portrayed by Marcoulides 

and Hershberger (1997). 

In addition, the system of homogeneous equations, provides:  𝛴 − 𝜆𝑗 𝐼 𝑝𝑗 = 0 , 

which implies, 𝛴𝑝𝑗 = 𝜆𝑗𝑝𝑗 . By replacing the previous expression in the expressions of 
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variance (2) and covariance (3) and using the information that the eigenvectors of a 

symmetric matrix are orthogonal (that is, 𝑝𝑗
′𝑝𝑘 = 0) and the constraint (𝑝𝑗

′𝑝𝑗 = 1), it 

follows that: 𝑉𝑎𝑟(𝑍𝑗 ) = 𝑝𝑗
′𝛴𝑝𝑗 = 𝑝𝑗

′𝑝𝑗𝜆𝑗 = 𝜆𝑗  and 𝐶𝑜𝑣(𝑍𝑗 , 𝑍𝑘) = 𝑝𝑗
′𝛴𝑝𝑘 = 𝑝𝑗

′𝑝𝑘𝜆𝑗 = 0. 

Therefore, the correlation between the components 𝑍𝑗  and 𝑍𝑘  ( 𝑗 ≠ 𝑘), is null, that is: 

𝐶𝑜𝑟 𝑍𝑗 , 𝑍𝑘 =
𝐶𝑜𝑣 𝑍𝑗 ,𝑍𝑘  

 𝑉𝑎𝑟 𝑍𝑗  𝑉𝑎𝑟 (𝑍𝑘 )
= 0.                       

The PCR methodology consists of eliminating components that do not contribute 
considerably to explaining total variance present in the data, which reduces the 

dimensionality of the studied problem. For this reason, 𝑛𝑃𝐶𝑅 ≤ 𝑚𝑖𝑛 𝑛,𝑚 − 1. In the 

context of high dimensionality, 𝑛𝑃𝐶𝑅 ≤ 𝑛 − 1. The selection of the number of components 
to be used in the model should not result in the loss of relevant information related to the 

original data (X) (Otto, 1998).  
The criterion commonly used to select the number of principal components is based 

on the variability present in the explanatory variables. When spectral decomposition 

(Rencher and Christensen, 2002) is apllied in the variance matrix 𝛴, it is obtained: 𝛴 =
𝑃𝛬𝑃′ , where 𝑃 is composed of the eigenvectors of 𝛴 and 𝛬 is the diagonal matrix of 

eigenvalues of 𝛴. Thus, it follows that the trace of the matrix 𝛴  is given by: 𝑡𝑟 𝛴 =
𝑡𝑟 𝑃𝛬𝑃′ = 𝑡𝑟 𝛬 =  𝜆𝑗

𝑚
𝑗=1  . Besides 𝑡𝑟 𝛴 =  𝜎𝑗

2𝑚
𝑗=1  which leads to the conclusion that 

 𝜆𝑗
𝑚
𝑗=1 =  𝜎𝑗

2.𝑚
𝑗=1  Therefore, it is determined that the percentage of explanation of the j-th 

component is given by 
𝜆𝑗

 𝜎𝑗
2𝑚

𝑗=1

 . 

Thus, under the context of regression, the total variability present in the original 

variables is only achieved using the maximum number of components built (𝑛𝑃𝐶𝑅 =
𝑚𝑖𝑛 𝑛,𝑚 − 1). However, most of this variability can often be explained by a small 

number of major components (𝑛𝑃𝐶𝑅 < 𝑚𝑖𝑛 𝑛,𝑚 − 1), since the first principal components 

explain most of the total variability of the variables X. Acoording to Ferreira (2012), the 
selection of the number of principal components can be based on the determination of the 
desired fraction of the total variation, which generally ranges between 70% and 80%. Under 

some conditions, the goal is to predict the response variable Y. Thus, an alternative criterion 
to determine the number of latent variables in the PCR is based on the variability present in 
the response variable Y. The explanation percentage of Y by the principal components is 

obtained through the coefficient of determination, that is, 𝐶𝑜𝑟(𝑦, 𝑦 )2 × 100%. 

Partial Least Squares  
 
PLS was designed by Wold (1975) and, similarly to Garthwaite (1994), it has 

similarities with the PCR method. However, the PCR considers only the explanatory 

variables X in the construction of the components. At the same time, PLS also considers the 
variable response Y. In order to estimate the variable Y, the components associated with X 

are denoted by 𝑡𝑟  (𝑛 × 1, where 𝑟 = 1, 2,… , 𝑛𝑃𝐿𝑆  being 𝑛𝑃𝐿𝑆 ≤ 𝑚𝑖𝑛 𝑛,𝑚 − 1), and the 

components associated with Y are denoted by 𝑧𝑟. 

To determine the first components 𝑡1 and 𝑧1, the variables Y and 𝑋𝑗 ′𝑠 are centered 

on the mean and define the variables 𝑈1 and 𝑉1𝑗 , as: 𝑢1  =  𝑦 − 𝑦    and    𝑣1𝑗 =  𝑥𝑗  − 𝑥𝑗 , 

for 𝑗 =  1, . . . , 𝑚. Subsequently, the variable is defined as 𝑆1, so that 𝑠1 = 𝑉1
′𝑢1 (𝑚 × 1) 
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where 𝑉1 =  𝑣11 𝑣12 … 𝑣1𝑚   (𝑛 ×  𝑚), and the decomposition into singular values 

applies (SVD) portrayed by Härdle and Hlávka (2007) in the vector𝑠1; 𝑠1 = 𝐿1𝑘1𝑞1
′ , where 

𝐿1  is a unitary matrix (𝑚 × 𝑚) with the first column vector equal to 
𝑠1

||𝑠1||
 (vector 𝑠1 

normalized), 𝑘1 is a vector (𝑚 × 1) with the first value equal to||𝑠1|| (vector norm 𝑠1) and 

𝑞1 is a scalar equal to 1. The components 𝑇1 and 𝑍1 are respectively defined by: 
 

𝑡1 = 𝑉1𝐿1 and  𝑧1 = 𝑢1𝑞1
𝑉𝑎𝑟 (𝑡1)

𝐶𝑜𝑣(𝑡1 ,𝑢1)
.                               (Eq. 5) 

 

However, not all the information in the variables 𝑋𝑗  (𝑗 = 1,2, . . . ,𝑚) and variable Y 

are contained in the component 𝑇1, defined above. Therefore, the missing information in 𝑇1 

can be estimated through the residuals of the regression between the variables 𝑋𝑗  and  𝑇1 or, 

equivalently, the regression between latent variables 𝑉1𝑗  and 𝑇1, since the residues of both 

are identical (Garthwaite, 1994). Likewise, the Y's variability that is not explained by 𝑇1 can 

be estimated through the regression residuals between 𝑈1 and  𝑇1.Therefore, the variables 

are defined as 𝑈2 and 𝑉2(𝑗), respectively, 𝑣 2(𝑗) = 𝑣1(𝑗) − 𝑡1𝑟 1
′  and 𝑢 2 = 𝑢1 − 𝑡1𝑝 1

′ , that is, 

𝑈2 and 𝑉2𝑗  are the residuals, 𝑟1 and 𝑝1 are the coefficients obtained from the regression 

between 𝑈1and  𝑇1 and 𝑉1𝑗  and 𝑇1, in this order. A new variable is defined as 𝑆2,  so that 

𝑠2 = 𝑉2
′𝑢2 and applies again to SVD, similarly to 𝑠1 to build the component 𝑇2 .  
The components 𝑡3,...,𝑡𝑛𝑃𝐿𝑆

 (1 ≤ 𝑛𝑃𝐿𝑆 ≤ min 𝑛,𝑚 − 1) are determined 

successively and similarly to the previous ones. Besides all components are surely 

orthogonal (Garthwaite, 1994). The correlation between 𝑉2 𝑗  and 𝑇1 is equal to 0 since they 

are, respectively, residuals and regressor. Thus, as each component 𝑇2, 𝑇3, . . ., 𝑇𝑛𝑃𝐿𝑆
 is linear 

combination of 𝑉2 𝑗   then, they are not correlated with 𝑇1 either. 

In order to determine the number of components (𝑛𝑃𝐿𝑆) one can also use the 
criterion based on the data's variability. The variability present in the explanatory variables 

X explained by the components can be measured using 
 𝑟𝑖𝑗

2𝑛
𝑖=1  𝑡𝑖𝑗

2𝑛
𝑖=1

  𝑥𝑖𝑗
2𝑚

𝑗=1
𝑛
𝑖=1

 and the variability 

present in the variable Y, that is explained by the components, is also given by the 

coefficient of determination. 

Independent Components Regression  
 
The ICR, proposed by Jutten and Hérault (1991) and Comon (1994), assumes that 

the data comes from a non-Gaussian distribution. Under the context of regression, the ICR 

decomposes the data matrix X as  𝑋 = 𝑆𝐴′, where the matrix X (𝑛 × 𝑚) is decomposed into 

a matrix of independent components S (𝑛 × 𝑚𝑖𝑛 𝑛,𝑚 ), and a matrix A (𝑚 × 𝑚𝑖𝑛 𝑛,𝑚 ) 
called a mixing matrix. If matrix A were known and square, we would easily obtain the 
independent components. However, since reduced dimensionality is generally desired, 

matrix A is not square and unknown. Without loss of generality, we can define the mixing 

matrix as the product of a whitening matrix 𝐾 (𝑚 × 𝑚𝑖𝑛 𝑛,𝑚 ) and the matrix R 

(𝑚𝑖𝑛 𝑛,𝑚 × 𝑚𝑖𝑛 𝑛,𝑚 ), which guarantees independence between the components.  

The first process to estimate matrix A is the whitening process that makes the 

original variables (𝑋1, 𝑋2, … , 𝑋𝑚) uncorrelated and with unit variance, that is, the 

covariance matrix of the blanched data is the identity matrix. For whitening, orthogonal 
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decomposition is applied to the covariance matrix of 𝑋, denoted by Σ (𝑚 × 𝑚), which 

results in: Σ = 𝑃𝛬 −
1

2
 𝑃′  where 𝑃 is composed of eigenvectors in their columns and 𝛬 is a 

diagonal eigenvalue matrix of the covariance matrix of 𝑋. Under the context of regression, 

the matrix 𝐾 is then defined as 𝑃𝑟𝛬𝑟

 −
1

2
 
, where 𝑃𝑟  is the matrix with the 𝑚𝑖𝑛 𝑚, 𝑛  first 

columns of the matrix 𝑃 with dimension 𝑚 × 𝑚𝑖𝑛 𝑚, 𝑛  (𝑚𝑖𝑛 𝑚, 𝑛  first eigenvectors) and 

Λ𝑟  (𝑚𝑖𝑛 𝑚, 𝑛 × 𝑚𝑖𝑛 𝑚, 𝑛 ) is a matrix with the 𝑚𝑖𝑛 𝑚, 𝑛  first rows and columns of the 

matrix 𝛬 (eigenvalues associated with these first eigenvectors). Thus, the whitened data (A), 

will be obtained through 𝑋𝐾 (𝑛 × 𝑚).  

Since the data come from a non-Gaussian distribution, the non-correlation between 
the variables does not imply statistical independence. Independence is only achieved 

through the process described below. Thus, the second process to guarantee independence 
between the S's columns is done based on the maximization of non-Gaussianity (normality). 
This process is based on the central limit theorem, which states that the sum of N 

independent and identically distributed random variables, for N large enough and satisfying 
certain general conditions, will have an approximate Gaussian distribution. Under the ICR 
context, since the variables X are a linear combination of the components, it can be 

concluded that the components present a more distant distribution than Gaussian. Therefore, 
we can obtain the independent components by maximizing the non-Gaussianity of the 
whitened data matrix.  

The main non-Gaussian maximization algorithms are based on kurtosis and 
negentropy. Hyvärinen (1998) proposed the most used algorithm, which was denominated 

FastICA, and is based on negentropy. Negentropy is defined as: 
 

𝐽 𝑅 = 𝐻 𝑅𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑎  − 𝐻 𝑅 ,                                 (Eq. 6) 
 

where 𝐻 𝑅 = − 𝑓𝑅 𝑟 𝑅
𝑙𝑛𝑓𝑅 𝑟 𝑑𝑟 is the entropy of a random variable R with probability 

density function 𝑓𝑅(. ) and 𝐻 𝑅𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑎   is the entropy of a random variable R with a 

Gaussian distribution. Statistically, entropy is a measure of the average uncertainty 
associated with the observation of a random variable. Therefore, the greater the entropy, the 

more unpredictable the variable's observation. When the variable has a Gaussian 

distribution, the entropy and variance are coincident. Considering the variables  𝑅 and 

𝑅𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑎  with the same variance, 𝐻 𝑅𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑎   is the maximum entropy value found is 

that a Gaussian random variable has greater entropy than any other random variable of the 

same variance (Hyvarinen et al., 2001). Thus, negentropy can quantify the degree of non-
Gaussianity of a random variable, and its measurement will always be a non-negative value. 

According to Hyvärinen (1998), the maximization of negentropy leads to the 

estimation of independent components. However, the negentropy-based algorithm is 
hindered by calculation of entropy. Thus, approximations must be used in the expression 

(6), such as: 𝐽 𝑅 ∝  𝐸 𝐺 𝑅  − 𝐸 𝐺 𝑅𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑎    
2

, where 𝐺 is a non-quadratic function, 

and the choice of function 𝐺 influences the approach of negentropy (Hyvärinen, 1999), and 

the functions which are 𝐺 most employed for this purpose are: 

𝐺1 𝑟 =
1

𝑎
log cosh(𝑎𝑟)    and    𝐺2 𝑟 = −𝑒𝑥𝑝  −

𝑟2

2
 , where 𝑎 is a constant  1 ≤ 𝑎 ≤ 2  

and the selected G function cannot grow very quickly.  
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After its convergence, it is possible to find a matrix R that makes the matrix 

columns 𝑋𝐾 independent and, consequently, the S columns, since the independent 
components can be obtained by: 

 

                                                        𝑆 =  𝑋𝐾𝑅.                                                 (Eq. 7)     
                  

Basically, in the analysis of independent components, it is impossible to determine 
the variance of independent components. However, it is feasible possible when the 

independent components are assumed to have unit variance and mean equal to 0 
(Hyvärinen, 1999). Based on this assumption, the variability of explanatory variables X 

explained by the components can be measured using 
𝑛  𝑎𝑗𝑟

2m
𝑗=1

  𝑥𝑖𝑗
2m

𝑗=1
𝑛
𝑖=1

, where 𝑎𝑗𝑘  is the element of 

the i-th row and j-th column of the mixing matrix (𝑗 = 1,2,… ,𝑚 e 𝑟 = 1,… ,𝑚𝑖𝑛 𝑛,𝑚 ), 
𝑥𝑖𝑗  is the element of the i-th row and j-th column of the matrix centered on explanatory 

variables X (𝑗 = 1,2, … ,𝑚) and 𝑛 is the number of observations (Bingham and Hyvärinen, 

2000; Helwig and Hong, 2013). Unlike the principal components, each independent 
component explains a small part of the data's total variance. Besides, it is impossible to 

determine the order in which independent components are extracted. The coefficient of 
determination also gives the variability present in the Y variable explained by the 
components. 

Predictions by PCR, PLS and ICR 
 

Multiple linear regression is performed between the Y variable and the components 

𝑍, 𝑇 and 𝑆, obtained by PCR, PLS, and ICR, respectively. Then we have the following 

predictions: 

 𝑦 = 𝑍𝛼 ,                                                       (Eq. 8) 

 𝑦 = 𝑇𝛽                                                         (Eq. 9) 

 ŷ =  𝑆𝛾 ,                                                     (Eq. 10) 

where 𝛼 𝑚  (𝑚 =  1, . . . , 𝑛𝑃𝐶𝑅  ), 𝛽 𝑚  (𝑚 = 1,2,… , 𝑛𝑃𝐿𝑆) and 𝛾 𝑚  (𝑚 =  0,1, . . . , 𝑛𝐼𝐶𝑅  

so that 1 ≤ 𝑛𝑃𝐶𝑅 , 𝑛𝑃𝐿𝑆 , 𝑛𝐼𝐶𝑅  ≤ 𝑚𝑖𝑛 2𝐽, 𝐼 − 1) are the estimates of the coefficients 
obtained by the ordinary least squares method. 

Since the coefficients 𝛼 𝑚 , 𝛽 𝑚  and 𝛾 𝑚  , previously obtained, are not associated with 
the original variables, that is, they do not have a practical interpretation, the estimates of the 

effects associated with variables X are given by: 

𝑚 𝑃𝐶𝑅 = 𝑃𝛼                                                     (Eq. 11) 

𝑚 𝑃𝐿𝑆 = 𝐿 𝑅′𝐿 −1𝛽                                              (Eq. 12) 

𝑚 𝐼𝐶𝑅  = 𝐾𝑅 𝛾                                                    (Eq. 13) 

where L is the matrix whose columns are 𝐿1, 𝐿2, … , 𝐿𝑛𝑃𝐿𝑆
, called loading matrix X, and R is 

the matrix whose columns contain the coefficients 𝑟1, 𝑟2, … , 𝑟𝑛𝑃𝐿𝑆
. The expression (11) is 

obtained by combining the expressions (4) and (8) and the expression (13) by combining 
expressions (7) and (10). The estimates of the original PLS coefficients are not trivially 

obtained since the columns of the matrix 𝑉 (𝑉1 𝑗 , 𝑉2 𝑗 , … , 𝑉2𝐽 𝑗  ) are not directly compared 

to 𝑋 as observed in PCR and ICR, since they are successively deflated. According to Wold 

(1975), they can be obtained by expression (12). 
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Genomic data for the application of the methods 
 
The three methodologies (PCR, PLS, and ICR) were applied to the public data set 

of Asian rice, Oryza sativa. This data set is public and is part of two projects, the OryzaSNP 

Project and the OMAP Project (Ammiraju et al., 2006; Zhao et al., 2011), and is available 
on the website https://ricediversity.org/data/. The database used in this study is composed of 

the number of panicles per plant trait (𝑦), regarding 370 accessions of rice, which were 

genotyped for 36,901 SNPs markers (Single Nucleotide Polymorphism). Thus, the matrix 

𝑋, with dimension 370 × 36,901, denotes the matrix of incidence of the markers, where 𝑥𝑖𝑗  

is encoded by 0, 1, or 2; corresponds to the number of alleles of the j-th marker for the i-th 

access. 

Comparison between methodologies 
 
The methods PCR and PLS were applied for each number of components, and the 

effects of markers on the estimation population are estimated by PCR (or PLS, or ICR) and 

these are used in the validation population to estimate the genomic values of individuals in 
this population. Then, the predictive ability is calculated by the correlation between the 

estimated genomic value and the phenotypic value (𝑟𝑦𝑦 ) . Thus, we selected the number of 

components that leads the genomic value to an increased predictive ability. 

The data were evaluated under a validation process k-fold with 𝑘 = 5, and the 
efficiency of the methods PCR, PLS, and ICR were evaluated according to the predictive 

ability 𝑟𝑦𝑦  and the regression coefficient, which is defined as one minus the regression 

coefficient between the phenotype and the estimated genomic value (1 − 𝑏𝑦𝑦 ). For 

regression coefficients below 1 (𝑏𝑦𝑦 < 1), the genomic values were overestimated. For the 

regression coefficients above1 (𝑏𝑦𝑦 > 1), the genomic values were underestimated. For the 

regression coefficients equal to 1 (𝑏𝑦𝑦 = 1), the genomic values are not biased. 

All implementations of the methods used were performed in the R software system 
2018 (R Development Core Team) under the GenomicLand interface. The analysis was 
carried out using the packages (and functions) pls (pcr), caret (icr) e leaps (regsubsets) for 

methodologies PLS, PCR, and ICR, according (Mevik et al., 2011; Kuhn, 2017; Lumley, 
2017), respectively.  

In Figures 1 and 2, it is observed that in the PCR and PLS methods, the first 
components explain the explanatory variable in greater proportions X, while in ICR (Figure 
3), the variability present in explains in X is explained in smaller proportions, and there is 

no ranking of the order of the components. The fact that the first components explain much 
of the total variability in the case of PCR and ICR contributes to better visualization of the 
data in two- or three-dimensional graphs, when these are summarized in two or three 

components, respectively; facilitating the identification of some patterns present in the data 
(Yao et al., 2012). 

Table 1 shows the results of the efficiency of the three methods. Since the 

exhaustive criterion aims to choose the number of components associated with a higher 
predictive ability, the PLS needed fewer components than the other methods, as reported by 

Du et al. (2018). It is observed that the methods presented similars predictive abilities 
values, as reported by Azevedo et al. (2015). This leads us to believe that the explanatory 
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variables have only a linear relationship. All three methods overestimated the genomic 
genetic values, and these values were less biased in the PCR, that is, closer to 1. 

 
 

Table 1. Number of components (𝑁𝑐), computational time (CT), predictive ability (𝑟𝑦𝑦 ) and prediction 

bias (𝑏 𝑦𝑦 ) considering Principal Components Regression (PCR), Partial Least Squares (PLS) and the 

Independent Components Regression (ICR) applied to the matrix of molecular markers to predict the 

genomic values (𝑦 = 𝑍𝛼 ,) of rice accessions for the trait number of panicles per plant (𝑦). 

 

Methods 𝑵𝒄 CT (hours) 𝒓𝒚𝒚  𝒃 𝒚𝒚  

PCR 104 8.70 0.82 0.97 
PLS 4 10.48 0.81 0.95 
ICR 81 12.98 0.82 0.99 

 

 
Figure 1: Percentage of explained variance concerning each component of the principal component regression 

(PCR) considering the matrix of incidence of the markers (the number of alleles of the marker), composed by 

36,901 SNPs markers (single nucleotide polymorphisms), to predict the genetic value of 370 rice accessions, 

Oryza sativa, for the trait number of panicles per plant. This genomics data and is part of the OryzaSNP Project 
and the OMAP Project. 

 

In the analyzes considered the 5-folds cross-validation procedure for each method, 
it is observed that the ICR time is longer concerning the PCR and PLS time (Table 1). One 
of the disadvantages of the ICR method is the requirement for a high demand for the 

computational time when selecting the number of components that leads to greater accuracy 
or predictive ability (Azevedo et al., 2014; Azevedo et al., 2015), which is aggravated when 
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the data set has high dimensionality. The studies developed by Costa et al. (2020), as 
suggested by Cadavid et al. (2007) and Azevedo et al. (2013b), show some criteria based on 
PCR that can reduce computational time to choose the optimum number of independent 

components. 
 

 
Figure 2. Percentage of explained variance concerning each component of the partial least squares (PLS) 

considering the matrix of incidence of the markers (the number of alleles of the marker), composed by 36,901 

SNPs markers, to predict the genetic value of 370 rice accessions, Oryza sativa, for the trait number of panicles 

per plant. This genomics data and is part of the OryzaSNP Project and the OMAP Project. 

 
The SNPs markers are widely used in Genome-Wide Selection (GWS), proposed by 

Meuwissen et al. (2001), to detect the genotypic information that is contributing to the 
phenotypic variability of individuals or accessions (Goddard e Hayes, 2007). The use of 
GWS allows an increase in the percentage of genetic gain concerning the cycle of selection, 

an increase in the accuracy of genomic values prediction, and a reduction in the interval 
between generations (Meuwissen et al., 2001). Therefore, there is a need to develop and 
discuss methods that effectively predict genetic values in the presence of multicollinearity 

and high dimensionality. De Los Campos et al. (2013) provides an overview of Bayesian 
methods applied to GWS. The Bayesian methodologies are based on Monte Carlo Markov 

Chain, and they need convergence analysis. They demand high computational time and 
effort. Bermingham et al. (2015) present the different contributions of GWS in animal and 
plant breeding and in supervised and unsupervised techniques to select markers and, 

consequently, decrease the explicative variables. The difference between the dimensionality 
reduction methods and these methods is that the PCR, ICR, and PLS are not select the 



Genetics and Molecular Research 20 (2): gmr18877 

 

 

 

©FUNPEC-RP www.funpecrp.com.br 

 
 

 

 

 
 

 

Regression methods with dimensional reduction for genomic prediction                             13 

 
 

explanatory variables, and the final model presents all X variables. The dimensionality 
reduction methods are ideal for situations in which all variables explanatory models have an 
effect, even if small, on the response variable. 

 

 
Figure 3. Percentage of explained variance concerning each component of the independent component regression 
(ICR) considering the matrix of incidence of the markers (the number of alleles of the marker), composed by 

36,901 SNPs markers, to predict the genetic value of 370 rice accessions Oryza sativa for the trait number of 

panicles per plant. This genomics data and is part of the OryzaSNP Project and the OMAP Project. 

CONCLUSION 
 

Dimensionality reduction methods: Principal Components Regression (PCR), 
Partial Least Squares (PLS), and Independent Components Regression (ICR) have a 
relatively simple theory and present as interpretations for the parameter indications. They 

have the advantage of circumventing multicollinearity and high dimensionality and being 
efficient in the prediction process and identifying possible patterns present in the data. This 
class of methods has broad applicability for genomic data, as evaluated in this work to 

predict genomic values of rice accessions using 36,901 SNPs markers, in addition to 
environmental and agricultural data. 
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