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Abstract— Elephant grass is a promising plant for economic and 

sustainable energy production. However, adapted cultivars and efficient 

strategies for selecting genotypes aimed at energy biomass production is 

essential. Remote sensing techniques provide spatiotemporal information 

from plants in an agile, non-destructive and non-invasive way. The 

present study aimed to use remote sensors onboard an unmanned aerial 

vehicle (UAV) to monitor elephant grass genotypes and assist in plant 

phenotyping for energy biomass production. The experimental plots were 

imaged in the visible and near infrared bands. Imaging was carried out in 

66 experimental plots in the José Henrique Bruschi Experimental Field 

(CEJHB), located in Coronel Pacheco, MG, Brazil. The experiment was 

arranged in a randomized block design with three replications, and 22 

elephant grass genotypes were evaluated. The aggregated index iMAPNDRE 

was strongly correlated with the dry matter production observed in the 

field, therefore a method with potential application for estimating the 

biomass of elephant grass genotypes. Thus, sensors aboard UAV 

platforms can assist breeders to select the best elephant grass genotypes 

for energy production. 

 

I. INTRODUCTION 

The demand for sustainable and renewable energy 

sources that can be alternatives to fossil fuels has been 

growing in recent years [1]. The production of energy from 

plant biomass is one of the economically viable 

alternatives. In this case, elephant grass (Pennisetum 

purpureum Schum.) has very promising potential for 

energy production when compared to other energy 

biomass sources such as sugarcane and eucalyptus. 

Some of the advantages of using elephant grass as 

bioenergy source are the great productive potential, rapid 

growth and short production cycle. However, there are 

challenges to be overcome such as the lack specific 

cultivars for energy production and efficient strategies for 

selection of genotypes for quality of biomass in energy 

use. The development of automated phenotyping tools, 

aiming to specific needs, can optimize the resources used 

in the selection and development of cultivars. 

Automated data collection techniques and remote 

monitoring already contribute to boost agriculture and the 

rational use of natural resources [2, 3, 4]. The concept of 

smart farms has already been started, and devices such as 

Unmanned Aerial Vehicles (UAVs) have been helping 

farmers in activities including cargo transportation 

(fertilizers or pesticides), and monitoring of livestock and 

crops. 

UAVs are platforms that embed sensors that provide a 

close panoramic view of the fields and are effective in 

generating data to extract knowledge or more accurate 

information about cropped areas to assist farmers in 

planning and decision-making [5]. 
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Sensors that collect data in the visible range (RGB 

sensors) are the most common, but, they are cost-effective, 

as, in addition to the various spectral indices that can be 

generated, they have other applications such as a digital 

terrain model (MDT), 3D model, image orthomosaic, 

volume estimation and contour lines. On the other hand, 

sensors that capture data in the near infrared (700 to 1,100 

nm) and thermal (5,000 to 12,000) ranges are very useful, 

for example, to identify vegetation stresses or plant that are 

more vigorous and excel in production and productivity. 

The need for non-destructive, inexpensive, and large-

scale experimentation makes remote sensing and data 

processing technologies fundamental to improving the 

performance and efficiency of plant phenotyping [6, 7]. 

Thus, remote sensing phenotyping methods have the 

advantage of gathering information from plants in a non-

destructive and non-invasive way, both in space and time. 

Recent technological advances have contributed to 

precision and high-throughput surveys to the benefit of 

large-scale field phenotyping [5]. From the foregoing, 

therefore, this study aimed to use remote sensors onboard 

an unmanned aerial vehicle (UAV) to monitor elephant 

grass genotypes and assist in plant phenotyping for energy 

biomass production. 

 

II. MATERIAL AND METHODS 

Study area characterization 

The study was conducted at the José Henrique Bruschi 

Experimental Field (CEJHB) of Embrapa Dairy Cattle 

(Figure 1), in Coronel Pacheco (MG), Brazil.  

Based on the Köppen-Geiger climate classification, the 

study area is located in a transition zone of Aw climate 

(tropical climate with dry winter season) and Cwa 

(temperate humid climate with dry winter and hot 

summer). However, there is a predominance of Cwa in the 

region of the municipality where the meteorological 

station of the National Institute of Meteorology (INMET) 

is located. According to the INMET climatological 

normals from 1981 to 2010, the annual average air 

temperature is 21.4ºC and the average annual rainfall 

volume is 1620.6 mm. July (12.6 mm) and January (355.1 

mm) have the lowest and highest rainfall, respectively. 

In the municipality of Coronel Pacheco-MG, 10% of 

the area has flat relief, 10% mountainous relief and 80% 

wavy relief. The maximum and minimum altitudes are 

1,070 m and 409 m, respectively. The municipal seat has 

an altitude of 484 m. The altitude of the area of the 

experiment is between 414 and 418 m (Figure 1) and a 

clayey-textured dystrophic yellow latosol predominates. 

 

Installing the experiment and sample data collection 

The experiment was arranged in a randomized block 

design with three replications, 22 elephant grass 

genotypes, 66 experimental plots standardized with three 

4-m rows and plots spaced 1.2 m apart, net plot established 

at 3.6 m² (3 x 1.2 m) to minimize the plot border effect 

(Figure 1). The total area of the experiment is 0.6 hectares. 

The growth period and plant height varied according to 

cutting, with approximately 20 cm of residue. 

Biomass (Dry Matter Yield – DMY) samples were 

collected in the experimental plots to estimate the 

productivity of each elephant grass genotype. Standardized 

cuttings were carried out in the net plots, at 20 cm height 

above ground level. Each sample was identified, ground 

and weighed individually to estimate the total fresh weight 

of the sample (FWS). Dry matter was estimated using a 

random sub-sample of fresh matter, which was labeled and 

weighed (fresh sub-sample weight – FSSW). The sub-

samples were dried in an oven at 55°C for a minimum 

period of 72 hours, until all the moisture was removed. 

Then, the subsamples were weighed to obtain the dry 

matter weight (DMW). Afterwards, the percentage of dry 

matter was calculated for each sub-sample (%DM): 

%DM = DMW * 100 / FSSW 

Next, the productivity per hectare was estimated: 

DM (kg/ha) = FWS * %DM * 10,000 / Net plot 
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Fig. 1: Location of the José Henrique Bruschi experimental field - Coronel Pacheco, Minas Gerais, Brazil. Contour curves 

and identification of the sixty-six elephant grass plots and net plot for the genotype evaluations. 

 

Aerial surveys and vegetation indices 

The aerial surveys were carried out on 02/26/19, 

04/18/19 and 11/04/19 using the Inspire 1 Pro rotary-wing 

UAV, quadcopter, featuring a Sentera Multispectral 

Double 4K camera with gimbal for imaging in the visible 

and near infrared ranges, as described in Table 1. 

Table 1: Specifications of each band of the spectral range 

were obtained with the use of Sentera Multispectral 

Double 4K Gimbaled imaging 

Bands 

 

Wavelength center 

(nm) 

Band width 

(nm) 

Blue 446 60 

Green 548 45 

Red 650 70 

NIR 720 40 

Red Edge 840 20 

 

The flight plans were carried out according to technical 

compliance requirements, so that the results or products of 

the aerial survey could be compared on similar bases, 

equalizing variables such as flight height, pixel size of 

ground images (Ground Sample Distance - GSD), sensor 

calibration, percentage of image overlap, wind speed, 

brightness, shadow positioning, time of day, angle of view, 

sun position, etc. 

The flight plan was parameterized as follows: (i) 70 m 

flight height; 2 cm GSD; 8 m/s maximum speed, 5 min 

flight time using battery; lateral and frontal overlap of the 

images 75% and 85%, respectively. Based on this flight 

plan configuration, it took 5 flight lines and 74 images to 

cover the entire area and generate the orthomosaic in the 

Pix4D Mapper Pro 4.125 software. 

In the present study, the NDRE (Normalized 

Difference Red Edge [8]) and NDVI (Normalized 

Difference Vegetation Index [9]) were used according to 

the following equations: 

nir rededge

nir rededge

NDRE
 

 

−
=

+
                                          Eq. 1 
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rednir

rednirNDVI




+

−
=

                                               Eq. 2 

Where Green , Red , Blue , RedEdge and NIR  are the 

spectral bands corresponding to the Green, Red, Blue, Red 

Edge, and near infrared (NIR) channels, respectively. 

 

i-MulticriteriaAnalysisPlants (iMAP) 

Throughout the experiment, the Embrapa Dairy Cattle 

Remote Sensing and Geoprocessing team used an 

aggregate index that allows analyzing the agronomic 

characteristics of any grouping of plants of the same 

genotype, which can be estimated from the images 

captured by the sensors embedded in the platform VANT. 

This index is based on the multicriteria analysis that 

calculates standardized anomalies between the agronomic 

characteristics of the canopy such as perimeter, area, 

height, volume, vigor, uniformity, fresh weight and dry 

weight. The index equation is given by: 

                                     Eq. 3 

Where: iMAP is the aggregated index of multi-criteria 

analysis; IV is the designation of the vegetation index 

selected to assess the canopy vigor of the genotypes; CA is 

the agronomic characteristic selected for the composition 

of the aggregate index and calculated for each plot of the 

trial;  is the mean of the agronomic characteristic 

distribution for the 66 plots of the trial; σCA is the standard 

deviation of the agronomic characteristic distribution for 

the 66 plots of the trial. 

The aggregated indices iMAPNDVI and iMAPNDRE were 

generated for the NDVI and NDRE vegetation indices, 

respectively. They express the association of vegetative 

vigor with the average volume reached by the genotype. 

Then, correlations between biomass and the aggregated 

indices iMAPNDVI and iMAPNDRE were examined. 

 

III. RESULTS AND DISCUSSION 

Figure 2 shows the spatiotemporal analysis of the 

elephant grass experimental plots. It shows heterogeneity 

in terms of growth and vigor of the 22 genotypes 

distributed in the 66 plots. 

It is visible the variability in the shades of green and 

the exposure of background soil or faults in some plots in 

the RGB mosaics (Figures 2A and 2D). At the same time, 

in the images with estimates of NDVI (Figures 2B and 2E) 

and NDRE (Figures 2C and 2F), the variations in the 

indices both within each plot and between plots were 

evident. These variations may be related to differences in 

vigor and soil faults or exposure within each net plot that 

may be imperceptible to an observer in the field. In this 

case, the influence of decaying organic matter may have 

occurred along the edges of the planting area (border 

effect). 

 

Fig. 2: Monitoring of elephant grass experimental plots 

using RGB and near infrared (NIR) sensors onboard 

unmanned aerial vehicle (UAV) to obtain RGB mosaics (A 

and D) and the vegetation indices NDVI (B and E) and 

NDRE (C and F) of the net plots. Image dates: 02/26/2019 

(Figures A, B, C) and 04/18/2019 (Figures D, E, F). 

 

Analysis of data distribution 

Pearson's linear correlation coefficient assumes the 

existence of a linear relationship between variables, in a 

way that it can be used to estimate the degree of intensity 

or strength of this relationship. The existence of data 

clusters, outliers, sharp left or right asymmetries and other 

abnormalities must be investigated in advance and, if 

possible, mitigated. Generally, asymmetry, whether milder 

or more pronounced, is the problem that is most observed 

for variables of different natures, and often the use of some 

transformation, e.g., logarithmic, is enough to make the 
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distribution approximately symmetrical and favor its use in 

any statistical analyses. 

The variable dry matter yield (kg), which was 

estimated by the traditional field method and indicates the 

biomass produced by the genotype, and the variable 

volume (m³) of the plants showed positive asymmetry with 

an extension of the right tail, with this deviation being 

detected by the Shapiro-Wilk test (Figures 3A and 3C, p < 

0.0001). In both cases, the problem was mitigated by the 

logarithmic transformation, which made the distributions 

visibly more symmetrical, as evidenced by the histograms 

in Figures 3B and 3D and by the descriptive levels (p-

values) that reached values greater than 0.19. 

 

Fig. 3: Histograms of frequency distribution of dry matter 

yield (A), volume (C) and aggregated index iMAPNDRE (E), 

as well as their forms transformed by decimal logarithm 

(B, D) or by Box-Cox power transformation (F), followed 

by the Shapiro-Wilk Normality Test. 

 

The aggregated index iMAPNDRE showed a slight 

positive asymmetry, which would not be sufficient to 

reject the distribution normality hypothesis (Figure 3E; 

p=0.0577). Nevertheless, to maximize as much as possible 

the linearity between this variable and any other in the 

study, its values were also transformed by the Box-Cox 

Transformation, making the distribution even more 

symmetrical (Figure 3F; p=0.6586). On the other hand, the 

distributions of the NDRE and NDVI vegetation indices, 

as well as the aggregate iMAPNDVI index, showed only 

slight asymmetries (Figure 4) and no strong deviations 

from normality (p > 0.0809), ruling out the need for a 

transformation. Although, in general, all correlations can 

be refined, specifically from a greater number of aerial 

surveys, as expected, the iMAPNDRE index showed the 

highest correlation with dry matter yield or biomass 

produced by elephant grass genotypes (Figure 5). This 

index is a combination of the volume estimates and the 

NDRE. In addition, this combination enabled better 

classification of elephant grass genotypes. 

 

Fig. 4: Histograms of frequency of NDRE (A) and NDVI 

(B) vegetation indices and the aggregated iMAPNDVI (C) 

index, followed by the Shapiro-Wilk Normality Test. 

 

 

Fig. 5: Scatter plots of the relationship between biomass 

observed in the field with NDVI (A), NDRE (B), iMAPNDVI 

(C), volume (D), iMAPNDRE (E) data. 

 

The application of the Scott and Knott's (1974) 

grouping method to the iMAPNDRE aggregate index data, 

with a significance level of 5%, allows the discrimination 

of eight genetic materials (Table 2); and, if biomass 

(DMY) is used for selection, also at 5% significance level, 

virtually the same materials are indicated. This agreement 

of results indicates that, for the samples of materials 

involved in this study, the aggregated index iMAPNDRE 

proved to be very useful and effective for selection aiming 

at the production of biomass. 
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Table 2: Clustering of means by the Scott and Knott method, α = 0.05, for the variables iMAPNDRE and dry matter yield 

(DMY), emphasizing the selection of the best materials. Standard error of the mean: 0.9 (iMAPNDRE) and 1.9 (DMY) 

Selection rank Genotype 
iMAPNDRE DMY 

Mean Cluster Rank Mean Cluster Rank 

1 BAGCE 19 3.9 a 1 10.9 a 3 

2 Cameroon-BAG 38 2.5 a 2 9.3 a 4 

3 BAGCE 66 2.1 a 3 11.3 a 2 

5 BRS Capiaçu 1.8 a 4 11.6 a 1 

4 BAGCE 57 1.7 a 5 9.2 a 5 

5 BAGCE 23 1 a 6 8.6 a 6 

6 BAGCE 3 0.7 a 7 7.5 b 7 

7 BAGCE 62 0.5 a 8 6.4 b 10 

 
BAGCE 60 0.2 b 9 7 b 8 

 
BRS Canará -0.1 b 10 6 b 13 

 
BAGCE 91 -0.2 b 11 6 b 12 

 
BAGCE 69 -0.5 b 12 6.3 b 11 

 
BAGCE 1 -0.7 b 13 6.5 b 9 

 
PCEC -0.8 b 14 4.3 b 19 

 
BAGCE 6 -0.8 b 15 5.2 b 16 

 
BAGCE 22 -0.9 b 16 5.9 b 14 

 
Madeira -1 b 17 4.5 b 18 

 
BAGCE 64 -1.4 b 18 5.8 b 15 

 
BAGCE 51 -1.7 b 19 4.7 b 17 

 
PCEA -1.7 b 20 3.7 b 20 

 
BAGCE 59 -2.2 b 21 3.3 b 21 

  BAGCE 50 -2.3 b 22 2.7 b 22 

 

Figure 6 describes, in a synthetic way, the data 

collected for the variables iMAPNDRE and biomass (DMY), 

allowing an easy comparison between the performances of 

each genotype. For each genetic material, the boxplot (box 

and whisker) allows the exact identification of each of the 

three replications: the minimum of the three values is 

limited by the lower whiskers; the maximum of them is 

limited by the upper whiskers; and the remaining value, 

intermediate between these two, and corresponding to the 

median of the three, is represented by the thickest 

horizontal line. Additionally, the set of means, designated 

by the central points (solid, filled circle), shows the 

differences between the genetic materials and the 

decreasing trend between the best-ranked genotype and the 

one that achieved the worst performance in the 

experiment. It is noteworthy that, to allow the 

juxtaposition of the distributions of the two variables of 

different natures - iMAPNDRE and DMY (original scales on 

the right side) - the variables were standardized by 

subtracting the mean and dividing by standard deviation, 

to be on a similar scale, having mean 0 and standard 

deviation 1 (represented by the ordinate axis on the left 

side). 

It is also found that, generally, the eight materials 

grouped by Scott-Knott as the best based on iMAPNDRE – 

in addition to BAGCE 60 ranked ninth – were precisely 

those with a pair of means equal to or higher than the 

overall means of the two characteristics, iMAPNDRE and 

DMY, estimated at 0 (s/unit) and 6.66 kg/ha, respectively. 

In addition, the best of the entire experiment – BAGCE 19 

– showed mean around two standard deviations above the 

overall mean found for iMAPNDRE and achieved mean 
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above one standard deviation above the estimated overall mean for biomass. 

 

 

Fig. 6: Boxplot of frequency distributions per genetic material observed for the variables iMAPNDRE and energy biomass 

(DMY) and arranged in descending order of mean for iMAPNDRE. The mean and median of each distribution are represented 

by the central solid point and the thickest horizontal line, respectively, while the whiskers limit the minimum and maximum 

values observed for the genotype. Means of the same variable followed by different letters were grouped into distinct clusters 

by the Scott-Knott method (α = 0.05). Variables were standardized (subtracting the mean and dividing by standard 

deviation) before the juxtaposition, in the figure, with the overall means of the characteristics delimited by the dotted 

horizontal line. 

 

IV. CONCLUSION 

The aggregated index iMAPNDRE showed a strong 

correlation with the dry matter production observed in the 

field and has potential application for estimating the 

biomass of elephant grass genotypes. Thus, the use of 

sensors onboard UAV platforms can help breeders to 

select the best elephant grass genotypes for energy use. 
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