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Abstract: The selection of sweet sorghum genotypes is based on multiple agro-
nomical and technological traits. The objectives of this study were to evaluate 
the effectiveness of inter-trait recovery information in improving the selective 
accuracy of the predicted genetic values of sweet sorghum progenies, and to 
compare several selection indices in terms of selection gains using single- and 
multi-trait mixed models. The trials were conducted in two sites. The traits 
flowering time, plant height, green mass production, total soluble solids content, 
and tons of Brix per hectare were assessed. Significant genetic variance was 
observed for all traits, except for total soluble solids content. The multi-trait 
analysis provided more accurate estimates of genetic parameters and predic-
tions of the progeny genetic values, and higher selection gain than the single-
trait analysis. The direct selection for TBH and the FAI/BLUP index resulted in 
balanced genetic gains for the assessed traits.
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INTRODUCTION

The global demand for renewable energy sources, such as biofuels, has 
increased (OECD/FAO 2021). The use of these renewable sources aims to reduce 
greenhouse gas emissions from the use of fossil fuels (Abdullah et al. 2019). 
Brazil is the second-largest producer of ethanol in the world using sugarcane 
as feedstock (Karp et al. 2021). However, to strengthen its ethanol production 
chain, especially regarding filling the window in the sugarcane off-season, which 
runs from December to April, the ethanol plants might use other bioenergy 
crops, which would maximize the use of resources and contribute to low-carbon 
agriculture and more efficient agricultural and industrial processes. 

Sweet sorghum [Sorghum bicolor (L.) Moench] has emerged as a 
complementary bioenergy crop that has favorable aspects to its exploitation, 
such as high green mass yield, juicy stalks, and high levels of fermentable sugars 
in its juice (Regassa and Wortmann 2014, Appiah-Nkansah et al. 2019). It is a 
crop that has been attracting attention due to its great potential for ethanol 
production (Wu et al. 2010, Fernandes et al. 2014, Ahmad Dar et al. 2018).

Sweet sorghum breeding programs aim to obtain cultivars with higher ethanol 
yield. However, this quantitative trait has some peculiarities, such as complex 
genetic architecture and pronounced environmental effects (Burks et al. 2015, 
Rocha et al. 2018, Cooper et al. 2019). The first peculiarity is that ethanol yield 
results from the expression of several interrelated agro-industrial traits, such as 
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plant height, green mass production, flowering time, juice yield, fermentable sugar content in the juice, and tons of Brix 
per hectare (TBH) (Leite et al. 2017). Another aspect is the difficulty or even the infeasibility of performing phenotyping 
for ethanol yield, especially in the early stages of the breeding cycle, in which many genotypes must be tested, and the 
experimental material might be limited (e.g., seeds). Regarding the difficulty of performing direct selection for ethanol 
yield, an alternative is to obtain genetic gain via indirect selection. The path analysis study by Lombardi et al. (2015) 
found that TBH is highly correlated with ethanol yield, in addition to having a strong, positive, direct effect on this target 
trait of sweet sorghum breeding. Thus, TBH is suitable for indirect selection for ethanol yield.

The decision about selection of promising sweet sorghum cultivars is based on multiple traits. This task can be 
accomplished using single- or multi-trait mixed models. However, the selection efficiency is expected to increase by using 
multi-trait mixed models (Henderson and Quaas 1976) because these models make it possible to recover information 
on the covariance between traits and thus might significantly improve the accuracy of genetic value predictions, making 
the selection process more efficient (Piepho et al. 2008, Viana et al. 2010, Alves et al. 2018).

Another option for selecting genotypes for ethanol yield is the use of selection indices. In this context, some breeders 
have commonly used selection indices based on single-trait mixed models to predict genetic values (Meier et al. 2019), 
but their main disadvantage is the impossibility of exploiting the covariance (correlation) between traits. Some indices 
frequently used are based on the sum of the predicted genetic values (additive index) (Resende 2007), and the sum of 
rank index (Mulamba and Mock 1978). More recently proposed selection indices, such as the factor analysis based on 
ideotype-design associated with the best linear unbiased prediction (FAI-BLUP) index, are also based on univariate mixed 
models (Rocha et al. 2017). Although the FAI-BLUP index make it possible to exploit the covariance between traits, the 
use of multi-trait mixed model might increase the expected genetic gain with selection.

Given the above, the objectives of this study were to evaluate the effectiveness of inter-trait recovery information in 
improving the selective accuracy of the predicted genetic values of sweet sorghum progenies, and to compare several 
selection indices in terms of selection gains using single- and multi-trait mixed models.

MATERIAL AND METHODS

Sites
The trials were conducted in the 2016/2017 agricultural crop year in two sites in the State of Minas Gerais, Brazil 

(Figure 1). The first was in the experimental area of Embrapa Maize and Sorghum (lat 19° 27′ 57″ S, long of 44° 14′ 49″ 
W, alt 767 m asl) in the municipality of Sete Lagoas, Minas Gerais, Brazil. The region has an average temperature of 
approximately 23 °C and mean annual rainfall of 1,403 mm. The climate, according to Köppen’s climate classification, 
is Cwa. The soil is classified as Latossolo vermelho (Oxisol) with a gently undulating relief. The second experiment was 
conducted at the Center for Scientific and Technological Development in Agriculture, Muquém Farm (lat 21° 14′ S, long 
45° 00′ W, alt 932 m asl), Federal University of Lavras, Lavras, Minas Gerais. The region has an average annual temperature 
of 19.4 °C and a mean annual rainfall of 1,529.7 mm. The climate, according to Köppen’s climate classification, is Cwa. 
The soil is classified as Latossolo vermelho-amarelo (Oxisol) with a gently undulating relief. Precipitation and average 
temperature data were obtained during the trials for the two sites (INMET 2021).

Progeny evaluation
A total of 196 half-sib progenies from a cycle-0 population of recurrent selection were evaluated (Leite et al. 2019). 

The experiments were conducted in a 14×14 lattice design with two replications in Lavras and three replications in Sete 
Lagoas. The plot consisted of 3-m-long rows with 60-cm spacing between rows. Sowing was performed at the end of 
October 2016 in Sete Lagoas and at the beginning of November 2016 in Lavras. Harvesting was performed when the 
grains were in the hard dough stage, at approximately 115 days after sowing.

The following traits were measured: flowering time (FLOW, days) by the number of days from sowing up to when 
50% of the plants of the plot flowered; plant height (PH, m), according to the mean height (m) of eight plants taken at 
random from each plot, measured from the soil surface to the tip of the panicle using a measuring tape; green mass 
production (GMP, t ha-1) at the time of each cutting, according to the weight of the whole plants from each plot, weighed 
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on a digital hanging scale in kg, converted to t ha-1; total soluble solids content (TSS, °Brix) through a portable digital 
refractometer (Instrutemp - ITREFD-45), with automatic correction of temperature and maximum resolution of 0.1 ºBrix; 
and tons of Brix per hectare (TBH), obtained by the product of GMP and TSS/100.

Statistical analyses
The data analyses were performed using the mixed-model methodology, with estimation of the fixed effects via best 

linear unbiased estimates (BLUEs), and prediction of the random effects via best linear unbiased predictions (BLUPs) 
(Henderson 1974), and the use of the restricted maximum likelihood (REML) method for estimation of variance components 
(Patterson and Thompson 1971). Multi-environment single-trait (Equation 1) and multi-trait multi-environment (five 
traits) (Equation 2) analyses were performed as described below:

yt = Xtβt + Ztbt + Wtgt + Qtst + et              (1)

where yt is the vector of phenotypic data of the trait t; βt is the vector of fixed effects of the sites and of the replications 
within sites plus the overall mean of trait t; bt is the vector of the sub-block effects within replications at the sites of 
trait t, bt ~ N(0, Iσ2

bt
); gt is the vector of the progeny effects of trait t, gt ~ N(0, Iσ2

gt
); st is the vector of the progeny × 

site interaction effects of trait t, it ~ N(0, Iσ2
st
); et is the vector of the errors of trait t, ei ~ N(0, Iσ2

et
);  Xt, Zt, Wt, Qt are the 

incidence matrices of fixed and random effects; σ2
bt

, σ2
gt

, σ2
it
, and σ2

et
 are the variances of sub-blocks within replications at 

each site, of progenies, of progeny × site interaction, and of the experimental error, respectively.

y = Xβ + Zb + Wg + Qs + e                 (2)

where y is the vector of stacked phenotypic data of the traits y' = (y'1,…, y'5 ); β is the vector of fixed effects of the sites and 
of the replications within each site added to the overall mean; b is the vector of the sub-block effects within replications 

at each site, b ~ NMV(0, Σb); Σb is the covariance matrix of the sub-blocks, defined as Σb = [ σ2
b1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ σ2
b5

] = I28, 

where σ2
bi
 is the variance of sub-blocks for the trait t (t =1, ..., 5); g is the vector of the progeny effects, g ~ NMV(0, Σg); Σg 

is the matrix of genetic covariances, defined as Σg = [ σ2
g1

⋯ σg15

⋮ ⋱ ⋮

σg15
⋯ σ2

g5

] = I196, where σ2
gi
 is the variance of progenies 

for the trait t (t =1, ..., 5) and σgtt'
 is the genetic covariance of progenies between traits t and t’; s is the vector of the 

progeny × site interaction effects, s ~ NMV(0, Σs); Σs is the covariance matrix of the progeny × site interactions, defined 

as Σs = [ σ2
s1

⋯ σs15

⋮ ⋱ ⋮

σs15
⋯ σ2

s5

] = I392, where σ2
si
 is the variance of progeny × site interaction for the trait t (t =1, …, 5) and 

σett'
 is the covariance of progeny × site interaction between traits t and t’; e is the error vector, where e ~ NMV(0, Σe); 

Σe is the matrix of error covariance, defined as Σe = [ σ2
e1

⋯ σe15

⋮ ⋱ ⋮

σe15
⋯ σ2

e5
]=  In, where σ2

ei
 is the error variance for the 

trait t (t =1, ..., 5) and σett
 is the error covariance between traits t and t’; and X, Z, W, and Q are the design matrices that 

associate the fixed and random effects with the data vector y.

Wald test was used to test the significance of the fixed effects. The likelihood ratio test was used to verify the 
significance of the random effects (Mrode 2014, Resende et al. 2014). From the estimates of the variance components, 
the correlation of the progenies across the sites was estimated by the expression rB = σ2

gt
σ2

gt
 + σ2

st

 for each trait t, the 

genetic and environmental correlations between traits t and t’ by the expressions rgtt'
 = σgtt'

σ2
gt

 × σ2
gt'

 and rett'
 = σett'

σ2
et

 × σ2
et'

. 

The significance of the genetic correlations was evaluated via Bootstrap at 5% probability level by the “bias-corrected 
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and accelerated” (BCa) method, with 1000 bootstrap replications, using the wBoot R package (Weiss 2016), while the 
residual correlations were checked by t-test at 5% probability level. The mean selective accuracy of progenies for each 

trait (t) was estimated by the expression rg ̂g =    1 – PEV
σ2

gt
 

, where PEV is the mean prediction error variance of the BLUPs 
of the progenies (Resende and Duarte 2007).

For multi-trait selection, the following selection indices were adopted based on the BLUPs of the progenies from the 
multi-environment single- and multi-trait mixed models:

1 - Direct selection based on the TBH trait, where the indirect gains obtained for the other traits were estimated.

2 - Mulamba and Mock index (IMM), estimated from the rank of the progenies as IMMj = Σ5
t=1 rtj , where IMMj is the value 

of the sum of rank index associated with progeny j and rtj is the rank of progeny j on trait t;

3 - Additive index (IA), estimated by the expression IAj = Σ5
t=1 g ̂tj × wt × 

1
σgt

  as described by Resende (2007), in which IAj 
is the value of the additive index associated with progeny j; σĝt

 is the predicted genetic value of progeny j for trait t; wt 
is the economic weight associated with trait t; and σgt

 is the standard deviation of progenies for trait t. The economic 
weight was assumed equal to 1, because it is hard to define them for the assessed traits. Furthermore, single- and 
multi-trait BLUPs were already weighed by the heritability of the traits and by the covariances between traits. The last 
one is just valid for multi-trait analysis.

4 - The FAI-BLUP index combines factor analysis (exploratory factor analysis) with ideotypes (confirmatory factor 
analysis) to explore the covariance between the traits evaluated, as proposed by Rocha et al. (2017). Factor analysis was 
performed on the BLUPs of the progenies. The number of ideotypes (NI) was equal to NI = 2n, where n is the number of 
factors with eigenvalues equal to or greater than 1. From this, the distances between the progenies evaluated and the 
ideotypes and the relative similarity measures were calculated, which enabled the ranking of the genotypes, determined 

by the following equation: Pjk = 
1
djk

 

Σn
j,k=1 

1
djk

 

 where Pjk is the relative similarity of progeny j to ideotype k and djk is the 

distance from progeny j to ideotype k in standardized mean Euclidean distance.

The goal of selection was to decrease FLOW and increase PH, GMP, TSS, and TBH. A selection intensity of 10% was 
considered and the selection gain was only investigated for global selection, that is, it was performed based on average 
performance across sites. The expected selection gain (GS%) for each strategy was estimated based on the BLUPs of the 

20 best progenies by the expression GS% = 
BLUPt

Y�t 
 × 100, in which BLUP is the mean BLUP of the progenies selected 

for trait t and Y �t is the overall mean of trait t. The analyses of coincidence among the selection indices using single- and 
multi-trait mixed models were performed by the agreement index proposed by Cohen (1960).

The statistical analyses using the mixed-model methodology were performed in R environment (R Core Team 2018). 
Single-trait analysis was performed using the lme4 package using the penalized least squares algorithm (Bates et al. 
2015), and multi-trait analysis using the sommer package version 3.7 using the Newton-Raphson algorithm (Covarrubias-
Pazaran 2016).

RESULTS AND DISCUSSION

The genetic variance among half-sib progenies was non-null for most traits in the single- and multi-trait analyses 
(Table 1), except for TSS. It is noteworthy that this genetic variance was exclusively related to the additive genetic 
effects because they were evaluated in half-sib progenies, so they exploit ¼ of the additive variance of the population. 
The mean selective accuracies of progenies were high for most of the traits (rg ̂g > 0.7), except for TSS (Table 1), which 
indicates high reliability to select promising progenies based on experimental data (Resende and Duarte 2007). The 
values ranged from 0.77 for PH to 0.95 for FLOW and TBH (Table 1). The absence of genetic variance for TSS might have 
occurred due to environmental fluctuations, especially rainfall during the harvest season (Figure 1), which may have led 
to the dilution of soluble solids of the stem juice. Unlike what was observed in this study, França et al. (2016) observed 
high heritability estimates for TSS.

  ,m
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The variance of the progeny × site interaction was significant for GMP, TSS, and TBH (Table 1). This indicates that the 
progenies showed a relatively noncoincident performance in the two sites for these traits. Studies conducted on sweet 
sorghum have shown the presence of genotype × environment interactions for several traits correlated with ethanol 
production (Souza et al. 2013, Lombardi et al. 2018, Udoh et al. 2018). According to Murray et al. (2008) and Gutjahr et 
al. (2013), the TSS trait has a somewhat complex inheritance and therefore is greatly influenced by the environment. 
Several factors have an impact on the final TSS, including day length and radiation intensity, in addition to soil conditions, 
soil fertility, and the response to fertilization (Kumar et al. 2008). 

In general, the multi-trait analysis provided higher estimates for several parameters (Table 1). Multi-trait analysis 
yielded higher estimates of the genetic variances among progenies for all traits except TSS, as well as higher mean selective 
accuracy estimates. According to Piepho et al. (2008) and Viana et al. (2010), multi-trait analysis should be preferred, 
especially when the evaluated traits are highly correlated. The selection for low heritability trait can also benefit when 
performed with a high heritability trait (Souza et al. 2019). Moreover, according to Schaeffer (1984), in situations where 
the traits have equal heritability, the selection efficiency of the multi-trait BLUP relative to the single-trait BLUP depends 
only on the absolute difference between the genetic and environmental correlations of the assessed traits. 

Genetic correlations among the traits are of great importance for success in selections to be conducted in breeding 
programs. Positive correlations show that the changes of two traits are in the same direction, while negative correlations 
indicate their inverse relationships. High-magnitude and positive genetic correlation was observed between TBH and 
almost all traits (Table 2). Working with sweet sorghum progenies, França et al. (2016) also observed a high genetic 
correlation between the traits GMP and TBH (0.80). In a study of phenotypic correlations using path analysis, Lombardi 
et al. (2015) demonstrated that TBH showed a high positive correlation and a direct effect on ethanol yield. A high 
residual correlation was observed between GMP and TBH (0.82), which indicates that the environment affected these 
traits equally and in the same direction.

Table 1. Estimates of genetic variance among half-sib progenies of sweet sorghum (σ2
g), variance of the progeny × site interaction (σ2

s), 
error variance (σ2

e), mean selective accuracy of progenies (rg ̂g), and correlation of progenies across sites (rB) for the agro-industrial 
traits evaluated in sweet sorghum progenies using single- (ST) and multi-trait (MT) BLUP

Parameter
FLOW PH GMP TSS TBH

ST MT ST MT ST MT ST MT ST MT
σ2

g 17.8* 18.0* 0.022* 0.023* 88.1* 89.8* 0.3 0.3 2.1* 2.2*

σ2
s 0.5 0.4 0.0 0.0 36.9* 39.6* 0.6* 0.7* 1.4* 1.6*

σ2
e 8.9 8.9 0.1 0.1 98.1 95.3 2.8 2.7 2.9 2.8

rg ̂g 0.94 0.95 0.77 0.87 0.83 0.92 - - 0.79 0.95
rB 0.97 0.97 1 1 0.70 0.69 0.30 0.27 0.61 0.79

FLOW - flowering time (days); PH - plant height (m); GMP - green mass production (t ha-1); TSS - total soluble solids content (° Brix); TBH - tons of Brix per hectare (t ha-1). 
* Significant at 5% probability level, respectively, by the likelihood ratio test

Figure 1. Precipitation and average temperature during October/2016 and March/2017 in Lavras/MG (A) e Sete Lagoas/MG (B), 
INMET (2021).
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In a breeding program, an issue that is always important is the multi-trait selection strategy to be adopted, since the 
ideotype involves a series of traits of interest. In the sweet sorghum crop, the ideotype consists of a minimum biomass 
yield of 60 t ha-1, minimum total sugar extraction of 80 kg t-1 of biomass, minimum total sugar content in the juice of 
12.5%, minimum ethanol production of 60 L t-1 of biomass, and minimum industrial use period of 30 days (Parrella 
2011). By the single-trait mixed model, the mean estimated gains from selection were 6.2% (FLOW), 4.02% (PH), 23.3% 
(GMP), and 29.4% (TBH) (Figure 2). Direct selection for the TBH trait and the FAI/BLUP index were promising because 
they provided balanced gains for GMP and TBH, and the agreement of selected progenies was 68.75% (Table 3). The 
sum of rank and additive indices was not so efficient in the single-trait approach because the estimated gains were 
below the mean gain for GMP and TBH.

In the multi-trait approach, the expected mean gains were 10.6% (FLOW), 7.1% (PH), 29.3% (GMP) and 37.1% (TBH) 
(Figure 2). There was an increase in estimated gains from selection for all traits, and all strategies provided more balanced 
gains compared to the single-trait approach. The coincidences between the selection indices using multi-trait analysis 
were higher than those found with single-trait analysis (Table 3). The direct selection for TBH trait and the additive index 
selected the same progenies (Table 3). These two indices provided the highest gain estimate for the TBH trait (37.5%). 
The FAI/BLUP index provided very balanced estimates of gains from selection, which was above the mean gain obtained 
in the single-trait approach.

When selecting for a given trait, this will usually lead to changes in others due to genetic correlations (Ramalho et 
al. 2012). This fact is called the correlated response to selection, and its direction may or may not be of interest to the 

Table 2. Estimates of the genetic (above the diagonal) and residual (below the diagonal) correlations by multi-trait analysis for the 
agro-industrial traits: flowering time (FLOW, days); plant height (PH, m); green mass production (GMP, t ha-1), and tons of Brix per 
hectare (TBH, t ha-1) evaluated in Lavras and Sete Lagoas in the 2016/2017 agricultural crop year

Correlation  FLOW  PH  GMP  TBH
 FLOW  - 0.78* 0.83* 0.90*
 PH 0.02  - 0.82* 0.82*
 GMP -0.17* 0.24*  - 0.99*
 TBH -0.11* 0.14* 0.82*  -

* Significant at 5% probability level, respectively, by the Bootstrap BCa method based on 9999 simulations for the genetic correlations, and by the t-test for the residual 
correlations.

Figure 2. Expected genetic gains from selection (%) of the agro-industrial traits evaluated using different selection indices (direct selec-
tion for TBH trait, FAI/BLUP index, Sum of rank index (M&M index), and additive index) via single-trait (ST) and multi-trait (MT) analyses. 
PH - plant height (m); FLOW – flowering time (days); GMP - green mass production (t ha-1); and TBH - tons of Brix per hectare (t ha-1).



Strategies for multi-trait selection of sweet sorghum progenies 

7Crop Breeding and Applied Biotechnology - 21(4): e388221410, 2021

breeder (Leite et al. 2019). In this study, direct selection for TBH trait provided satisfactory joint results in indirect gains 
for three of the five traits evaluated (PH, GMP, and TBH) (Figure 2). According to Hallauer et al. (2010), a high genetic 
correlation between traits, coupled with high heritability of secondary traits, tends to provide satisfactory genetic gains 
for all of them. In situations like this, the selection response is fast and very efficient, but even in the same scenario the 
relative selection gain is expected to be lower in highly improved populations (Hallauer et al. 2010).

The sum of rank index was not promising because it showed the lowest estimated gain from selection for the trait 
GMP in the single-trait approach and PH, GMP, and TBH in the multi-trait analysis (Figure 2). Inefficiency in obtaining 
satisfactory gains in the sweet sorghum crop by the Mulamba and Mock index was also observed by França et al. (2016) 
through the univariate mixed-model approach, since this index provided the lowest estimates of gains from selection 
for all traits measured by the authors, some of which were the same as those evaluated here (GMP and TBH).

The use of the additive index combined with the single-trait approach was not promising because it provided the 
lowest estimated gain in TBH among all strategies used (Figure 2). This would be a problem because TBH is directly 
related to ethanol production (Lombardi et al. 2015). However, its use combined with the multi-trait approach proved 
to be very efficient (Figure 2). This increase of selection efficiency using the multi-trait approach is due to effectiveness 
of inter-trait recovery information, in which the genetic covariance between traits is taken into account to obtain the 
predictions of genetic values of the progenies.

In corn, Mendonça et al. (2017) sought to select genotypes that combined the traits tolerance to nitrogen stress and 
efficient use of nitrogen. The researchers took single- and multi-trait approaches with several selection indices, including 
the additive index and the sum of rank index. In their multi-trait analysis, there was an increase in the estimates of gains 
from selection. Working with sweet corn, Entringer et al. (2016) observed that the use of the additive index combined 
with the multi-trait approach provided higher gain estimates and was more efficient in selecting progenies than the 
sum of rank index. In soybean crop, the additive and FAI/BLUP indices were efficient in selecting productive progenies 
associated with upright architecture (Volpato et al. 2021).

By the FAI/BLUP index, under single- and multi-trait approaches, all traits were explained by only one factor, which 
might be associated with the high correlations (Rocha et al. 2017). In the literature, the FAI/BLUP index has been 
used to select superior progenies of elephant grass (Rocha et al. 2017), common bean (Rocha et al. 2019), soybean 
(Woyann et al. 2019, Volpato et al. 2021), and biomass sorghum (Silva et al. 2018). Our use of the FAI/BLUP index 
with multi-trait BLUPs proved to be an interesting alternative, since it provided balanced gains for almost all traits, 
and its estimate for TBH was very close to that obtained with direct selection and by the additive index (Figure 2). Its 
estimate for the gain in FLOW was higher than that from any other strategy. These results indicate the efficiency of 
the FAI/BLUP index in providing desirable gains for a set of traits that strongly impact ethanol production but at the 
same time hinder the selection of earlier progenies. The FAI/BLUP original proposal (Rocha et al. 2017) uses single-
trait BLUP, and it was observed that the use of FAI/BLUP based on multi-trait BLUP means provided greater increases 
in the estimates of gains from selection.

Multi-trait analysis provided more accurate estimates of genetic parameters and predictions of genetic values than 
single-trait analysis. The direct selection for TBH and the FAI/BLUP index resulted in the estimate of balanced genetic 
gains, both in the single-trait and in the multi-trait approaches, enabling the identification of progenies that were 
associated with high performance. 

Table 3. Number of common progenies selected (between parenthesis) and agreement coefficients of top-20 best progenies between 
different selection indices (direct selection of TBH trait, FAI/BLUP index, Sum of rank index (M&M index), and additive index) using 
single- (bellow the diagonal) and multi-trait (above the diagonal) analyses

 Direct Selection  FAI/BLUP Index  M&M Index  Additive Index
 Direct Selection  - (18) 87.50% (18) 87.50% (20) 100.00%
 FAI/BLUP Index (15) 68.75%.  - (18) 87.50% (17) 81.25%
 M&M Index (12) 50.00% (11) 43.75%  - (18) 87.50%
 Additive Index (12) 50.00% (9) 31.25% (17) 75.00%  -
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