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Abstract: The selection of sweet sorghum genotypes is based on multiple agro-
nomical and technological traits. The objectives of this study were to evaluate
the effectiveness of inter-trait recovery information in improving the selective
accuracy of the predicted genetic values of sweet sorghum progenies, and to
compare several selection indices in terms of selection gains using single- and
multi-trait mixed models. The trials were conducted in two sites. The traits
flowering time, plant height, green mass production, total soluble solids content,
and tons of Brix per hectare were assessed. Significant genetic variance was
observed for all traits, except for total soluble solids content. The multi-trait
analysis provided more accurate estimates of genetic parameters and predic-
tions of the progeny genetic values, and higher selection gain than the single-
trait analysis. The direct selection for TBH and the FAI/BLUP index resulted in
balanced genetic gains for the assessed traits.
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INTRODUCTION

The global demand for renewable energy sources, such as biofuels, has
increased (OECD/FAO 2021). The use of these renewable sources aims to reduce
greenhouse gas emissions from the use of fossil fuels (Abdullah et al. 2019).
Brazil is the second-largest producer of ethanol in the world using sugarcane
as feedstock (Karp et al. 2021). However, to strengthen its ethanol production
chain, especially regarding filling the window in the sugarcane off-season, which
runs from December to April, the ethanol plants might use other bioenergy
crops, which would maximize the use of resources and contribute to low-carbon
agriculture and more efficient agricultural and industrial processes.

Sweet sorghum [Sorghum bicolor (L.) Moench] has emerged as a
complementary bioenergy crop that has favorable aspects to its exploitation,
such as high green mass yield, juicy stalks, and high levels of fermentable sugars
in its juice (Regassa and Wortmann 2014, Appiah-Nkansah et al. 2019). It is a
crop that has been attracting attention due to its great potential for ethanol
production (Wu et al. 2010, Fernandes et al. 2014, Ahmad Dar et al. 2018).

Sweet sorghum breeding programs aim to obtain cultivars with higher ethanol
yield. However, this quantitative trait has some peculiarities, such as complex
genetic architecture and pronounced environmental effects (Burks et al. 2015,
Rocha et al. 2018, Cooper et al. 2019). The first peculiarity is that ethanol yield
results from the expression of several interrelated agro-industrial traits, such as
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plant height, green mass production, flowering time, juice yield, fermentable sugar content in the juice, and tons of Brix
per hectare (TBH) (Leite et al. 2017). Another aspect is the difficulty or even the infeasibility of performing phenotyping
for ethanol yield, especially in the early stages of the breeding cycle, in which many genotypes must be tested, and the
experimental material might be limited (e.g., seeds). Regarding the difficulty of performing direct selection for ethanol
yield, an alternative is to obtain genetic gain via indirect selection. The path analysis study by Lombardi et al. (2015)
found that TBH is highly correlated with ethanol yield, in addition to having a strong, positive, direct effect on this target
trait of sweet sorghum breeding. Thus, TBH is suitable for indirect selection for ethanol yield.

The decision about selection of promising sweet sorghum cultivars is based on multiple traits. This task can be
accomplished using single- or multi-trait mixed models. However, the selection efficiency is expected to increase by using
multi-trait mixed models (Henderson and Quaas 1976) because these models make it possible to recover information
on the covariance between traits and thus might significantly improve the accuracy of genetic value predictions, making
the selection process more efficient (Piepho et al. 2008, Viana et al. 2010, Alves et al. 2018).

Another option for selecting genotypes for ethanol yield is the use of selection indices. In this context, some breeders
have commonly used selection indices based on single-trait mixed models to predict genetic values (Meier et al. 2019),
but their main disadvantage is the impossibility of exploiting the covariance (correlation) between traits. Some indices
frequently used are based on the sum of the predicted genetic values (additive index) (Resende 2007), and the sum of
rank index (Mulamba and Mock 1978). More recently proposed selection indices, such as the factor analysis based on
ideotype-design associated with the best linear unbiased prediction (FAI-BLUP) index, are also based on univariate mixed
models (Rocha et al. 2017). Although the FAI-BLUP index make it possible to exploit the covariance between traits, the
use of multi-trait mixed model might increase the expected genetic gain with selection.

Given the above, the objectives of this study were to evaluate the effectiveness of inter-trait recovery information in
improving the selective accuracy of the predicted genetic values of sweet sorghum progenies, and to compare several
selection indices in terms of selection gains using single- and multi-trait mixed models.

MATERIAL AND METHODS

Sites

The trials were conducted in the 2016/2017 agricultural crop year in two sites in the State of Minas Gerais, Brazil
(Figure 1). The first was in the experimental area of Embrapa Maize and Sorghum (lat 19° 27' 57" S, long of 44° 14’ 49"
W, alt 767 m asl) in the municipality of Sete Lagoas, Minas Gerais, Brazil. The region has an average temperature of
approximately 23 °C and mean annual rainfall of 1,403 mm. The climate, according to Képpen'’s climate classification,
is Cwa. The soil is classified as Latossolo vermelho (Oxisol) with a gently undulating relief. The second experiment was
conducted at the Center for Scientific and Technological Development in Agriculture, Muquém Farm (lat 21° 14'S, long
45° 00 W, alt 932 m asl), Federal University of Lavras, Lavras, Minas Gerais. The region has an average annual temperature
of 19.4 °C and a mean annual rainfall of 1,529.7 mm. The climate, according to K6ppen'’s climate classification, is Cwa.
The soil is classified as Latossolo vermelho-amarelo (Oxisol) with a gently undulating relief. Precipitation and average
temperature data were obtained during the trials for the two sites (INMET 2021).

Progeny evaluation

A total of 196 half-sib progenies from a cycle-0 population of recurrent selection were evaluated (Leite et al. 2019).
The experiments were conducted in a 14x14 lattice design with two replications in Lavras and three replications in Sete
Lagoas. The plot consisted of 3-m-long rows with 60-cm spacing between rows. Sowing was performed at the end of
October 2016 in Sete Lagoas and at the beginning of November 2016 in Lavras. Harvesting was performed when the
grains were in the hard dough stage, at approximately 115 days after sowing.

The following traits were measured: flowering time (FLOW, days) by the number of days from sowing up to when
50% of the plants of the plot flowered; plant height (PH, m), according to the mean height (m) of eight plants taken at
random from each plot, measured from the soil surface to the tip of the panicle using a measuring tape; green mass
production (GMP, t ha) at the time of each cutting, according to the weight of the whole plants from each plot, weighed
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on a digital hanging scale in kg, converted to t ha’; total soluble solids content (TSS, °Brix) through a portable digital
refractometer (Instrutemp - ITREFD-45), with automatic correction of temperature and maximum resolution of 0.1 2Brix;
and tons of Brix per hectare (TBH), obtained by the product of GMP and TSS/100.

Statistical analyses

The data analyses were performed using the mixed-model methodology, with estimation of the fixed effects via best
linear unbiased estimates (BLUEs), and prediction of the random effects via best linear unbiased predictions (BLUPs)
(Henderson 1974), and the use of the restricted maximum likelihood (REML) method for estimation of variance components
(Patterson and Thompson 1971). Multi-environment single-trait (Equation 1) and multi-trait multi-environment (five
traits) (Equation 2) analyses were performed as described below:

yt = Xt6t + tht + tht + Qtst + et (1)

where y, is the vector of phenotypic data of the trait t; 8, is the vector of fixed effects of the sites and of the replications
within sites plus the overall mean of trait t; b, is the vector of the sub-block effects within replications at the sites of
trait t, b, ~ N(O, lof,t); g, is the vector of the progeny effects of trait t, g, ~ N(O, Iogt); s, is the vector of the progeny x
site interaction effects of trait ¢, i, ~ N(O, loﬁt); e, is the vector of the errors of trait t, e, ~ N(0, Iozet); X,Z, W, Q,are the
incidence matrices of fixed and random effects; oit, ogt, oft, and oﬁt are the variances of sub-blocks within replications at
each site, of progenies, of progeny x site interaction, and of the experimental error, respectively.

y=XB8+Zb+Wg+Qs+e (2)

where yis the vector of stacked phenotypic data of the traits y' = (y',,..., y', ); 8 is the vector of fixed effects of the sites and
of the replications within each site added to the overall mean; b is the vector of the sub-block effects within replications

o - 0
at each site, b ~ NMV(0, 2»); Z» is the covariance matrix of the sub-blocks, defined as Z» = : : =® 1L,
0 0%’5
where of,i is the variance of sub-blocks for the trait t (t =1, ..., 5); g is the vector of the progeny effects, g ~ NMV(0, Z4); Z4
031 0915
is the matrix of genetic covariances, defined as 2, = : : =® |0 Where ogi is the variance of progenies
O, - 035

for the trait t (t =1, ..., 5) and Oy, IS the genetic covariance of progenies between traits t and t’; s is the vector of the
progeny x site interaction effects, s ~ NMV(0, Zs); Zs is the covariance matrix of the progeny x site interactions, defined

ogl 0515

as X = : : =® |
0515 035

O, is the covariance of progeny x site interaction between traits t and t’; e is the error vector, where e ~ NMV/(0, Z.);

2
o o
€1 €15

Lo Where cﬁl_ is the variance of progeny x site interaction for the trait t (t =1, ..., 5) and

Y. is the matrix of error covariance, defined as 2. = : : =® I, where oﬁ/_ is the error variance for the

2
0 e 0
€15 es

trait t (t=1, ..., 5) and o, is the error covariance between traits t and t’; and X, Z, W, and Q are the design matrices that
associate the fixed and random effects with the data vector y.

Wald test was used to test the significance of the fixed effects. The likelihood ratio test was used to verify the
significance of the random effects (Mrode 2014, Resende et al. 2014). From the estimates of tzhe variance components,
the correlation of the progenies across the sites was estimated by the expression r, = _ 9% for each trait t, the

2 2
th+ 05t
. . . . . O, O,
genetic and environmental correlations between traits t and t’ by the expressions Fgp = == andr, = ——er .

/ 2 2 tt / 2 2
thXO'gt. O'etXGEtI

The significance of the genetic correlations was evaluated via Bootstrap at 5% probability level by the “bias-corrected
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and accelerated” (BCa) method, with 1000 bootstrap replications, using the wBoot R package (Weiss 2016), while the
residual correlations were checked by t-test at 5% probability level. The mean selective accuracy of progenies for each
trait (t) was estimated by the expression =y 1- PEV
of the progenies (Resende and Duarte 2007). e,

, where PEV is the mean prediction error variance of the BLUPs

For multi-trait selection, the following selection indices were adopted based on the BLUPs of the progenies from the
multi-environment single- and multi-trait mixed models:

1 - Direct selection based on the TBH trait, where the indirect gains obtained for the other traits were estimated.

2 - Mulamba and Mock index (/,, ), estimated from the rank of the progenies as i = 2, rys where Ly is the value

of the sum of rank index associated with progeny j and r, is the rank of progenyj on trait t;

1
3 - Additive index (/,), estimated by the expression L= 2, gtj X W, x———as described by Resende (2007), in which Ly

is the value of the additive index associated with progeny j; th is the prefﬂicted genetic value of progeny j for trait t; w,
is the economic weight associated with trait t; and o, is the standard deviation of progenies for trait t. The economic
weight was assumed equal to 1, because it is hard to define them for the assessed traits. Furthermore, single- and
multi-trait BLUPs were already weighed by the heritability of the traits and by the covariances between traits. The last
one is just valid for multi-trait analysis.

4 - The FAI-BLUP index combines factor analysis (exploratory factor analysis) with ideotypes (confirmatory factor
analysis) to explore the covariance between the traits evaluated, as proposed by Rocha et al. (2017). Factor analysis was
performed on the BLUPs of the progenies. The number of ideotypes (N/) was equal to N/ = 2", where n is the number of
factors with eigenvalues equal to or greater than 1. From this, the distances between the progenies evaluated and the
ideotypes and the relative similarity measures were calculated, which enabled the ranking of the genotypes, determined

by the following equation: P,.= d where P, is the relative similarity of progeny j to ideotype k and djk is the

- ke
1
,m
Z;‘:k:l d

distance from progeny j to ideotype k in standardized mean Euclidean distance.
The goal of selection was to decrease FLOW and increase PH, GMP, TSS, and TBH. A selection intensity of 10% was

considered and the selection gain was only investigated for global selection, that is, it was performed based on average

performance across sites. The expected selection gain (GS,) for each strategy was estimated based on the BLUPs of the

BLUP N
20 best progenies by the expression GS, = T‘ x 100, in which BLUP is the mean BLUP of the progenies selected

for trait t and VI is the overall mean of trait t. Thé analyses of coincidence among the selection indices using single- and
multi-trait mixed models were performed by the agreement index proposed by Cohen (1960).

The statistical analyses using the mixed-model methodology were performed in R environment (R Core Team 2018).
Single-trait analysis was performed using the Ime4 package using the penalized least squares algorithm (Bates et al.
2015), and multi-trait analysis using the sommer package version 3.7 using the Newton-Raphson algorithm (Covarrubias-
Pazaran 2016).

RESULTS AND DISCUSSION

The genetic variance among half-sib progenies was non-null for most traits in the single- and multi-trait analyses
(Table 1), except for TSS. It is noteworthy that this genetic variance was exclusively related to the additive genetic
effects because they were evaluated in half-sib progenies, so they exploit % of the additive variance of the population.
The mean selective accuracies of progenies were high for most of the traits (rgg > 0.7), except for TSS (Table 1), which
indicates high reliability to select promising progenies based on experimental data (Resende and Duarte 2007). The
values ranged from 0.77 for PH to 0.95 for FLOW and TBH (Table 1). The absence of genetic variance for TSS might have
occurred due to environmental fluctuations, especially rainfall during the harvest season (Figure 1), which may have led
to the dilution of soluble solids of the stem juice. Unlike what was observed in this study, Franca et al. (2016) observed
high heritability estimates for TSS.
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Table 1. Estimates of genetic variance among half-sib progenies of sweet sorghum (ozg), variance of the progeny x site interaction (0?),
error variance (o2), mean selective accuracy of progenies (rgg), and correlation of progenies across sites (r,) for the agro-industrial
traits evaluated in sweet sorghum progenies using single- (ST) and multi-trait (MT) BLUP

FLOW PH GMP TSS TBH

Parameter

ST mMT ST MT ST MT ST MT ST MT
oé 17.8° 18.0° 0.022" 0.023" 88.1 89.8" 0.3 0.3 2.1 2.2°
o’ 0.5 0.4 0.0 0.0 36.9*% 39.6 0.6" 0.7 1.4 1.6°
o’ 8.9 8.9 0.1 0.1 98.1 95.3 2.8 2.7 2.9 2.8
Tog 0.94 0.95 0.77 0.87 0.83 0.92 - - 0.79 0.95
r, 0.97 0.97 1 1 0.70 0.69 0.30 0.27 0.61 0.79

FLOW - flowering time (days); PH - plant height (m); GMP - green mass production (t ha); TSS - total soluble solids content (° Brix); TBH - tons of Brix per hectare (t ha?).
* Significant at 5% probability level, respectively, by the likelihood ratio test
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Figure 1. Precipitation and average temperature during October/2016 and March/2017 in Lavras/MG (A) e Sete Lagoas/MG (B),
INMET (2021).

The variance of the progeny x site interaction was significant for GMP, TSS, and TBH (Table 1). This indicates that the
progenies showed a relatively noncoincident performance in the two sites for these traits. Studies conducted on sweet
sorghum have shown the presence of genotype x environment interactions for several traits correlated with ethanol
production (Souza et al. 2013, Lombardi et al. 2018, Udoh et al. 2018). According to Murray et al. (2008) and Gutjahr et
al. (2013), the TSS trait has a somewhat complex inheritance and therefore is greatly influenced by the environment.
Several factors have an impact on the final TSS, including day length and radiation intensity, in addition to soil conditions,
soil fertility, and the response to fertilization (Kumar et al. 2008).

In general, the multi-trait analysis provided higher estimates for several parameters (Table 1). Multi-trait analysis
yielded higher estimates of the genetic variances among progenies for all traits except TSS, as well as higher mean selective
accuracy estimates. According to Piepho et al. (2008) and Viana et al. (2010), multi-trait analysis should be preferred,
especially when the evaluated traits are highly correlated. The selection for low heritability trait can also benefit when
performed with a high heritability trait (Souza et al. 2019). Moreover, according to Schaeffer (1984), in situations where
the traits have equal heritability, the selection efficiency of the multi-trait BLUP relative to the single-trait BLUP depends
only on the absolute difference between the genetic and environmental correlations of the assessed traits.

Genetic correlations among the traits are of great importance for success in selections to be conducted in breeding
programs. Positive correlations show that the changes of two traits are in the same direction, while negative correlations
indicate their inverse relationships. High-magnitude and positive genetic correlation was observed between TBH and
almost all traits (Table 2). Working with sweet sorghum progenies, Franca et al. (2016) also observed a high genetic
correlation between the traits GMP and TBH (0.80). In a study of phenotypic correlations using path analysis, Lombardi
et al. (2015) demonstrated that TBH showed a high positive correlation and a direct effect on ethanol yield. A high
residual correlation was observed between GMP and TBH (0.82), which indicates that the environment affected these
traits equally and in the same direction.

Crop Breeding and Applied Biotechnology - 21(4): e388221410, 2021 5
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Table 2. Estimates of the genetic (above the diagonal) and residual (below the diagonal) correlations by multi-trait analysis for the
agro-industrial traits: flowering time (FLOW, days); plant height (PH, m); green mass production (GMP, t ha'), and tons of Brix per
hectare (TBH, t ha!) evaluated in Lavras and Sete Lagoas in the 2016/2017 agricultural crop year

Correlation FLOW PH GMP TBH

FLOW - 0.78* 0.83* 0.90*
PH 0.02 - 0.82* 0.82*
GMP -0.17* 0.24* - 0.99*
TBH -0.11* 0.14* 0.82%* -

* Significant at 5% probability level, respectively, by the Bootstrap BCa method based on 9999 simulations for the genetic correlations, and by the t-test for the residual
correlations.

In a breeding program, an issue that is always important is the multi-trait selection strategy to be adopted, since the
ideotype involves a series of traits of interest. In the sweet sorghum crop, the ideotype consists of a minimum biomass
yield of 60 t ha, minimum total sugar extraction of 80 kg t of biomass, minimum total sugar content in the juice of
12.5%, minimum ethanol production of 60 L t* of biomass, and minimum industrial use period of 30 days (Parrella
2011). By the single-trait mixed model, the mean estimated gains from selection were 6.2% (FLOW), 4.02% (PH), 23.3%
(GMP), and 29.4% (TBH) (Figure 2). Direct selection for the TBH trait and the FAI/BLUP index were promising because
they provided balanced gains for GMP and TBH, and the agreement of selected progenies was 68.75% (Table 3). The
sum of rank and additive indices was not so efficient in the single-trait approach because the estimated gains were
below the mean gain for GMP and TBH.

In the multi-trait approach, the expected mean gains were 10.6% (FLOW), 7.1% (PH), 29.3% (GMP) and 37.1% (TBH)
(Figure 2). There was an increase in estimated gains from selection for all traits, and all strategies provided more balanced
gains compared to the single-trait approach. The coincidences between the selection indices using multi-trait analysis
were higher than those found with single-trait analysis (Table 3). The direct selection for TBH trait and the additive index
selected the same progenies (Table 3). These two indices provided the highest gain estimate for the TBH trait (37.5%).
The FAI/BLUP index provided very balanced estimates of gains from selection, which was above the mean gain obtained
in the single-trait approach.

When selecting for a given trait, this will usually lead to changes in others due to genetic correlations (Ramalho et
al. 2012). This fact is called the correlated response to selection, and its direction may or may not be of interest to the
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Figure 2. Expected genetic gains from selection (%) of the agro-industrial traits evaluated using different selection indices (direct selec-
tion for TBH trait, FAI/BLUP index, Sum of rank index (M&M index), and additive index) via single-trait (ST) and multi-trait (MT) analyses.
PH - plant height (m); FLOW — flowering time (days); GMP - green mass production (t ha); and TBH - tons of Brix per hectare (t ha?).
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Table 3. Number of common progenies selected (between parenthesis) and agreement coefficients of top-20 best progenies between
different selection indices (direct selection of TBH trait, FAI/BLUP index, Sum of rank index (M&M index), and additive index) using
single- (bellow the diagonal) and multi-trait (above the diagonal) analyses

Direct Selection FAI/BLUP Index M&M Index Additive Index
Direct Selection - (18) 87.50% (18) 87.50% (20) 100.00%
FAI/BLUP Index (15) 68.75% - (18) 87.50% (17) 81.25%
M&M Index (12) 50.00% (11) 43.75% - (18) 87.50%
Additive Index (12) 50.00% (9) 31.25% (17) 75.00% -

breeder (Leite et al. 2019). In this study, direct selection for TBH trait provided satisfactory joint results in indirect gains
for three of the five traits evaluated (PH, GMP, and TBH) (Figure 2). According to Hallauer et al. (2010), a high genetic
correlation between traits, coupled with high heritability of secondary traits, tends to provide satisfactory genetic gains
for all of them. In situations like this, the selection response is fast and very efficient, but even in the same scenario the
relative selection gain is expected to be lower in highly improved populations (Hallauer et al. 2010).

The sum of rank index was not promising because it showed the lowest estimated gain from selection for the trait
GMP in the single-trait approach and PH, GMP, and TBH in the multi-trait analysis (Figure 2). Inefficiency in obtaining
satisfactory gains in the sweet sorghum crop by the Mulamba and Mock index was also observed by Franca et al. (2016)
through the univariate mixed-model approach, since this index provided the lowest estimates of gains from selection
for all traits measured by the authors, some of which were the same as those evaluated here (GMP and TBH).

The use of the additive index combined with the single-trait approach was not promising because it provided the
lowest estimated gain in TBH among all strategies used (Figure 2). This would be a problem because TBH is directly
related to ethanol production (Lombardi et al. 2015). However, its use combined with the multi-trait approach proved
to be very efficient (Figure 2). This increase of selection efficiency using the multi-trait approach is due to effectiveness
of inter-trait recovery information, in which the genetic covariance between traits is taken into account to obtain the
predictions of genetic values of the progenies.

In corn, Mendonga et al. (2017) sought to select genotypes that combined the traits tolerance to nitrogen stress and
efficient use of nitrogen. The researchers took single- and multi-trait approaches with several selection indices, including
the additive index and the sum of rank index. In their multi-trait analysis, there was an increase in the estimates of gains
from selection. Working with sweet corn, Entringer et al. (2016) observed that the use of the additive index combined
with the multi-trait approach provided higher gain estimates and was more efficient in selecting progenies than the
sum of rank index. In soybean crop, the additive and FAI/BLUP indices were efficient in selecting productive progenies
associated with upright architecture (Volpato et al. 2021).

By the FAI/BLUP index, under single- and multi-trait approaches, all traits were explained by only one factor, which
might be associated with the high correlations (Rocha et al. 2017). In the literature, the FAI/BLUP index has been
used to select superior progenies of elephant grass (Rocha et al. 2017), common bean (Rocha et al. 2019), soybean
(Woyann et al. 2019, Volpato et al. 2021), and biomass sorghum (Silva et al. 2018). Our use of the FAI/BLUP index
with multi-trait BLUPs proved to be an interesting alternative, since it provided balanced gains for almost all traits,
and its estimate for TBH was very close to that obtained with direct selection and by the additive index (Figure 2). Its
estimate for the gain in FLOW was higher than that from any other strategy. These results indicate the efficiency of
the FAI/BLUP index in providing desirable gains for a set of traits that strongly impact ethanol production but at the
same time hinder the selection of earlier progenies. The FAI/BLUP original proposal (Rocha et al. 2017) uses single-
trait BLUP, and it was observed that the use of FAI/BLUP based on multi-trait BLUP means provided greater increases
in the estimates of gains from selection.

Multi-trait analysis provided more accurate estimates of genetic parameters and predictions of genetic values than
single-trait analysis. The direct selection for TBH and the FAI/BLUP index resulted in the estimate of balanced genetic
gains, both in the single-trait and in the multi-trait approaches, enabling the identification of progenies that were
associated with high performance.
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