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—Embrapa Café, Brası́lia, DF, Brazil

¤ Current address: Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
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Abstract

This study assessed the efficiency of Genomic selection (GS) or genome-wide selection

(GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to

breed autogamous plant populations with oligogenic traits. To this end, simulated data of an

F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), con-

trolled by four genes. The generations were advanced (up to F6) at two selection intensities

(10% and 20%). The genomic genetic value was computed by RQR for different quantiles

(0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and

BLASSO. A second objective was to find the statistical methodology that allows the fastest

fixation of favorable alleles. In general, the results of the RQR model were better than or

equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in

most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of

10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth

generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated

autogamous plant populations with oligogenic traits, could reduce time and consequently

costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.

Introduction

In mid-2019, the world population reached 7.7 billion inhabitants and a further rise to 9.7 bil-

lion by 2050 is estimated [1]. Thus, more food must be produced to feed this population,

although agricultural areas are increasingly limited and concerns about the negative environ-

mental impacts of food production are growing [2, 3].

Since the Green Revolution in the 1960s, which caused a boost in the production potential

of several crops, it is generally expected that plant breeding efforts will be able to secure the

required yield gains [4]. The productivity of coffee trees, for example, has increased
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considerably, and one of the main reasons is the use of improved cultivars. In Brazil, coffee cul-

tivars that were released and are still in use, e.g., “Mundo Novo”, are 240% more productive

than introduced varieties [5]. Plant breeding programs, aside from focusing on higher yields,

require the improvement of several other traits [6], e.g., the development of plants with a more

appropriate architecture for higher plant density and mechanical management, better resis-

tance and tolerance to biotic and abiotic stresses, adaptation to and stability in different culti-

vation environments, and a higher fruit and grain quality [7–11].

To meet the growing producer, consumer and market demand, a complex, continuous and

dynamic breeding process is required [4], resulting in costly long-term projects for the devel-

opment of superior cultivars. The developmental period of an improved cultivar of a perennial

species can be over 25 years [12] and for annual species approximately 12 years. Thus, the

search for procedures capable of providing superior genotypes in less time and, consequently,

at a lower cost, has been intensified [4, 13, 14].

With a view to reducing the time demand and increasing selection accuracy, Meuwissen

et al. [15] proposed the genome-wide selection (GWS). This kind of selection uses direct DNA

information based on molecular markers to predict the genomic estimated breeding value

(GEBV) of an individual, which is a measure used to select the best individuals, according to

their merit within the population. The main advantage of GWS, compared to phenotypic

selection, is that the GEBV of individuals whose phenotypes were not yet collected can be esti-

mated, thus resulting in a reduced generation interval and an increase in genetic gain [16–18].

The possibilities of applying GWS in autogamous plant breeding have been described in the

literature. According to Heffner et al. [19], the prediction accuracy of GWS was superior to

phenotypic selection in wheat. In simulated scenarios to improve oligogenic traits in Coffea
Arabica, with different population densities and sizes, Romero [20] tried to determine the gen-

eration in which a favorable allele is fixed. As a result, the author observed that in small popu-

lations (as commonly used in breeding programs, e.g., for coffee), favorable alleles were fixed

in the sixth generation (F6), while in large populations, fixation occurred in the fifth generation

(F5). The GWS was also successfully applied in other crops, such as rice [21], oats [22] and bar-

ley [23].

An alternative and still little explored methodology for GWS studies is Quantile Regression

(QR) [24]. Such methodology, unlike traditional methods based on averages, allows to adjust

regression models throughout the distribution of the dependent variable, does not require

assumptions about the distribution of the error and is robust to outliers. Parameter estimation

is based on the weighted absolute errors method [25]. To deal with dimensionality problems

in GWS studies, which are common in the marker matrix, Li and Zhu [26] proposed the Regu-

larized Quantile Regression (RQR). The use of RQR in a GWS study was proposed by Nasci-

mento et al. [27], in order to estimate GEBV for different quantiles of the phenotype of interest

[28, 29]. In their study, Nascimento et al. [27] used RQR to estimate GEBV from simulated

data with scenarios with different skewness levels in the phenotype distribution. The results of

the RQR were compared to those of the BLASSO (Bayesian Least Absolute Shrinkage and

Selection Operator) method, and the authors observed a lower mean square error of the for-

mer. The results indicated the viability of this alternative for GWS analysis, even in scenarios

without skewness of the phenotype distribution. The approaches RQR and BLASSO were also

used by Santos et al. [30] to estimate the genetic merit in pigs for asymmetric traits related to

the pig carcass, and observed equally or more accurate results by RQR than BLASSO for all

evaluated traits.

In spite of the interesting and promising results, RQR has not yet been evaluated through-

out an entire breeding process, considering the reproductive system of a plant species. Thus,

this study evaluated whether the use of RQR in GWS, for simulated data of autogamous plants
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with oligogenic traits, at different selection and heritability levels, allows the fixation of favor-

able alleles in earlier generations than the commonly used GWS methodologies. The results of

the predictive capacity, mean and genotypic variance obtained by RQR were compared with

traditional methods of genomic selection, specifically with RR-BLUP and BLASSO.

Material and methods

Population simulation

For this study, a 1040 cM genome was simulated, using software GENES [31], with markers

spaced 1 cM apart, with eight linkage groups, resulting in a total of 1048 markers [32]. Oligo-

genic traits controlled by four loci were simulated, located in four different linkage groups,

with uniform effect and absence of dominance and epistasis.

The F1 population was established by crossing contrasting parents, thus generating gametes

for the formation of the F2 population, consisting of 625 individuals. Once the base genome

was generated, genotypic values and three sets of phenotypic values were simulated, at herita-

bility levels (h2) of 0.10, 0.20 and 0.40. To determine the genotypic values (vgi), the following

equation was used:

vgi ¼ mþ ai þ di; ð1Þ

where vgi is the genotypic value of individual i; μ the genotype population mean (here μ = 1.0);

ai the additive effect of individual i, with ai ¼
P4

k¼1
rkak, where ρk = 2.5 is the effect of the

favorable allele with the same contribution to the whole locus k; αk the contribution of locus k
(1, 0 or -1 for genotypic classes AA, Aa and aa, respectively); and di is the dominance effect,

assumed to be null in this study (di = 0).

The phenotypic values (vfi) were determined by the following equation:

vfi ¼ vgi þ εi; ð2Þ

where vfi is the phenotypic value of individual i; vgi the genotypic value of individual i; εi the

environmental effect generated according to a normal distribution, where mean and variance

are compatible with the specific trait heritability (εi � Nð0; s2
eÞ), with s2

e ¼
s2
g ð1� h

2Þ

h2 , where s2
g is

the genetic variance [33]. The phenotypic and genotypic simulated data sets are freely accessi-

ble at https://zenodo.org/record/4292736#.X8BDrmhKjIU.

The advanced generations F3, F4, F5 and F6 were obtained from F2 as base generation by

selfing. The individuals with the highest GEBV obtained by an adjusted GWS model in F2

were selected. The number of selected individuals depends on the selection intensity. The

selection/simulation process of the progenies was repeated until the sixth generation. The gen-

erations F3 to F6, with 200 individuals [34], were generated from the genotype of the selected

individuals, simulating a selfing process. The F3 to F6 populations were simulated using soft-

ware R [35].

Genomic prediction

Based on the simulated F2 population, it was stipulated that 80% of the individuals would

belong to the estimation population and 20% to the validation population. The genomic

genetic values of the individuals were estimated by RQR [26] based on different quantiles

(0.10, 0.50 and 0.90), using RR-BLUP [15] and BLASSO [36]. Two selection intensities (10%

and 20%) and three heritability levels (h2 = 0.10, 0.20 and 0.40) were considered, and each eval-

uated scenario was simulated 30 times. For all evaluated methods, the general GWS model was

PLOS ONE Quantile regression for genomic prediction study in autogamous plants

PLOS ONE | https://doi.org/10.1371/journal.pone.0243666 January 5, 2021 3 / 12

https://zenodo.org/record/4292736#.X8BDrmhKjIU
https://doi.org/10.1371/journal.pone.0243666


considered [15]:

yi ¼ mþ
P1040

j¼1
xijgj þ ei; ð3Þ

where yi is the ith observation of phenotype y (i = 1,2,. . .,625); μ the overall mean; gj the effect

of the jth marker (j = 1,2,. . .,1040); xij are the elements of the incidence matrix of marker j in

individual i, with parameterization 1, 0 and −1; and ei is the ith observation of the random

error ei � Nð0; s2
eÞ.

The parameters of model (2) were estimated by three methodologies: RQR, at three quan-

tiles (τ = 0.10, 0.50 and 0.90), BLASSO and RR-BLUP.

In RQR, the marker effects are computed by solving the following optimization problem

[26]:

ĝ ¼ argminf
Pn

i¼1
rtðyi � m �

Pp
j¼1
xijgjÞ þ l

Pp
j¼1
jgjjg; ð4Þ

where
Pp

j¼1
jgjj is the sum of the absolute values of the regression coefficients, λ the penalty

parameter, n = 625, p = 1040 and ρτ(.), called “check function” by Koenker and Bassett (1978),

and defined by:

rt yi � m �
Xp

j¼1

xijgj

 !

¼

t yi � m �
Xp

j¼1

xijgj

 !

; se yi � m �
Xp

j¼1

xijgj � 0

ðt � 1Þ yi � m �
Xp

j¼1

xijgj

 !

; otherwise

8
>>>>><

>>>>>:

in this study, τ = 0.1; τ = 0.5 and τ = 0.9.

Note that, in the RQ, the coefficients are estimated from the minimization of the weighted

sum of the vertical distances between the observed and estimated values [25]. For that, linear

programming algorithms are used [37, 38]. One of the methods used to estimate these coeffi-

cients is the Simplex Method. For details on the Simplex Method, please consult Koenker [38].

After estimating the regression coefficients (marker effects), for the three quantiles consid-

ered (τ = 0.1; τ = 0.5 and τ = 0.9), the GEBV of the ith individual, based on quantile τ
(GEBVi(τ)), was calculated by the following equation:

GEBViðtÞ ¼ ŷiðtÞ ¼
Pp

j xijĝ jðtÞ; ð5Þ

where ĝðtÞ is the estimated effect of the jth SNP marker based on quantile τ (τ = 0.1; τ = 0.5 e τ
= 0.9). The GEBVs were also determined by BLASSO and RR-BLUP, according to the equa-

tion:

GEBVi ¼ ŷi ¼
Pp

j xijĝ j; ð6Þ

where ĝ j is the effect of the jth SNP marker, estimated by the two said methods.

According to the recommendation of Santos et al. [30], the penalty parameter λ of RQR

was defined as half the penalty parameter resulting from the BLASSO method.

To compare the analyzed methodologies, the predictive capacity ðry;̂yÞ of the methods was

calculated, which is the correlation coefficient between the observed phenotypic (y) and the

estimated genomic value (ŷ) in each generation. The genotypic means and variances in each

generation were also determined.
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Based on Eq 1, with μ = 1.0 and ai ¼
P4

k¼1
rkak ¼ 10, it can be said that favorable alleles in

a given generation are fixed when the genotypic mean of a population reaches 11 and variance

zero.

Computational aspects

The calculations and estimates were performed in the R program [35]. The function used to

estimate the regression parameters at the three quantiles was rq of the quantreg package [39].

The regression coefficients were estimated by RR-BLUP using the mixed.solve function of

package rrBLUP [40]. The Bayesian models were adjusted with the bglr function in package

BGLR [41], with 100,000 iterations for the MCMC (Markov chain Monte Carlo) algorithms, of

which 10,000 were discarded as burn-in, to ensure chain heating and a thin of 5. Convergence

analysis was performed based on the criteria proposed by Raftery and Lewis [42] and Heiden-

berg and Welch (1983) [43].

Results and discussion

The mean estimates of the predictive capacity (PC) in scenarios with heritability of 0.10 varied

between 0.20 (RQR (0.10)) and 0.45 (BLASSO and RR-BLUP) in generation F2 (Fig 1);

between 0.40 (RQR (0.10)) and 0.5 (BLASSO and RR-BLUP) at heritability 0.20 (Fig 2); and

between 0.65 (RQR (0.10) and RQR (0.90)) and 0.70 (RR- BLUP) in the scenarios with herita-

bility of 0.40 (Fig 3). In general, PC rises as heritability increases (Figs 1–3). This result was

already expected, since traits with higher heritability are less affected by environmental varia-

tion, facilitating the breeding process [44].

Over the generations, the PC estimates decreased, to values close to zero in F6 in several sce-

narios (Figs 1–3). This result can be explained by the fact that the model to predict GEBV in

the F3 –F6 generations was adjusted in F2. Specifically, since selection occurs over generations,

the allele frequency of the initial generation changes, which leads to a reduction in the marker-

Fig 1. Average predictive capacity (y-axis) of the models evaluated over five generations (x-axis). Considering a heritability of 0.10 and two selection

intensities. (A) SP = 10%; (B) SP = 20%.

https://doi.org/10.1371/journal.pone.0243666.g001
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QTL linkage disequilibrium (LD). Over the generations, Sant’Anna et al. [33] observed a drop

in LD, which is reflected in the predictive capacity of the model for autogamous populations.

In allogamous species on the other hand, LD is dissipated by advancing a single generation,

resulting in a low efficiency of GS procedures based on models adjusted in previous

populations.

There was an increase in means over the generations and a decrease in the genotypic var-

iances to values close to zero from the third generation onwards, for all evaluated methods

(Table 1 and S1–S3 Figs). These results are in line with the theory of quantitative population

genetics, which states that in response to directional selection, the allele frequency of traits

with few major-effect loci changes rapidly, inducing a phenotypic response [45]. In this

way, the population mean increases since the allele value is positive in the simulation

process.

The results of fixation or non-fixation of favorable alleles were different in the evaluated

scenarios. In scenarios with trait heritability of 0.10, the RQR (τ = 0.1) with a selection inten-

sity of 10% failed to fix the favorable alleles until the sixth generation, as it did not reach the

genotypic mean 11 (8.54 ± 2.19) (Table 1). When selection was based on the models RQR (τ =

0.1) or BLASSO, with a selection intensity of 20%, the favorable alleles were not fixed until the

sixth generation, as the genotypic variance did not reach zero by these methods (4.50 ± 3.57

and 2.24 ± 1.99, respectively) (Table 1). For the other methods, even in low-heritability scenar-

ios, the favorable alleles could be fixed until the sixth generation (Table 1). According to God-

dard [46], the speed at which a population increases or decreases the level of an allele depends

on its initial frequency. Thus, the greatest difficulty in fixing alleles in a low-heritability sce-

nario may be due to the greater environmental effect that affects the estimation of GEBV, mak-

ing it even more difficult to select individuals with the desired alleles than in the other

scenarios, where the disturbing environmental effect is lower.

For the scenarios with a trait heritability of 0.20 and regardless of the selection intensity, the

tested methods allowed the fixation of favorable alleles until the sixth generation, except for

Fig 2. Average predictive capacity (y-axis) of the models evaluated over five generations (x-axis). Considering a heritability of 0.20 and two selection

intensities. (A) SP = 10%; (B) SP = 20%.

https://doi.org/10.1371/journal.pone.0243666.g002
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RQR (τ = 0.90), at a selection intensity of 20% (Table 1). Selection based on the BLASSO mod-

els, at an intensity of 10%, and on RQR (τ = 0.50), at intensities of 10 and 20%, reached fixation

in F5 (Table 1).

Moreover, at a heritability level of 0.40, RQR (τ = 0.50) at a selection intensity of 10%

allowed the establishment of favorable alleles as early as in the fourth generation, with a geno-

typic mean of 10.86 ± 0.21 and genotypic variance of 0.50 ± 0.69, while the other methods

allowed allele fixation in the fifth or sixth generation (Table 1). With these results, there was a

reduction of one (h2 = 0.20) or two generations (h2 = 0.40) in the fixation process of favorable

alleles. The reduction of generations in a plant breeding program is decisive in view of the sav-

ings in terms of time, efforts and costs. In coffee for example, one selection generation lasts on

average six years [47], i.e., by this technique, the breeding process can be considerably reduced,

thus reducing the time required to develop genetically superior genotypes and, consequently,

save costs.

Although the BLASSO and RR-BLUP methods had the highest predictive capacity in F2 in

all evaluated scenarios, the results in relation to favorable allele fixation were equal to or lower

than by RQR (0.50).

Generally speaking, the breeding process by RQR can be equal to or faster than by the stan-

dard GS methodologies. Although to date little explored in breeding, the RQR method has

been shown to be very promising for genomic selection and association studies, in both plant

and animal breeding [27–30, 48]. In this study, RQR (τ = 0.50) fixed the favorable alleles in the

fourth generation (F4) in the scenario with a heritability of 0.4 and selection intensity of 10%.

The efficiency of RQR, in contrast with the traditional methods, based on conditional means,

can be explained by the possibility of fitting models at different levels (quantiles) of the pheno-

type distribution, and consequently making a more thorough study of the phenomenon of

interest possible [24]. Specifically, for highly skewed phenotypic distributions, the results of

quantile models that allow a quantile fitting far from the mean are interesting. In an evaluation

Fig 3. Average predictive capacity (Y axis) of the models evaluated over five generations (x axis). Considering a heritability of 0.4 and two selection

intensities. (A) SP = 10%; (B) SP = 20%.

https://doi.org/10.1371/journal.pone.0243666.g003
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of quantiles 0.25 and 0.75 for right- and left-skewed distributions, respectively, Nascimento

et al. [27] and Barroso et al. [28] observed that these models have a higher predictive capacity

and lower mean square errors than the traditional GS methodologies, respectively.

In this study, since the data were generated assuming a normal (symmetrical) distribution,

better results were expected from mean- or median-based methodologies. However, the best

results were based on medians, which may be related to the rarity of occurrence, both in simu-

lated and in practical processes, of a perfectly symmetrical distribution. Thus, a median-based

methodology such as RQR (τ = 0.50) can better describe the functional relationship between

the dependent and explanatory variables and is robust to outliers, in cases of symmetry devia-

tions in the phenotype distribution [25, 38].

Table 1. Means and mean genotypic variances (n = 30) of five generations in response to selection by five predictive methods, based on three heritability levels

(0.10, 0.20 and 0.40) and two selection intensities (10 and 20%).

h2 Methods SP F3 F4 F5 F6

GM GV GM GV GM GV GM GV

0.10 BLASSO 10% 6.44±0.30 9.03±1.35 7.78±0.98 7.66±2.22 9.14±1.33 5.56±4.26 10.45±0.96 1.46±1.69

20% 5.76±0.20 10.55±0.90 7.73±0.48 8.48±1.52 9.09±0.98 5.74±2.83 10.15±1.06 2.24±1.99

RRBLUP 10% 6.48±0.31 9.05±1.30 7.89±0.79 8.14±2.10 9.45±1.03 4.82±2.41 10.24±1.22 1.78±2.38

20% 5.82±0.21 10.34±1.02 7.81±0.59 8.46±1.47 9.14±0.98 5.90±2.92 10.31±0.92 2.30±2.93

RQR (0.10) 10% 4.19±1.05 11.97±2.44 5.91±1.57 9.92±2.97 7.89±1.93 6.10±3.80 8.54±2.19 2.21±3.01

20% 3.69±0.93 14.00±2.01 5.44±1.13 11.24±2.08 7.73±1.68 7.04±2.92 8.39±1.72 4.50±3.57

RQR (0.50) 10% 4.34±0.82 12.07±2.59 6.47±1.49 9.14±3.26 8.20±1.86 6.16±4.64 9.42±2.06 2.01±2.95

20% 3.80±0.74 13.63±2.30 5.88±1.20 10.93±2.47 8.39±1.57 7.16±5.19 9.74±1.63 2.24±2.78

RQR (0.90) 10% 4.78 ±0.83 11.12±2.42 6.71 ±1.20 8.83±3.57 7.96±2.11 5.15± 4.53 8.76±2.67 2.40±2.90

20% 4.47±0.80 12.02±2.01 6.39±1.20 9.64±3.10 7.85±1.57 6.90±3.53 9.09±2.23 3.25±3.39

0.20 BLASSO 10% 7.49±0.29 6.02±0.79 9.95±0.40 3.04±0.92 10.75±0.37 0.82±1.18 10.95±0.16 0.21±0.58

20% 6.90±0.20 7.38±0.66 9.70±0.35 3.65±0.79 10.68±0.27 1.13±0.89 10.90±0.23 0.37±0.79

RRBLUP 10% 7.47±0.30 6.21±0.91 9.97±0.41 2.94±0.90 10.73±0.27 0.94±0.84 10.80±0.43 0.64±1.35

20% 6.90±0.18 7.37±0.68 9.70±0.19 3.86±0.65 10.65±0.28 1.30±1.18 10.88±0.26 0.40±0.79

RQR (0.10) 10% 6.40±0.75 7.42±1.90 7.85±1.14 5.84±1.78 9.01±1.55 3.86±2.28 9.25±2.00 1.85±2.53

20% 5.84±0.59 10.02±1.69 7.86±0.81 6.63±1.49 9.02±1.22 4.72±1.94 10.02±1.50 1.78±1.98

RQR (0.50) 10% 6.69±0.50 6.95±1.65 9.41±0.78 4.38±1.74 10.72±0.55 1.07±1.94 10.98±0.14 0.11±0.59

20% 6.36±0.64 8.24±2.13 9.12±0.94 5.35±2.53 10.56±0.72 1.53±2.18 10.92±0.26 0.34±1.02

RQR (0.90) 10% 6.32±0.62 7.68±1.78 8.01±1.25 5.99±2.08 9.26±1.61 3.29±2.61 10.30±1.42 0.88±1.80

20% 6.09±0.49 8.67±1.84 8.08±1.01 6.92±2.14 9.25±1.37 4.29±2.80 10.20±1.26 4.29±2.69

0.40 BLASSO 10% 8.01±0.16 4.79±0.60 10.47±0.23 1.71±0.67 10.84±0.25 0.54±0.81 10.99±0.03 0.03±0.13

20% 7.31±0.15 6.76±0.62 10.18±0.21 2.70±0.63 10.82±0.20 0.63±0.68 10.95±0.10 0.20±0.37

RRBLUP 10% 7.98±0.20 4.95±0.69 10.45±0.26 1.83±0.87 10.87±0.21 0.45±0.66 10.94±0.15 0.20±0.50

20% 7.32±0.13 6.64±0.49 10.18±0.26 2.60±0.73 10.43±0.17 0.62±0.62 10.94±0.21 0.20±0.62

RQR (0.10) 10% 7.97±0.24 4.81±0.73 10.56±0.30 1.47±0.97 10.95±0.16 0.21±0.67 10.96±0.23 0.16±0.86

20% 7.37±0.23 6.28±0.64 10.27±0.29 2.35±0.83 10.95±0.17 0.20±0.49 10.97±0.12 0.12±0.51

RQR (0.50) 10% 8.29±0.22 3.95±0.65 10.86±0.21 0.50±0.69 10.95±0.18 0.16±0.57 11.00±0.00 0.00±0.00

20% 7.54±0.17 5.93±0.64 10.68±0.23 1.11±0.76 10.96±0.09 0.14±0.31 10.98±0.10 0.09±0.40

RQR (0.90) 10% 7.74±0.30 5.45±1.12 10.17±0.39 2.68±1.28 10.64±0.39 1.28±1.34 10.77±0.62 0.64±1.31

20% 7.15±0.25 6.91±0.92 9.98±0.44 3.32±1.59 10.54±0.41 1.73±1.56 10.73±0.64 0.80±1.65

h2: heritability; SP: selection intensity; GM: genotypic mean; GV: genotypic variance; RQR: regularized quantile regression; BLASSO: Bayesian Lasso. Genotypic means

and variances in F2 were 1.10 ± 0.00 and 12.19 ± 0.00, respectively, in all tested scenarios.

https://doi.org/10.1371/journal.pone.0243666.t001
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Conclusions

The use of Regularized Quantile Regression models proved effective in genomic selection stud-

ies, for allowing an accelerated development of superior genotypes in relation to traditional GS

methodologies. Among the simulated conditions, the configuration of Regularized Quantile

Regression (τ = 0.50), at a heritability of 0.40 and selection intensity of 10% was the most effi-

cient, since favorable alleles could be fixed more quickly, as early as in the fourth generation.

Supporting information

S1 Fig. Means (blue lines) and mean genotypic variances (red lines) of the models evalu-

ated over five generations. Considering heritability 0.10 and two selection intensities (SP).

(A) SP = 10%; (B) SP = 20%.

(TIF)

S2 Fig. Means (blue lines) and mean genotypic variances (red lines) of the models evalu-

ated over five generations. Considering heritability 0.20 and two selection intensities (SP).

(A) SP = 10%; (B) SP = 20%.

(TIF)

S3 Fig. Means (blue lines) and mean genotypic variances (red lines) of the models evalu-

ated over five generations. Considering heritability 0.40 and two selection intensities (SP).

(A) SP = 10%; (B) SP = 20%.

(TIF)
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63–77.
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