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The application of remote sensing in plant breeding is becoming a routine method for
fast and non-destructive high-throughput phenotyping (HTP) using unmanned aerial
vehicles (UAVs) equipped with sensors. Alfalfa (Medicago sativa L.) is a perennial forage
legume grown in more than 30 million hectares worldwide. Breeding alfalfa for herbage
accumulation (HA) requires frequent and multiple phenotyping efforts, which is laborious
and costly. The objective of this study was to assess the efficiency of UAV-based imagery
and spatial analysis in the selection of alfalfa for HA. The alfalfa breeding population
was composed of 145 full-sib and 34 half-sib families, and the experimental design
was a row-column with augmented representation of controls. The experiment was
established in November 2017, and HA was harvested four times between August
2018 and January 2019. A UAV equipped with a multispectral camera was used for
HTP before each harvest. Four vegetation indices (VIs) were calculated from the UAV-
based images: NDVI, NDRE, GNDVI, and GRVI. All VIs showed a high correlation with
HA, and VIs predicted HA with moderate accuracy. HA and NDVI were used for further
analyses to calculate the genetic parameters using linear mixed models. The spatial
analysis had a significant effect in both dimensions (rows and columns) for HA and NDVI,
resulting in improvements in the estimation of genetic parameters. Univariate models for
NDVI and HA, and bivariate models, were fit to predict family performance for scenarios
with various levels of HA data (simulated in silico by assigning missing values to full
dataset). The bivariate models provided higher correlation among predicted values,
higher coincidence for selection, and higher genetic gain even for scenarios with only
30% of HA data. Hence, HTP is a reliable and efficient method to aid alfalfa phenotyping
to improve HA. Additionally, the use of spatial analysis can also improve the accuracy of
selection in breeding trials.

Keywords: high-throughput phenotyping (HTP), normalized difference vegetation index (NDVI), remote sensing
(RS), spatial variation, genetic gain, forage, plant breeding

Frontiers in Plant Science | www.frontiersin.org 1 December 2021 | Volume 12 | Article 756768

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.756768
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.756768
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.756768&domain=pdf&date_stamp=2021-12-07
https://www.frontiersin.org/articles/10.3389/fpls.2021.756768/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-756768 December 1, 2021 Time: 14:11 # 2

Biswas et al. Phenomics-Assisted Selection in Alfalfa

INTRODUCTION

Alfalfa (Medicago sativa L.) is the most important perennial
forage legume globally because of its relatively high yield and
nutritional value (Annicchiarico, 2015). In the United States,
alfalfa is the fourth most valued crop behind corn, soybeans,
and wheat, with an estimated value of $8.4 billion (USDA-NASS,
2020), playing a critical role in the food supply chain (Feng et al.,
2020). In 2018, nearly 53 million tons of alfalfa and alfalfa-grass
mixtures were harvested from almost seven million hectares in
the United States. Most of the production is concentrated in the
mid-east and west coast (USDA-NASS, 2020). Despite its lower
presence as a forage crop in the lower southeastern United States
and other subtropical regions in the world, breeding efforts are
underway to develop non-dormant alfalfa cultivars adapted to
these environments (De Assis et al., 2010; Vivela et al., 2018;
Adhikari et al., 2019; Acharya et al., 2020).

Alfalfa breeding is typically conducted as phenotypic recurrent
selection using among and within half-sib family selection (Casler
and Brummer, 2008), although various breeding schemes have
been proposed to improve herbage accumulation (HA) in alfalfa
(Annicchiarico and Pecetti, 2021). The improvement of HA in
alfalfa is challenging due to long selection cycles, tetrasomic
inheritance, high inbreeding depression, and significant genotype
and environment interaction for this complex trait (Bingham
et al., 1994; Brummer, 1999; Annicchiarico, 2015). Additionally,
phenotyping for HA requires investment of significant resources
(Annicchiarico et al., 2016). In recent years, most alfalfa
breeding programs have focused on improving disease/pest
resistance, long-term persistence, and other specific traits
targeting transgenes for glyphosate tolerance or decreased
lignin. The lack of efforts to improve HA can explain the
low genetic gain in alfalfa yield observed in the last decades
(Brummer and Casler, 2015).

Nevertheless, HA has become a target breeding trait among
alfalfa breeders more recently (Sakiroglu and Brummer, 2017;
Dos Santos et al., 2018; Adhikari et al., 2019; Acharya et al., 2020;
Benabderrahim et al., 2020; He et al., 2020; Ren et al., 2021; Tang
et al., 2021). However, traditional field phenotyping for HA is
based on the destructive sampling of experimental units at the
ground level, weighing fresh samples, drying, and weighing dried
samples to estimate dry matter content. The manual phenotyping
process for HA is labor-intensive, time-consuming, and costly.

Plant phenotyping plays a central role in plant breeding,
and the accurate and rapid acquisition of phenotypic data is
valuable for exploring the association between genotypes and
phenotypes. In the last few decades, remote sensing has been
widely used in agriculture (Maes and Steppe, 2019; Galli et al.,
2020), particularly for high-throughput phenotyping (HTP) in
breeding applications (Furbank and Tester, 2011; White et al.,
2012; Araus and Cairns, 2014; Tattaris et al., 2016; Li et al.,
2017; Zhao et al., 2019). Remote sensing offers unprecedented
spectral, spatial, and temporal resolution, providing detailed
vegetation data (Maes and Steppe, 2019). Several vegetation
indices (VIs) such as normalized difference vegetation index
(NDVI), green NDVI (GNDVI), normalized difference red edge
(NDRE), or Green and Red ratio Vegetation Index (GRVI) have

been employed to assess vegetation vigor and canopy cover over
multiple crops (Lima-Cueto et al., 2019; Quirós Vargas et al.,
2019; Ranjan et al., 2019; Zhang et al., 2019).

Remote sensing techniques have shown to enable efficient and
non-destructive estimation of HA in alfalfa (Feng et al., 2020),
such as screening large breeding populations (Cazenave et al.,
2019). According to Cazenave et al. (2019), HTP can detect small
differences in alfalfa yield when screening diverse germplasm.
More recently, HTP improved the efficiency of the selection
process for biomass in small plots (1.52 m × 0.30 m) in alfalfa
breeding populations (Tang et al., 2021), and provided a good
prediction of HA in larger plots (6 m × 4 m) (Feng et al., 2020).
Remote sensing can mitigate the challenge of measuring HA in
large populations for breeding programs focusing on improving
alfalfa HA. Therefore, the implementation of HTP can streamline
the phenotyping process for HA in alfalfa.

Residual maximum likelihood (REML) is commonly
implemented in breeding programs to estimate variance
components and calculate genetic parameters using linear
mixed models. The use of best linear unbiased prediction
(BLUP) is an established technique to predict breeding values,
which are then used to guide breeding decisions. BLUP can
generate accurate predictions of breeding values even for
unbalanced experimental designs (Piepho et al., 2008). Genetic
parameters for alfalfa yield are essential to define optimal
selection schemes (Casler and Brummer, 2008). Heritability
estimates for HA in alfalfa ranged from 0.15 to 0.30 (Bowley
and Christie, 1981; Riday and Brummer, 2002; Annicchiarico,
2015; Acharya et al., 2020). These low to moderate estimates
are expected in alfalfa and other perennial forage crops with
long selection cycles, cross-pollinated breeding schemes, and
traits with significant genotype × environment interaction
(Annicchiarico, 2015). Most studies in alfalfa have focused on
yield in short-term experiments with few harvests (3–4 harvests
per year) (Annicchiarico, 2015), except for more recent studies
(Acharya et al., 2020; Annicchiarico and Pecetti, 2021). Besides
the challenges mentioned above, field trials are associated with
intrinsic and extrinsic variations, which can cause some form
of spatial variation between experimental units (Sripathi et al.,
2017). Local control, such as blocking and randomization, cannot
effectively account for all the spatial trends in large experiments
(Gilmour et al., 1997). Spatial variation is expected even using
complex experimental designs, such as those commonly used in
most plant breeding programs. A better way to control the spatial
variation is to implement spatial analysis to detect and correct
the variation patterns in multiple dimensions. Experimental
units close to each other are expected to be higher correlated
than those far apart, and improvements in model fitness and
higher selection accuracy have been reported in plant breeding
programs (Andrade et al., 2020).

The overall objective of our research was to implement HTP,
spatial analysis, and linear mixed models to improve the accuracy
of the selection process in alfalfa for HA. The specific objectives
were: (i) phenotype of an alfalfa breeding population for HA
using ground-based manual sampling and utilize a unmanned
aerial vehicle (UAV) for HTP; (ii) assess the efficiency of
controlling field variation using spatial models for HA and NDVI
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in alfalfa, (iii) calculate the genetic parameters based on HA and
NDVI using univariate models; (iv) fit bivariate models for HA
and NDVI using all data, and for scenarios with different levels
(30–90%) of HA data, and (v) quantify the correlation between
breeding values, the coincidence of selection of the best families,
and genetic gain across the different scenarios for HA data.

MATERIALS AND METHODS

Germplasm Screening and Development
of the Reference Breeding Population
Initially, 121 alfalfa populations with different fall dormancy
groups were screened for HA in Citra, FL, United States (Acharya
et al., 2020). A total of 33 populations were selected based
on high HA and persistence across all harvests. Following the
screening, controlled crosses were done in the greenhouse to
create the alfalfa reference breeding population. A single plant per
population was selected based on vigor, and cuttings were made
in the summer 2016. A factorial mating design was used to create
all possible full-sib combinations; however, some crosses did not
produce enough viable seed, and were not included in field trials.
Half-sib seed were also harvested from each parental line. All
crosses were conducted in controlled conditions in the Forage
Breeding and Genetics Lab greenhouse, at University of Florida
(Gainesville, FL, United States). Seeds from each full-sib and
half-sib families were harvested, threshed individually, planted in
72-cell Styrofoam trays in August 2017, and maintained in the
greenhouse until transplanting in November 2017. In total, 145
full-sib and 33 half-sib families were established in the field and
this population represents the reference set for the HTP study.
Acharya et al. (2020) provide more details and results for the
initial screening and crosses.

Experimental Design and Field
Management
The breeding trial with the reference population was
conducted at Citra, Florida (29◦40′ N, 82◦167′ W, 48 m
above the sea level) following a row and column design with
augmented representation of controls. Each experimental unit
(1.82 m× 1.82 m) consisted of eight rows spaced at 22.8 cm. The
three border rows on each side were seeded with the Bulldog 805
to serve as borders, and twenty alfalfa seedlings were transplanted
in the middle two rows. Three rows were seeded with Bulldog 805
on each side of the transplants to serve as borders. The breeding
population was composed of 145 full-sib and 34 half-sib families.
Three controls were used: the cultivars Bulldog 805, Florida 99,
and an advanced breeding line named UF_AP_2015. Eighty-one
families were replicated three times, 61 families were replicated
two times, and 40 families were used one time due to limited seed
availability. The experiment was established in November 2017,
and data collection occurred in August 2018, October 2018,
December 2018, and January 2019. The field was fertilized with
67.25 kg·K2O·ha−1, using Muriate of Potash, and with Boron
at the rate of 1.12 kg ha−1 and herbicide Clethodim (Select,
70.76 g AI/L-1; Valent United States Corporation, Walnut Creek,

CA, United States) was applied to control grasses at the rate of
1.05 kg ha−1 after each harvest. Manual weeding was done as
needed to control broad-leaf weeds after each harvest.

Ground-Based Data Collection
The experimental units were manually harvested to determine
HA (kg ha−1) when the control UF_AP_2015 reached 10%
blooming (Figure 1A). The harvest was performed by mowing
the six outer rows (three rows on each side) with a flail mower
at 10 cm stubble height, and then the two central rows were
cut and weighted to determine the fresh weight (g) by the plot.
Approximately 500 g of fresh shoots were collected from each plot
and placed in a dryer at 55◦C for 7 days to determine dry matter
content, and HA per plot was estimated on a dry matter basis (kg
ha−1).

Remote Sensing Data Collection
A UAV (DJI Matrice 100) equipped with a multispectral camera
(RedEdge, MicaSense, Seattle, WA, United States) was used to
obtain imagery over the entire field after the border rows were
mowed (Figure 1B). AtlasFlight app (MicaSense Inc., Seattle,
WA, United States) was used to automatically sample fields at an
altitude of 30 m, a flight speed of 6 m/s speed, and enforcing a
75% overlap in collected imagery. A calibration panel (MicaSense
Inc., Seattle, WA, United States) was set before starting each flight
to allow post-collection calibration of imagery.

Image Processing and Data Acquisition
All images were stitched into orthomosaics using AgiSoft
Photoscan (Agisoft LLC, St. Petersburg, Russia; Figure 2A).
The orthomosaic corresponded to the entire field for a single
harvest event and comprised five bands: blue (475 nm), green
(560 nm), red (668 nm), near-infrared (NIR, 840 nm), and red
edge (717 nm). The orthomosaics were further processed in
QGIS 3.14 software (QGIS.org 2020) to refine geolocation using
field-collected ground control points. We identified experimental
units from imagery and created a spatial reference frame (ESRI
Shapefile) for further analysis (Figure 2B). The shapefile was
edited to include all relevant information on the individual field
plot. Subsequently, we masked the canopy from the soil using
custom python codes (Figure 2C) and used the masked image to
calculate the total pixel count in each band (Figures 2D–F) and to
generate different Vis (NDVI, GNDVI, NDRE, and GRVI) from
zonal statistics function in QGIS. We also estimated the sum of all
VIs to allow for handling plants that died during the experiment.

Data Analysis
Vegetation Index Selection
We utilized boxplots to assess all VIs and HA distributions across
each harvest (Supplementary Figure 1). We estimated Pearson
correlations between HA and VIs-sum (an integrative indicator
of VIs) in R (R Core Team, 2020) to assess prospective best-fitting
relationships between HA and VIs. Finally, we used ordinary
linear mixed models to model HA using VIs-sum for each harvest
(R Core Team, 2020).
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FIGURE 1 | Phenotyping alfalfa for: (A) ground-based herbage accumulation (HA); and (B) High-throughput phenotyping (HTP) using an unmanned aerial vehicle
(Matrice 100) with multispectral camera (MicaSense RedEdge, Seattle, WA, United States) taking off in the experimental area.

FIGURE 2 | Workflow of image processing and data acquisition for the HTP. (A) Stitched raw images (each row is visible) from multispectral camera, (B) Shape file:
each plot is separated by grid line, (C) Masked shapefile: canopy and bare ground places are noticeable, and these images are used to generate vegetation indices,
(D) Reflectance image of infrared band, (E) Reflectance image of red band, and (F) Calculated NDVI image using panels (D,E).

Variance Component Estimation: Base Model
Linear mixed models were fit using the package ASReml-R
(Butler et al., 2009) in the software R (R Core Team, 2020). The
significance of random effects was determined by the likelihood
ratio test. Univariate models were fit for NDVI and HA by
harvest, as follows:

y = µ+ Xt + Zrur + Zcuc + Zf uf + e (1)

where y is the vector of the response variable, µ is the overall
mean; t is the fixed effect vector of the check varieties; ur is the
random effect vector of the row, ur ∼N (0, I σ2

r ); uc is the random
effect vector of the column, uc ∼ N (0, I σ2

c ); uf is the random

effect vector of the family, assuming that families are independent
uf ∼ N (0, I σ2

f ), and e is the independent error random vector
of residual, e ∼ N (0, I σ2

e ). I is the identity matrix associated
with the vector, while X, Zr , Zc, and Zf represent the incidence
matrices associated with the vectors t, ur , ur , and uf . The variance
components of the effects r, c, f , and e are represented by the σ2

r ,
σ2
c , σ2

f , and σ2
e , respectively.

Variance Component Estimation: Spatial Model
Due to the intrinsic variation in the field, we explored
spatial models to account for spatial autocorrelation among
experimental units. In this model, we assumed that the error term
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was auto correlated along the rows and columns, and we used a
first-order autoregressive process to fit the error:

y = µ+ Xt + Zrr + Zcc+ Zf f + ξ (2)

where all terms are the same as the model (1) other than the
term ξ , which is the independent error random vector of residual,
ξ ∼ N (0, Reσ

2
e ), Re is the covariance matrix of ξ , and it is

defined as: Re σξ26c(ρc)
⊗
6r(ρr). Where ρc and ρr are the

autocorrelation parameters for the spatial coordinates of row
and column; 6c(ρc) and 6r(ρr) represent the autoregressive
correlation matrices; and

⊗
represents the Kronecker product

(Andrade et al., 2020).
From both base and spatial models, we estimated the following

genetic and non-genetic parameters: broad-sense heritability
(H2), predicted error variance (PEV), and relative efficiency (RE)
between the spatial model and base model. The RE was calculated
for the spatial model in relation to the base model based on PEV
and values greater than 100 indicate higher efficiency for the
spatial model. The RE was measured as follows:

RE = 100×

(
PEVBase

PEVSpatial

)
(3)

The Akaike information criteria (AIC) for each model were
used to choose the best model. Additionally, the families were
ranked based on their predicted values from each model for the
traits HA and NDVI.

Variance Component Estimation: Bivariate Model and
Scenarios for Herbage Accumulation Data
Data for HA and NDVI were combined into a single model to
leverage information at both levels (ground-based and HTP).
As manual phenotyping for HA is time-consuming and costly,
scenarios were simulated in silico to quantify how genetic
parameter estimates would change when not all experimental
units are manually harvested. The simulation was performed
by randomly assigning missing values to the full HA dataset to
represent hypothetical scenarios when 30, 40, 50, 60, 70, 80, and
90% of the plots would be harvested. The process was repeated
30 times for each scenario. The base model contained 100% of
the HA data, and it was used as a baseline to compare with other
scenarios. The bivariate model was fitted as follows:

y = µ+ Xt + Zrur + Zcuc + Zf uf + e (4)

where y is a stacked vector of the phenotypic data for traits HA
(t1) and NDVI (t2), µ is the stacked vector of the overall mean for
each trait; t is the fixed effect stacked vector of the check varieties
for each trait; ur is the random effect stacked vector of the row for
each trait, ur ∼N (0, σ2

r ); uc is the random effect stacked vector of
the column for each trait, uc ∼ N (0, σ2

c ); uf is the random effect
stacked vector of the family for each trait, assuming that families

are independent uf ∼N (0, If
⊗

G), G =

[
σ2
ft1 σft1ft2

σft1ft2
2
ft2

]
; and e is

the independent error random stacked vector of residual for each

trait, e∼N (0, Ie
⊗

R), where R =
[

σ2
et1 σ2

et1et2
σ2
et1et2 σ2

et2

]
; X, Zr , Zc, and

Zf represent the incidence matrices associated with the vectors t,
ur , uc, and uf . The components σ2

r , σ2
c , 2

ft1, 2
ft2, 2

et1, and 2
et2 are the

variance components for row, columns, family for trait 1, family
for trait 2, error for trait 1, and error for trait 2, respectively. The
component ft1,t2 is the covariance between trait 1 and 2.

We compared the full bivariate and univariate models utilizing
HA, NDVI with the different scenarios using the following
calculations: (i) coincidence of selection (%) after applying a 10%
selection intensity and (ii) the correlation among predicted values
across all families.

Genetic gain (%) was estimated from BLUPs for each family in
each harvest (Supplementary Table 3) for the bivariate model,
and univariate models for HA and NDVI in all scenarios for
HA missing data. We calculated genetic gain using the following
equation:

Genetic Gain =
BLUPt

Y
x 100 (5)

BLUPt is the mean of the BLUPs of the t selected family for
HA, Y is the overall mean of all families for HA.

RESULTS

Pearson Correlation and Regression
Analysis Between Herbage
Accumulation and Vegetation Indices
Herbage accumulation showed variation across harvests
(Supplementary Figure 1). Harvest one and four showed higher
mean HA and variation, while harvest two had the lowest mean
HA and variation. All VIs responded similarly to the variation in
HA across harvests, as all VIs had a higher mean and variation
for harvest one, and the lowest mean and variation in harvest
two (Supplementary Figures 3A–E). The Pearson correlation
between HA and all VIs (NDVI, GNDVI, NDRE, and GRVI) were
higher than 0.71 across all four harvests (Figure 3). All VIs were
able to model HA with moderate and similar accuracy across
harvests (Figure 4 and Supplementary Figures 2–4). Harvest
one, three, and four showed better prediction (R2 > 0.60) for
HA than harvest two (R2

∼ 0.51) (Figure 4 and Supplementary
Figures 2–4). Due to the similar results observed among all VIs,
NDVI was selected for further analyses.

Spatial Analysis to Control Field Variation
Modeling the spatial variation was necessary for both traits (HA
and NDVI) since the autocorrelation in both dimensions was
significant in all harvests (Supplementary Table 1). Variograms
for the base model showed the presence of patterns in the
field that may increase error variance (peaks in the variograms
indicate trends in the field) (Figures 5A,C). The variograms
revealed that the spatial model efficiently controlled these
patterns (Figures 5B,D). The spatial models for HA and NDVI
provided better model fitness across all harvests (lower AIC and
BIC; Supplementary Table 2).

The genotypic variance was significant (P < 0.001) for HA
and NDVI across harvests, and heritability (H2) estimates ranged
from low (0.12) to moderate (0.31) (Table 1). For HA, the spatial
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FIGURE 3 | Pearson correlation coefficients between ground-based phenotyping for herbage accumulation (HA—kg ha-1) and four vegetation indices (VIs): NDVI,
normalized difference vegetation index; GNDVI, green normalized difference vegetation index; NDRE, normalized difference red edge; GRVI, green and red ratio
vegetation index. Harvests: (A) harvest one, (B) harvest two, (C) harvest three, and (D) harvest four.

model provided slightly higher H2 estimates than the base model
across the harvests (Table 1). Similarly, NDVI models accounting
for spatial variation resulted in higher H2 estimates, except for
harvest four (Table 1). The H2 estimates for HA (base and spatial
models) were higher than H2 estimates for NDVI (base and
spatial models) across all harvests. As model fitness was greater
for spatial models, PEVs were also smaller for spatial models for
HA and NDVI across harvests, except for NDVI in harvest four
(Table 1). The lower PEV in the spatial models yielded higher RE
than the base model, for all traits and harvests, except for HA in
harvest four. The best model for each trait and harvest was used
for further analyses.

Selection of Best Alfalfa Families for
Herbage Accumulation and Normalized
Difference Vegetation Index
The 179 alfalfa families were ranked based on their predicted
values estimated on each harvest for the base and spatial
models. Then, a 10% selection intensity was imposed to
select the best 17 families (highest HA and NDVI values
in each harvest). The coincidence of selection was greater

than 75% (13 families out of 17) for the base and spatial
models for HA and NDVI in all harvests, except for NDVI
in harvest three (Figure 6). The coincidence of selection
between HA and NDVI, based on the base model, ranged
from 36% in harvest 2–65% in harvest one (Figure 6).
The coincidence of selection between spatial models for HA
and NDVI ranged from 41% in harvest 2–71% in harvest
one (Figure 6).

Harvest one showed the highest coincidence of selection for
all model comparisons (Figure 6). Base and spatial models for
HA and NDVI resulted in 89% coincidence (15 families out
of 17) (Figure 6). Considering the base model in harvest one,
selecting families using HA and NDVI showed 65% coincidence
(11 families). After modeling spatial variation, there was a 71%
coincidence (12 families) when the best families were selected
based on HA and NDVI. Harvest two showed the lowest
coincidence when comparing the selected families for HA and
NDVI using base and spatial models (Figure 6). Considering
the base model in harvest two, selecting families using HA and
NDVI showed 35% coincidence (five families). There was a 43%
coincidence (seven families) for the spatial models to select the
best 10% families based on HA and NDVI data. Harvests three
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FIGURE 4 | Linear regression between herbage accumulation (HA_kg_ha) and unmanned aerial vehicles-based VIs collected in harvest one in alfalfa families
evaluated in Citra, FL. VIs: (A) NDVI, normalized difference vegetation index; (B) GNDVI, green normalized difference vegetation index; (C) NDRE, normalized
difference red edge; GRVI, (D) green and red ratio VI.

and four showed similar results to harvest one, but slightly
lower coincidence when comparing HA and NDVI for base
and spatial models.

Univariate and Bivariate Models for
Scenarios With Different Levels of
Herbage Accumulation Data
The combination of HA and NDVI data into a bivariate analysis
was compared to the univariate models for each trait, considering
scenarios with various levels of HA data for three parameters:
correlation among predicted values across all families, the
coincidence of selection for the 10% best families, and genetic
gain. In general, all parameters increased as the level of HA data
increased in all harvests (Figures 7, 8).

For the bivariate model, the correlation between the predicted
values for all families using the complete HA dataset and each
scenario with various levels of missing HA data (30–90%) varied
between 0.78 (harvest four at 30% HA data collection) and
1 (harvest one at 90% HA data collection) (Figure 7). The
correlation was consistently higher than 0.90 for three harvests
(one, two, and three), even for the scenario when only 30% of
HA data were used in the model. The coincidence of selection
for the best 10% families varied between 0.64 (harvest four at
30% HA data collection) and 0.85 (harvest one at 90% HA
data collection) (Figure 7). The correlation and coincidence of
selection were consistently higher for the bivariate model than
any univariate model across all scenarios (Figure 7). The bivariate
and univariate models for HA were similar only in harvests three
and four, for scenarios when 80 and 90% of the HA data were used
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FIGURE 5 | Variograms for HA and normalized difference vegetation index (NDVI) before (A,C) and after (B,D) the inclusion of terms to control local and global
trends for alfalfa yield in harvest one in alfalfa families evaluated in Citra, FL. (A) HA-based model, (B) HA-spatial model, (C) NDVI-based model, (D) NDVI-spatial
model. Row and column are coordinates for the rows and columns in the experimental area, respectively.

in the model (Figure 7). The genetic gain for the bivariate model
was higher than the univariate models for HA and NDVI in all
harvests (except in harvest three for HA in the scenarios when 80
and 90% of the HA data were used in the model), and it remained
stable even for scenarios with low levels of HA data (Figure 8).

For the univariate model for HA, the correlation between the
genotypic values among all families varied between 0.51 (harvest
one at 30% HA data collection) and 0.91 (harvest four for 90%
HA data collection) (Figure 7). The coincidence of selection
varied between 0.37 (harvest three at 30% HA data collection)
and 0.84 (harvest two at 90% HA data collection) (Figure 7).
The genetic gain for the univariate model for HA increased as
more HA data was used in the models across all harvests, and
higher gains were obtained for HA compared to NDVI for almost
all scenarios (Figure 8). For the univariate model for NDVI, the
correlation between genotypic values among all families varied
between 0.45 (harvests two and four at 30% HA data collection)
and 0.88 (harvest three for 90% HA data collection) (Figure 7).
The coincidence for selection varied between 0.33 (harvest four at
30% HA data collection) and 0.63 (harvest four at 90% HA data
collection) (Figure 7). In general, the univariate model for HA
provided higher correlations and % coincidence than univariate

models for NDVI (Figure 7), and lower genetic gain for HA was
obtained when the selection was performed using only NDVI
data (Figure 8).

DISCUSSION

The ultimate goal in plant breeding is to select superior breeding
units (individuals, clones, families, etc.) with the highest accuracy
level in a high throughput manner by investing the least possible
resources. Alfalfa breeders aim to develop superior cultivars with
high yield and quality, exhibiting broad adaptation to various
biotic and abiotic stresses. Breeding programs are focusing on
the improving HA invest significant resources in collecting and
quantifying HA from field trials and drying samples to determine
their dry matter content (Annicchiarico, 2015). This process is
time-consuming and expensive for large breeding populations.
A key component for increasing the efficiency in improving HA
yield is the use of fast and precise phenotypic assessment of large
breeding populations (Fu, 2015). In this study, 179 alfalfa families
were phenotyped for HA across four harvests, totaling 1,792 data
points for HA. At the same time, HTP was implemented to assess

Frontiers in Plant Science | www.frontiersin.org 8 December 2021 | Volume 12 | Article 756768

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-756768 December 1, 2021 Time: 14:11 # 9

Biswas et al. Phenomics-Assisted Selection in Alfalfa

TABLE 1 | Estimates of broad-sense heritability (H2), predicted error variance
(PEV) and relative efficiency (RE) for alfalfa families harvested four times in Citra,
FL, United States.

Harvest Parameter HA NDVI

Base Spatial Base Spatial

1 H2 0.28*** 0.31*** 0.21*** 0.29***

PEV 31,145 29,976 413,474 368,663

RE – 103.9 – 112.2

2 H2 0.18*** 0.20*** 0.14*** 0.18***

PEV 15,503 15,048 2,140 2,099

RE – 103.1 – 101.9

3 H2 0.24*** 0.27*** 0.13*** 0.19***

PEV 19,785 19,442 54,468 51,576

RE – 101.8 – 105.6

4 H2 0.19*** 0.23*** 0.12*** 0.11***

PEV 38,223 39,548 27,300 25,200

RE – 97.4 – 108.2

Linear mixed models were fitted for herbage accumulation (HA) and normalized
difference vegetation index to estimate variance components in a model without
accounting for spatial variation (base) and by modeling the spatial variation (spatial)
in each harvest.
***denotes significance at p < 0.001 for the genetic variance using a Likelihood
Ratio Tests (LRT).

FIGURE 6 | Percent of coincidence in selection for the 10% best alfalfa
families between HA and NDVI, using the base and spatial model, across four
harvests in alfalfa families evaluated in Citra, FL, United States.

the efficiency of HTP to predict alfalfa HA. All VIs provided a
high correlation with HA, and HA in alfalfa was modeled with
moderate accuracy (R2 > 0.66 in four harvests). These results
follow similar trends from the previous studies evaluating the
efficiency of HTP in predicting HA in small plots from alfalfa
germplasm and breeding lines (Cazenave et al., 2019; Tang et al.,
2021), as well as larger alfalfa plots (Feng et al., 2020).

The progress in plant breeding is measured based on genetic
gain, which refers to the amount of increase in performance
achieved through cycles of artificial selection (Xu et al., 2017).
Several factors affect genetic gain, such as the genetic variation

available in breeding populations, trait heritability, selection
intensity, and the time required to complete a breeding cycle
(Xu et al., 2017). Estimation of heritability can be improved by
refining field experiments and statistical approaches, particularly
for understanding and controlling spatial variation. One of our
goals was to evaluate the effect of spatial models to control field
variation and improve the estimation of genetic parameters and
family selection. The autocorrelation had a significant impact
across rows and columns. The spatial models improved the
estimation of genetic and non-genetic parameters for HA in
all harvests and NDVI in harvests one, two, and three. After
applying spatial analysis, the heritability increased for both
HA and NDVI. Similarly, Sripathi et al. (2017) and Andrade
et al. (2020) reported high efficiency of spatial analysis in
the estimation of genetic parameters in potato and forage
breeding populations. These authors reported improvements in
model fitness from the base and to spatial, which supports
our results. The results presented in our study showed the
importance of the spatial model to reduce the PEV and improve
selection accuracy. These results reflected higher precision in
the selection of the best families. The spatial models for HA
and NDVI showed high levels of coincidence of selection in all
harvests (>75%, except for NDVI in harvest three), compared
to the base model.

Plant breeders can increase the selection intensity through
improvements in the scale and precision of genotyping and
phenotyping, which will result in higher genetic gain (Xu et al.,
2017). One of the strategies to improve selection intensity is
by increasing the breeding populations’ size, but this comes
at the expense of more efforts and resources dedicated to
phenotyping. HTP can lead to higher genetic gain by increasing
the size of breeding populations and making selections more
accurately (Houle et al., 2010; Tang et al., 2021). In our study,
H2 estimates were slightly lower for NDVI than HA, but both
traits showed significant genetic variation and moderate to low
H2. Considering only H2, NDVI was able to detect the genetic
variation present in this breeding population and can be used
to select breeding lines exhibiting higher NDVI values, which
would translate to breeding lines with higher HA (R2 > 0.66).
However, the coincidence of selection for the best families with
HA and NDVI for both models was low to moderate (0.35 – 0.72),
which shows that different families were selected by using NDVI
and HA data in univariate models. Moreover, the genetic gain for
HA was lower when the selection of the best 10% of the families
was performed using only NDVI data. Our results indicated the
NDVI data would complement ground-based HA measurements
to improve genetic gain for HA in alfalfa.

Costs of field experiments are the limiting factor in alfalfa
breeding programs focusing on quantifying HA across multiple
harvests in a year and across multiple years and locations. The
results presented in this study reported moderate to low H2 for
HA and high correlation coefficients between HA and NDVI
across harvests. Multi-trait selection can be applied to take
advantage of the correlation between traits and increase selection
accuracy for the target trait (Mrode, 2014). HA and NDVI data
combined into a bivariate model for each harvest showed a
higher correlation among predicted values, a higher coincidence
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FIGURE 7 | Comparison of bivariate and univariate models (shape) for HA and NDVI for coincidence of selection after applying a 10% selection intensity (red), and
correlation among breeding values for all families (green), for scenarios comparing models with increasing levels of HA data collection (30–90%) against a model with
100% HA data, across four harvests in alfalfa families evaluated in Citra, FL, United States. Harvests one (A), two (B), three (C), and four (D).

FIGURE 8 | Comparison of bivariate model (HA and NDVI, red), and univariate (HA, green; NDVI, blue) models for genetic gain for HA, after applying a 10% selection
intensity for scenarios with increasing levels of HA data collection (30–100%) across four harvests in alfalfa families evaluated in Citra, FL, United States. Harvests
one (A), two (B), three (C), and four (D).
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of selection, and greater genetic gain than univariate models for
HA and NDVI. As the level of HA data used in the models
increased (from 30 to 90% of the total data), the correlation,
coincidence of selection, and genetic gain increased. These results
highlight the importance of collecting HTP data at the harvest
time, particularly if breeders are not harvesting all experimental
units in large breeding populations. To increase genetic gain
for HA, alfalfa breeders could screen more breeding lines by
combining HA and HTP phenotyping in their pipeline since
the number of plots that need to be harvested will be smaller.
In this study, reducing phenotyping efforts by 50% (using only
50% of the available HA data) showed a range between 0.83
and 1 for correlation among all families, 0.75 to 0.89 for the
coincidence of selection, and 26.8 to 37.44% genetic gain in
bivariate models. Despite the lower correlation and coincidence
of selection, the genetic gain remained stable across all scenarios
for bivariate models in all harvests. Including NDVI in the
phenotyping pipeline for HA in alfalfa could result in greater
genetic gains by increasing the size of breeding populations
(Xu et al., 2017), while maintaining the resources for HA
phenotyping constant.

High-throughput phenotyping is a promising method to
develop improved cultivars and achieve high genetic gain. In
this study, all VIs showed a high correlation with HA, and
the inclusion of NDVI improved the selection accuracy for
HA when bivariate models were fitted, even for scenarios with
limited HA data. These results suggest that breeders could
increase population size while maintaining the same ground-
level measurement efforts, and expect increases in genetic gain
due to a higher number of breeding candidates. Similar to the
previous studies in alfalfa, HTP predicted HA with high accuracy
(Feng et al., 2020), and HTP was able to detect differences in
biomass production in large breeding populations (Cazenave
et al., 2019). The results presented in this study coincide with
the report from Tang et al. (2021), where HTP improved the
efficiency of the selection process for alfalfa biomass in small plots
(1.52 m× 0.30 m). Besides, it was also shown that spatial models
controlled field variation and improved the estimation of genetic
parameters and the accuracy of family selection.

Despite the improvements in the selection, HTP brings new
challenges into the breeding pipeline. HTP data collection,
storage, and processing require investments in computer power

and storage and programming knowledge for data analysis
and interpretation. In conclusion, the investment in time
and resources to collect, process, and analyze HTP resulted
in a more accurate selection of alfalfa families for HA.
The RS data complemented ground-based HA measurements,
and the combination of both datasets should result in
improvements in alfalfa HA.
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