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ABSTRACT: Agricultural management significantly influences soil physical properties 
and soil erosion. However, there are few studies investigating the long-term effects of 
agricultural management on soil erosion and physical properties. Here, we assessed the 
impacts of 20-year agricultural land uses under different management practices on soil 
physical properties and interrill erosion. This study was conducted on an experimental 
farm of the Embrapa Western Agriculture, Brazil, and the treatments consisted of soybean 
cropping under conventional tillage (CT) and no-tillage (NT), crop-livestock integration 
during the cropping phase (CL-C) and the livestock phase (CL-L), and Brachiaria 
decumbens pasture under rotational grazing (PP). Soil samples were taken to evaluate 
the soil physical properties, and 25 rainfall simulations with an intensity of 60 mm h-1 were 
carried out by using a portable rainfall simulator with runoff plots of 0.7 m2 to quantify 
surface runoff and interrill erosion. After two decades, the crop-livestock systems (CL-L 
and CL-C) presented better soil physical properties in the topsoil layer (0.00–0.05 m) with 
a higher level of aggregation. Soil and water losses ranged from 4.7 to 14.4 × 10-3 kg m-2 
and 4.9 to 12.4 mm, respectively. A higher reduction in soil erosion was observed in NT, 
while CT showed the highest soil erosion rates. These findings indicate an opportunity 
for a reduction of soil erosion by 60 % by adopting crop-livestock integration comparing 
CL-C with CT, while livestock under an integrated system (CL-L) decreased water loss 
by 30 % compared with PP. This study is a starting point for future research, and the 
findings reveal the potential to minimize the agriculture footprint.
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INTRODUCTION
Erosion is a surface process mainly influenced by soil physical conditions and is one 
of the processes of soil degradation accelerated by anthropic activity (Murphy and 
Fogarty, 2019). Several studies have investigated different strategies of agricultural 
management to improve soil fertility (Pham et al., 2018) and its physical properties 
(Dekemati et al., 2019), water availability (Almeida et al., 2018), and the control of water 
erosion (Sone et al., 2019). Sartori et al. (2019) estimated a global cost of eight billion US 
dollars to the global gross domestic product (GDP) per year due to soil erosion by water, 
negatively impacting food security worldwide. Healthy soil is of paramount importance 
to achieving food security (Vrese et al., 2018); therefore, understanding the impacts 
of different agricultural land uses on soil physical and chemical properties is critical for 
preventing soil erosion and increasing food production. For instance, Brazil presents an 
annual soil loss of 616.5 million tons, and it is estimated to incur US$ 1.3 billion per year 
due to the losses of P, K+, Ca2+, and Mg2+ (Dechen et al., 2015).

Production systems have been improved in recent decades so that conventional 
methods have lost ground to modern production and conservation systems such as 
no-till, intercropping, crop-livestock integration, crop-livestock-forest integration, and 
livestock-forestry integration. These systems involve diversification of agricultural 
production and crop rotation, leading to better water use conditions, increasing 
agricultural production, and improving soil quality (Almeida et al., 2018; Sone et al., 
2019). Some studies have investigated the effects of different agricultural land uses 
and integration systems on soil physical and chemical properties (Salton et al., 2014; 
Cade-Menun et al., 2017; Zajícová and Chuman, 2019). These studies found that 
the use of the no-till and crop-livestock system can improve soil physical properties 
and, consequently, control soil erosion by water in the short, medium, and long 
term. Nevertheless, experimental information on the effects of integrated agricultural 
systems on soil physical properties and erosion in the long term is scarce. In turn, the 
lack of studies on agricultural land use impacts on soil properties and productivity 
has discouraged some farmers (Jose, 2009), and it undermines the advancement 
and application of innovative agricultural strategies that maintain soil health while 
increasing productivity.

The objective of this study was to investigate the effects of five agricultural management 
systems on soil physical properties and interrill erosion after 20 years of cultivation in a 
Latossolo Vermelho Distrófico (Ferralsol). A portable rainfall simulator was used to assess 
soil and water losses in cropping under (i) conventional tillage and (ii) no-tillage, (iii) 
rotational grazing, and crop-livestock integration under both (iv) crop and (v) livestock 
phases. Our findings contribute to a better understanding of the long-term effects of 
these agricultural land uses and management on soil physical properties and soil erosion. 
This study shows the promising alternative of adopting integrated systems to make 
agricultural production more sustainable.

MATERIALS AND METHODS

Study area

We carried out this study in the experimental area of the Embrapa Western Agriculture 
(Embrapa stands for Brazilian Agricultural Research Corporation), located in Dourados, 
Mato Grosso do Sul State (22° 16’ 55.0” S and 54° 48’ 18.1” W, 400 m of altitude) 
(Figure 1). Embrapa Western Agriculture has experimented with different crop-livestock 
integration systems since 1995.

The study area is in a transition strip between the Cerrado and the Atlantic Forest biomes, 
where the climate is classified as Cwa, a humid mesothermal climate with hot summers 
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and dry winters, according to the Köppen classification system (Alvares et al., 2013). 
The average annual precipitation and temperature are 1500 mm and 22 °C, respectively 
(Panachuki et al., 2006). The soil is classified as Latossolo Vermelho Distrófico (Ferralsol) 
with averages of 630, 215 and 155 g kg-1 clay, silt, and sand, respectively. The average 
slope of the experimental area is 0.03 m m-1.

Experimental design and treatments

The experimental design was a randomized block with five treatments: crop rotation 
under conventional tillage (CT), crop rotation under no-till (NT), 2-year crop and 2-year 
livestock rotation in the livestock phase (CL-L), 2-year crop and 2-year livestock rotation 
in the cropping phase (CL-C), and permanent pasture (PP) (described in table 1). Soil 
fertilization (N-P-K ratio of 0–20–20, 300 kg ha-1) was only performed during the soybean 
cropping phase in the crop-livestock integration system when sowing was carried out 

Figure 1. Location of the study area in a transition region between the Cerrado and the Atlantic Forest biomes, and (f) portable 
rainfall simulator used in the evaluations and the different agricultural land use systems: (a) crop-livestock integration in the livestock 
phase (CL-L), (b) Brachiaria decumbens permanent pasture under rotational grazing (PP), (c) crop-livestock integration in the cropping 
phase (CL-C), (d) soybean cropping under conventional tillage (CT), and (e) soybean cropping under no-till (NT).
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in November 2014. The analyses were carried out in February 2015 during soybean 
phenological stage R5.1 (82 days from planting).

Analyses of soil physical properties

Undisturbed soil cores (100 cm3) were collected from 0.00–0.05, 0.05–0.10, 0.10–0.20, 
and 0.20–0.40 m soil layers to determine soil bulk density (BD), total pore volume 
(TPV), macroporosity (Ma), microporosity (Mi), and penetration resistance (PR) with five 
replicates in duplicate, totaling 10 samples for each treatment. Particle density (PD) was 
obtained by using a volumetric flask, and TPV, Ma and Mi were obtained by using the 
tension table method (Teixeira et al., 2017). A bench penetrograph was used to obtain 
the soil resistance to penetration at the field capacity moisture tension.

Mean weighted diameter (MWD) and geometric mean diameter (GMD) indices were 
obtained by the dry sieving method (9.52- and 4.76-mm sieves) (Teixeira et al., 2017) 
using five replicates. Aggregate stability was determined by the wet sieving method 
(Teixeira et al., 2017), using a stack of sieves with diameters ranging from 0.105 to 
2.00 mm and subjected to vertical shaking in a Yoder apparatus for 15 min (Yoder, 1936). 
The stability index was calculated according to Kemper and Rosenau (1986). Additionally, 
five replicates of soil samples from the topsoil (0.00–0.05 m) were collected to determine 
the organic carbon content (OC) by dry combustion and dry biomass (DBM).

Table 1. Description of the six treatments under different agricultural management

Treatments Description

Crop rotation under 
conventional tillage 
(CT)

Soybean is cultivated during the summer and oats during the winter. 
Crops are sowed after conventional soil tillage using a heavy harrow 

and a leveling harrow. Soybean, cv. BRS 359 RR, was sowed following 
land contours with a row spacing of 0.45 m and seed rate ranging 

from 14 to 15 seeds m-1.

Crop rotation under 
no-till (NT)

Soybean, cv. BRS 359 RR, and corn are cultivated during the summer. 
Soybean was sowed following land contours with a row spacing of 
0.45 m and seed rate ranging from 14 to 15 seeds m-1. During the 
fall-winter, wheat and oats are cultivated for grain production and 

turnip and oats for straw production (crop rotation sequence turnip – 
corn – oats – soybean – wheat – soybean).

Crop-livestock 
integration in the 
livestock phase 
(CL-L)

During the two-year cropping phase, soil fertilization was performed 
and soybean, cv. BRS 359 RR, and oats were sowed under no-till 

following land contours with a row spacing of 0.45 m and seed rate 
ranging from 14 to 15 seeds m-1. During the two-year livestock phase, 

Nellore steers rotationally grazed a Brachiaria decumbens pasture 
based on the put-and-take stocking method (Mott and Lucas, 1952). 
The adjustment criterium consisted of a minimum forage availability 

of 7 kg of dry biomass per 100 kg day-1 of live animal weight 
(avg. w 300 kg). We carried out the analysis in the crop-livestock 

integration during the livestock phase.

Crop-livestock 
integration in the 
cropping phase 
(CL-C)

Two-year soybean/oats cultivation under no-till followed by two-year 
Brachiaria decumbens pasture under rotational and put-and-take 

stocking methods. Soil and agricultural management were identical 
to the above treatment (CL-L). We carried out the analysis during the 

soybean cropping phase.

Permanent pasture 
(PP)

Brachiaria decumbens pasture under rotational grazing and the 
put-and-take stocking method. The criterium of adjusting the stocking 

rate was a minimum forage availability of 7 kg of dry biomass per 
100 kg day-1 of live animal weight (avg. w 300 kg). No fertilization was 

performed since the experiment implementation (1995).
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Soil loss data

To assess interrill erosion and water infiltration in each treatment, we used a portable 
rainfall simulator (Figure 1f) with runoff plots of 0.7 m2 bordered by 2 mm thick galvanized 
iron sheets (Alves Sobrinho et al., 2008). The runoff plots have a downward-slope side 
with a triangular form that directs the surface runoff to the collecting point. We analyzed 
the interrill erosion rates among the treatments due to the plot size used in this study. 
The equipment was calibrated to apply a rainfall intensity of 60 mm h-1 and a working 
pressure of 32 kPa. The rainfall simulations were carried out in February 2015 (rainy 
season) and were randomized blocks with five replicates for each treatment.

Before each simulation, we collected soil samples to compute the gravimetric soil water 
content following the method described in Teixeira et al. (2017). Prewetting to standardize 
the initial soil moisture (Cogo et al., 1984) was not performed since we observed a 
precipitation accumulation of 39.8 mm for 24 h before the simulation runs. Moreover, 
the kinetic energy was calculated using the software EnerChuva (Alves Sobrinho et al., 
2001) considering the height of the spray nozzles, the working pressure, duration of the 
rainfall simulation, and the rainfall intensity applied.

Simulation runs lasted 60 min after surface runoff onset. We measured one-minute 
surface runoff volume at one-minute intervals using a graduated cylinder to compute 
water loss. In addition, surface runoff samples were collected every three minutes to 
compute soil loss. The samples were later placed in an oven at 60 °C long enough to 
ensure total evaporation. Thus, soil loss was calculated as the sediment load divided by 
the plot area (0.7 m2).

Statistical analysis

We performed analysis of variance (α = 0.05) and Tukey’s test for mean separation when 
the analysis of variance showed significant changes (p<0.05).

RESULTS

Soil physical properties

The rotation cropping system under conventional tillage (CT) presented the lowest soil 
bulk density (BD) and the highest macroporosity (Ma) in the topsoil layer (0.00–0.05 m)  
compared with the other treatments (Table 2). Nevertheless, in the cropping system 
treatments, we observed that BD tended to increase as the soil depth increased, 
even in the NT system. On the other hand, we noted higher BD in the topsoil layer 
and lower BD in subsequent layers for livestock production, CL-L and PP treatments. 
Higher BD in the superficial layer (0.00–0.05 m) consequently led to higher soil 
resistance to penetration (PR) in PP. Nonetheless, the other treatment with livestock 
production (CL-L) did not present a similar PR, although we noted a similar BD in 
both treatments (α = 0.05).

The organic carbon content (OC) was higher in the integrated crop-livestock systems 
and the permanent pasture. A higher OC is strongly related to more stable aggregates, 
geometric mean diameter (GMD) and mean weighted diameter (MWD). Compared with 
the other treatments, we found higher GMD and MWD in the PP treatment considering 
all soil layers. In addition, the crop-livestock systems CL-L and CL-C also presented 
good aggregation.

Soil erosion

The initial soil water content did not affect surface runoff or soil erosion since it did not 
differ among the agricultural land uses evaluated (α = 0.05) (Table 3). The relationship 
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between the simulated and natural rainfall kinetic energy was 96.6 % for all treatments. 
This implies that the rainfall simulations presented a satisfactory representation of 
natural rainfall conditions, as proposed by Meyer and McCune (1958). We also observed 
higher dry biomass (DBM) in the crop-livestock integration systems compared with CT 

Table 2. Soil physical properties of Ferralsol under different agricultural management practices: Soil bulk density (BD), particle 
density (PD), mean weighted diameter (MWD), geometric mean diameter (GMD), soil penetration resistance (PR), organic carbon 
content (OC), macro- and microporosity (Ma and Mi), and the total pore volume (TPV)

Treatment BD PD MWD GMD PR OC Ma Mi TPV
Mg m-3 mm Mpa g kg-1 %

0.00–0.05 m soil layer
CT 1.22 b 2.92 a 1.74 b 2.60 b 0.91 c 31.72 b 19.58 a 34.61 a 54.19 a
NT 1.31 ab 2.90 a 1.40 b 2.12 b 1.77 b 33.74 b 15.86 b 35.00 a 50.86 a
CL-L 1.34 a 2.89 a 4.22 a 4.44 a 1.73 b 42.18 a 14.75 b 39.87 a 54.62 a
CL-C 1.30 ab 2.88 a 4.19 a 4.42 a 1.70 b 43.58 a 15.16 b 36.93 a 52.09 a
PP 1.33 a 2.88 a 3.91 a 4.23 a 2.26 a 41.72 a 10.77 b 42.85 a 53.62 a

0.05–0.10 m soil layer
CT 1.38 a 2.90 a 2.65 b 3.34 b 1.35 b 29.32 b 17.80 a 38.20 a 55.58 a
NT 1.39 a 2.92 a 1.33 c 1.85 c 1.49 b 30.95 b 13.20 b 39.16 a 52.88 a
CL-L 1.40 a 2.87 a 3.11 b 3.70 b 1.56 b 32.58 ab 15.03 a 37.51 a 52.54 a
CL-C 1.36 a 2.89 a 3.28 b 3.99 b 1.66 b 30.06 b 14.93 a 36.11 a 51.04 a
PP 1.25 b 2.89 a 4.33 a 4.51 a 1.82 a 34.20 a 11.82 c 39.48 a 51.30 a

0.10–0.20 m soil layer
CT 1.44 a 2.92 a 2.30 b 3.05 bc 3.02 a 26.57 b 6.98 c 44.04 a 51.02 a
NT 1.39 b 2.93 a 1.16 c 1.78 d 2.96 a 25.30 b 8.23 b 43.62 a 51.85 a
CL-L 1.36 c 2.90 a 2.12 b 2.88 c 1.71 b 32.34 a 10.35 a 42.51 a 52.86 a
CL-C 1.34 c 2.91 a 2.51 b 3.26 b 1.71 b 26.54 ba 9.80 ab 44.57 a 54.37 a
PP 1.27 d 2.90 a 3.83 a 4.19 a 1.38 c 28.97 b 11.77 a 40.98 a 52.75 a

0.20–0.40 m soil layer
CT 1.41 a 2.91 a 1.35 cd 1.82 cd 1.52 a 23.19 a 7.53 c 44.23 a 51.76 a
NT 1.38 a 2.91 a 1.16 d 1.73 d 1.48 b 24.65 a 8.02 c 42.32 a 50.34 a
CL-L 1.32 b 2.90 a 1.65 c 2.39 bc 1.47 b 25.79 a 10.58 b 41,17 a 51.75 a
CL-C 1.31 b 2.89 a 2.10 b 2.83 b 1.48 b 24.50 a 11.14 b 41.41 a 52.55 a
PP 1.30 b 2.89 a 3.22 a 3.22 a 1.56 a 19.63 b 13.95 a 40.09 a 54.04 a

Different letter indicates different statistical groups (α = 0.05); CT and NT are crop rotation systems under conventional tillage and no-till, respectively. 
CL-L is a crop-livestock integration system in the livestock phase and CL-C is in the cropping phase. PP is a Brachiaria decumbens permanent pasture 
under rotational grazing.

Table 3. Average values of dry plant mass (DBM), the kinetic energy of the rainfall simulations, 
and the initial water content

Treatments DBM Kinect energy Initial water content
Mg ha-1 kJ m-2 kg kg-1

CT 8.43 c 1.99 b 0.19 a
NT 11.48 bc 5.36 a 0.19 a
CL-L 14.95 a 1.79 c 0.20 a
CL-C 12.08 ab 1.97 b 0.21 a
PP 3.90 d 1.73 c 0.21 a

Different letter indicates different statistical groups (α = 0.05); CT and NT are crop rotation systems under 
conventional tillage and no-till, respectively. CL-L is a crop-livestock integration system in the livestock phase 
and CL-C is in the cropping phase. PP is a Brachiaria decumbens permanent pasture under rotational grazing.
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and PP. Higher DBM is related to more vegetation cover, encouraging water infiltration 
and preventing soil erosion from the erosive power of rain. This corroborates the fact 
that we found reduced soil erosion in CL-L and CL-C despite the greater water loss in PP 
and soil loss in CT (Figure 2).

We noted higher surface runoff in PP with a water loss of approximately 36 % of the 
total precipitation amount. Nevertheless, soil loss in PP was similar to the results 
from NT, CL-L and CL-C, which presented lower water losses (Figure 2). Higher BD 
and lower Ma in the topsoil layer (0.00–0.05 m) contributed to the reduced water 
infiltration found in the permanent pasture treatment. Water and soil losses in CT 
were higher than those in the no-till (NT) treatment, which showed the lowest soil loss 
compared to the other treatments. No-till systems provide greater vegetation cover, 
protecting the soil from the erosive power of rain. In contrast, we observed less dry 
biomass (DBM) in CT than in NT, CL-L, and CL-C (Table 3). In addition, another factor 
that contributed to the higher soil erosion rates in CT was faster runoff generation 
than that in NT. The soil saturation in CT was eight times faster than that in NT despite 
the higher infiltration rate.

Figure 2. Boxplots of (a) water loss (mm) and (b) soil loss during the rainfall simulations on the 
agricultural land uses: soybean cropping under conventional tillage (CT), soybean cropping under 
no-till (NT), crop-livestock integration in the livestock phase (CL-L), crop-livestock integration in 
the cropping phase (CL-C), and Brachiaria decumbens permanent pasture under rotational grazing 
(PP). The 25th and 75th percentiles, the median with a line, and the mean with a triangle are 
shown; whiskers indicate the maximum and minimum values. Difference letters indicate different 
statistical groups by the Tukey test (α= 0.05).
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DISCUSSION

Long-term effects on soil physical properties and soil erosion

The long-term effects of conventional tillage on soil physical properties were key for the 
observed higher soil erosion rates by water in CT. The soil bulk density was lower in the 
treatment under conventional tillage (CT) and lower in the treatment under no-till (NT). 
In NT, the long-term no-till practice may have negatively impacted some soil physical 
properties, such as increased BD and PR and decreased Ma, compared with CT. Subsoiling 
practices are a potential alternative to improve soil physical properties in croplands under 
no-till conditions. Periodic subsoiling can improve water infiltration in no-till systems 
by reducing BD (Panachuki et al., 2011). In CT, intense soil turning of the superficial 
soil layer due to leveling and digging with a harrow led to higher macroporosity (Ma) 
and lower soil resistance to penetration compared with NT, but it negatively impacted 
soil aggregate stability. This increased the soil vulnerability to soil erosion by water, 
especially when compared with the no-till treatment. Consequently, soil erosion rates 
in CT considerably increased as surface runoff started to occur due to greater soil shear 
stress. Panachuki et al. (2015) also found that the management practices adopted in 
conventional tillage systems made the soil more vulnerable to the erosive power of rain, 
against which vegetation cover plays an important role in protection. Furthermore, the 
residue cover in CT contributed to the highest soil loss rates (e.g., CT presented with a 
much lower DBM than NT, as shown in table 3).

We observed contrasting results in the treatment under permanent pasture, which showed 
higher surface runoff and a lower soil erosion rate. We did not find an improvement in 
water infiltration in the PP after long-term agricultural management was adopted since 
the study conducted by Panachuki et al. (2006) in the same study area. The grazing 
strategy adopted in PP may not have been adequate to avoid overgrazing, supported 
by the very low DBM shown in table 3. Although this treatment was managed as 
CL-L, a periodic rotation with cropping works as a service crop that is of paramount 
importance for improving agroecosystem resilience (Ogilvie et al., 2019). On the other 
hand, overgrazing leads to soil deterioration due to animal trampling, compacting the 
soil surface and causing soil sealing and crusting (e.g., higher BD in the topsoil layer and 
lower BD in subsequent layers for the treatments with livestock production, CL-L and 
PP). This leads to a decrease in water infiltration, as in other studies (Panachuki et al., 
2006; Falcão et al., 2020) that, in turn, also causes an increase in soil erosion. In contrast, 
we noted good levels of stable soil aggregates in PP (MWD and GMD), contributing 
to soil erosion control. One of the strategies to overcome these negative impacts of 
permanent pastures on water infiltration is integrating a cropping phase with pasture 
periods, for which we observed promising results.

The crop-livestock systems (CL) presented reduced soil erosion and higher water 
infiltration even though BD increased since the preliminary study by Panachuki et al. 
(2006). In 2003, BD values ranged from 1.27 to 1.29 Mg m-3 (soil layer 00.0–0.20 m), 
while 12 years later, we observed values ranging from 1.34 to 1.40 Mg m-3 for CL-L in 
the same soil depth (0.00–0.20 m). Despite the increase in BD, the soil resistance to 
penetration (PR) in CL-L was not similar to that observed in PP (α = 0.05). The organic 
carbon content (OC) may have played an important role in increasing water infiltration 
and reducing soil erosion despite the BD values found in CL-L. The greater biomass 
production contributed to maintaining high levels of OC—also found by Salton et al. 
(2011)—and high aggregate stability (MWD and GMD). Recent studies showed that 
pasture and cattle management have the potential to improve infiltration with rates 
similar to native vegetation, such as crop-livestock rotation and rotational stocking 
with an adaptive stocking rate (Sone et al., 2019, 2020), as in PP and CL systems. 
Those authors and Ernst et al. (2018) also reported that the rotation period between 
cropping and livestock production affects soil erosion and water infiltration rates, so it 
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is key to adjust the rotation period to achieve adequate soil physical properties for 
environmental and agricultural sustainability.

Implications and future research opportunities

The experimental evidence found here after two decades of carrying out the studied 
agricultural land uses and management showed an opportunity for improving soil 
physical properties, positively affecting water infiltration and soil erosion control. 
In particular, crop-livestock rotation has the potential to halt global soil deterioration, 
increase food security and reduce the costs incurred because of soil erosion. Our 
findings show a reduction in surface runoff of approximately 30 % in the crop-livestock 
system in the livestock phase (CL-L) compared with permanent pasture (PP) and a 
reduction in soil erosion of approximately 60 % in the crop-livestock system in the 
cropping phase (CL-C) compared with conventional cropping (CT). Farmers can benefit 
from crop-livestock production, which can improve soil physical properties, as we 
observed in this study and has been corroborated by several others (Salton et al., 
2014; Lemaire et al., 2019; Leterme et al., 2019). Nevertheless, politics will play a 
key role in encouraging the adoption of integration systems through sharing scientific 
knowledge, farmers’ experiences, and economic implications, e.g., due to the lack 
of studies on the economic benefits of crop-livestock rotation, as pointed out by 
Franzluebbers and Gastal (2019).

This is a preliminary study on the long-term effects of five important agricultural systems 
in Brazil on some soil physical properties and soil erosion by water. Future research 
opportunities involve a deeper investigation of more soil properties and an implementation 
of larger soil erosion plots to account for not only splash and interrill erosion but also rill and 
gully erosion. Furthermore, a meticulous study of livestock management is fundamental 
to meet an adequate stocking rate depending on forage availability and, consequently, 
to minimize the negative impacts on soil physical properties and thus soil erosion by 
water. For instance, Sone et al. (2019) analyzed crop-livestock integration systems with 
different rotation periods and found that one-year cropping followed by three years of 
pasture considerably reduced water losses compared with four-year cropping followed 
by four-year livestock production. Despite the advantages of using small runoff plots, 
improving their accuracy will allow for larger-scale studies for more contextualized and 
general applications. Our study is a starting point for future and further research—e.g., 
using larger plots to investigate any scale influence—and it reveals the potential to 
minimize the agricultural footprint.

CONCLUSIONS
We investigated the impacts of long-term agricultural production under different 
management systems on soil physical properties and soil erosion. We found that even 
though the soil bulk density increased over the two decades of crop-livestock integration, 
this agricultural system improved aggregate stability and organic carbon incorporation 
into the soil, presenting higher water infiltration and reduced soil erosion. By comparing 
the treatments with cropping production, the integrated crop-livestock in the cropping 
phase (CL-C) reduced soil erosion by 60 % compared with cropping production under 
conventional tillage. On the other hand, livestock production integrated with cropping 
(CL-L) resulted in a reduction in water loss of 30 % when compared with the continuous 
pasture treatment (PP).

Considering the difficulties of finding studies of long-term periods after the implementation 
of crop-livestock integration systems, monitoring the effects of this agricultural production 
system over the years is an interesting research opportunity, which will help support 
decision-makers to adopt adequate measures to increase the synergism between the 
agricultural productions in each stage of integrated systems. Despite our study limitations, 
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our findings reveal the potential for reducing soil erosion in agriculture, which is a major 
concern and causes economic loss. Furthermore, this study provides preliminary results 
and encourages future research showing that crop-livestock systems have the potential 
to minimize negative environmental impacts.
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