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Abstract: Monitoring the vegetation structure and species composition of forest restoration (FR) in
the Brazilian Amazon is critical to ensuring its long-term benefits. Since remotely piloted aircrafts
(RPAs) associated with deep learning (DL) are becoming powerful tools for vegetation monitoring,
this study aims to use DL to automatically map individual crowns of Vismia (low resilience recovery
indicator), Cecropia (fast recovery indicator), and trees in general (this study refers to individual
crowns of all trees regardless of species as All Trees). Since All Trees can be accurately mapped,
this study also aims to propose a tree crown heterogeneity index (TCHI), which estimates species
diversity based on: the heterogeneity attributes/parameters of the RPA image inside the All Trees
results; and the Shannon index measured by traditional fieldwork. Regarding the DL methods, this
work evaluated the accuracy of the detection of individual objects, the quality of the delineation
outlines and the area distribution. Except for Vismia delineation (IoU = 0.2), DL results presented
accurate values in general, as F1 and IoU were always greater than 0.7 and 0.55, respectively, while
Cecropia presented the most accurate results: F1 = 0.85 and IoU = 0.77. Since All Trees results were
accurate, the TCHI was obtained through regression analysis between the canopy height model
(CHM) heterogeneity attributes and the field plot data. Although TCHI presented robust parameters,
such as p-value < 0.05, its results are considered preliminary because more data are needed to include
different FR situations. Thus, the results of this work show that low-cost RPA has great potential for
monitoring FR quality in the Amazon, because Vismia, Cecropia, and All Trees can be automatically
mapped. Moreover, the TCHI preliminary results showed high potential in estimating species
diversity. Future studies must assess domain adaptation methods for the DL results and different FR
situations to improve the TCHI range of action.

Keywords: Cecropia; deep learning; drones; photogrammetry; remotely piloted aircraft; RGB; species
diversity; tree crown heterogeneity index; tree species; Vismia
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1. Introduction

Forest restoration (FR) projects [1] aim for benefits, such as the provision of ecosystem
services [2] and social well-being [3]. However, FR monitoring is a must to ensure a
proper provision of such benefits [4–7]. When it comes to the Brazilian Amazon, which is a
threatened biome [8], and has increased deforestation in the last years [9], the success of FR
projects is considerably relevant to ensure the forest structure and species composition that
mitigate climate changes [10].

The rate of forest recovery in the Amazon varies as functions of forest resilience [11,12]
and restoration methods [13,14]. In the first two decades of forest recovery, the dominance
of Cecropia ssp. in the canopy indicates high resilience, while Vismia ssp. canopy dominance
indicates low resilience; thus, monitoring these two species is significantly relevant to FR in
the Amazon [11,15]. Moreover, a successful FR project is similar to undisturbed forests [7],
which have a diverse and heterogeneous canopy [16,17]. Active restoration with high
species diversity also presents a more heterogeneous canopy in general when compared to
the Cecropia and Vismia natural regeneration routes due to a greater species diversity [14].

Remotely piloted aircrafts (RPA), popularly known as drones, have high potential in
monitoring FR efficiently due to high-resolution remote sensing data [18]. For instance,
RPA coupled with red–green–blue (RGB) sensors can be used to measure the structural
parameters of the vegetation, such as tree cover and tree height, and such measurements
are accurate especially in open canopy conditions [19–22]. RPA coupled with RGB sensors
also have high potential to estimate the biomass of FR projects [18].

Despite accurately measuring the structural parameters, measuring the FR biodi-
versity indicators in high diverse forests is a great challenge [22,23]. Computer vision
techniques, such as deep learning [24], have high potential in improving this field of
research because they have revolutionized image processing [25–27]. When applied to
low-cost RPA images, deep learning accurately identified palm species [28], six usual tree
species in the Amazon [29] and the tree species of a German forest [30]. However, the
Amazon biome is a high biodiversity biome [31–34]; thus, more species identification via
remote sensing will be needed in the future. Therefore, applying deep learning to the map
indicator species of FR in the Amazon (such as the Cecropia sp. and Vismia sp.) and the
forest canopy structure complexity may improve FR monitoring, especially the monitoring
issues that evaluate FR quality.

When calling upon deep learning, results can be a semantic segmentation, where
two objects of the same class are counted as one when touching each other, or an instance
segmentation, where the touching objects of the same class are discriminated [35,36]. To
estimate canopy structure complexity and to get the number of individuals in the RPA
imagery, individual tree crowns must be properly delineated and separated when touching
each other [28,37]. Braga et al. [37] showed that the mask region-based convolutional
neural network (Mask R-CNN) [38] is an artificial convolutional neural network capable
of accurately performing such a task in a tropical diverse forest using a high resolution
satellite image.

When considering low-cost RPA images, if an accurate delineation of all kinds of
trees in general (regardless of species) is performed, it would be possible to estimate the
species diversity of FR projects via heterogeneity measurements of the trees because point
cloud data are available [17]. Therefore it is worth discussing the concept of the tree crown
heterogeneity index (TCHI): an index that estimates the traditional Shannon index [39]
based on the automatic detection and delineation of individual tree crowns and their
corresponding structural heterogeneity parameters. The TCHI concept is nonexistent (as
far as the authors of this manuscript know). If a proper TCHI is developed, the low-cost
RPA potential to estimate species diversity on FR projects would be improved.

This study aims to assess an artificial neural network capacity, namely the Mask
R-CNN, to identify and delineate in low-cost RPA images key canopy elements: Vismia
sp. crown, as an early FR indicator of low-quality forest regeneration; Cecropia sp. crown,
as an early FR indicator of high-quality forest regeneration; and the crowns of all kinds
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of trees in general, regardless of species. If accurate automatic detection and delineation
of the crowns of all kinds of trees are performed, measuring the heterogeneity attributes
to estimate species diversity becomes timely. Thus, this study proposes a first approach
of TCHI: an equation that estimates species diversity in a site considering the structural
heterogeneity attributes of the trees that are automatically detected and delineated.

2. Materials and Methods
2.1. Study Area

The FR study sites were located in the south Amazon, in the Porto Velho Municipality,
along the Madeira river, in Rondônia (RO) state, Brazil (Figure 1).

Figure 1. Location of the FR study sites: (a) in South America, Brazil, and Amazon biome. (b) Study
site 1 (8.19 hectares) is a naturally regenerating (NR) forest with Vismia spp. occurrence, which will
be called, in this work, the Vismia site (no field plots of forest inventory were available on this site).
(c) Study site 2 (14.07 hectares) is an actively restored site with Cecropia spp. (ARCec) occurrence,
which will be called, in this work, the Cecropia site (only one field plot was not damaged after a fire
event on this site). (d) Study site 3 (3.32 hectares) is an actively restored diverse (ARD) site, which
will be called, in this work, the Diverse site.

One site was a naturally regenerating (NR) forest with Vismia sp. occurrence. Another
site was an actively restored forest with Cecropia (ARCec). The third site was an actively
restored diverse forest (ARD). For better readability, NR, ARCec, and ARD will be referred
to as the Vismia site, Cecropia site, and Diverse site, respectively, in plain text, as these
abbreviation meanings will keep being used and described in the figures and tables of
this manuscript.

The Cecropia site and Diverse site had traditional FR monitoring fieldwork of forest
inventory performed in July 2019. The RPA flights were conducted in December 2019.

2.2. Materials

The RPA used in this study was a Phantom 4 Pro (a rotary wing). It was coupled with
an RGB 1“CMOS 20MP sensor. For more information about this RPA model, see [40].

Ground control points (GCPs) were collected by the geodetic global navigation satellite
system (GNSS) equipment Spectra Precision SP60. For more information about this GNSS
equipment, see [41].

The flight planning was drafted using Map Pilot software [42]. Digital surface models
(DSMs), digital terrain models (DTMs), and orthorectified mosaics were obtained using
Agisoft Metashape [43] software. The deep learning processes were performed using



Remote Sens. 2022, 14, 830 4 of 28

Python [44], and linear regression and graphs in R [45]. The map layouts were generated
using QGIS software [46].

2.3. Methods

Figure 2 illustrates the methods applied in this work, described from Section 2.3.2 to
Section 2.3.4. From this part until the end of the manuscript, Vismia sp., Cecropia sp. and all
kinds of trees in general (regardless of species) will be referred to as Vismia, Cecropia, and
All Trees, respectively, for better readability.

Figure 2. Deep learning methods for automatically mapping of Vismia, Cecropia and All Trees and
regression analysis methods to assess the tree crown heterogeneity index (TCHI) after mapping
All Trees.

2.3.1. Flight Patterns

All flights were in compliance with Brazil’s RPA laws [47] at 80 m above the ground,
generating around 2 cm of ground sampling distance (GSD); the front and side overlaps
were equal to, respectively, 90% and 80%. Vismia site, Cecropia site, and the Diverse site
had 8, 3, and 6 ground control points, respectively.

2.3.2. Deep Learning Methods

Deep learning was used to automatically identify three different canopy elements:
crown of Vismia, Cecropia, and All Trees. The Mask R-CNN was used on these tasks
because it performs instance segmentation and, thus, it counts the number of individuals
in an area of interest [37], which is relevant for many ecological studies [28,48,49]. Mask R-
CNN was also used because it is a reference instance segmentation algorithm in computer
vision research [36,50].

Mask R-CNN is a faster R-CNN extension. Faster R-CNN is an artificial convolutional
neural network that identifies each target in an image with a bounding box and classifies
it. Mask R-CNN, besides the identification and classification of each target, performs a
segmentation process that outputs the shape of the object that is inside each bounding box.
The result is an instance segmentation, which allows assessing the shape and the number
of targets in an image. For more information about Mask R-CNN, see [38].

Since the Amazon is a high biodiversity biome [31–34,51,52], it is not possible to
know which species are present in a site; thus, the Mask R-CNN for mapping Vismia
and Cecropia were assessed as a one-class remote sensing classification process. Such a
process is recommended when one specific target is desired among many other complex
and unknown features [53,54]. Therefore, in high biodiversity sites, mapping each species
using a one-class classification process is a relevant first step. If high accuracy is achieved,
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future works may develop a single Mask R-CNN that maps Vismia and Cecropia, as well
as other relevant species for FR.

For the manual delineation of the samples of Cecropia and Vismia, both had pre-
cise GNSS coordinates that were collected to confirm how they look in the RPA images.
Figures 3 and 4 illustrates examples of field plot coordinates with manually delineated
samples of these targets, as well as ground photos. As Figures 3 and 4 show, Cecropia
is much more easily identified visually than Vismia, which suggests that the Cecropia
accuracy may be higher.

Regarding All Trees, precise GNSS coordinates were not necessary for manual delin-
eation of samples, which occurred by photointerpretation. The All Trees target was not
assessed in the Vismia site because it did not have field plots.

Figure 3. Example of Vismia: manually delineated samples with precise GNSS coordinates that
confirm how these targets look in the RPA image (a); and ground photo (b).

Figure 4. Example of Cecropia: manually delineated samples with precise GNSS coordinates that
confirm how these targets look in the RPA image (a); and ground photo (b).

The sampling process is a notable disadvantage of deep learning because a great
amount of samples is needed [55]. To help deal with such an issue, Braga et al. [37]
developed an algorithm that generates synthetic images with augmentation processes. Such
synthetic images improve the neural network classification results because it simulates an
increased number of samples. Such a simulation allocates each sample to different locations
and performs some brightness changes, vertical or horizontal flips, and rotations in the
artificial image. For more details about the use of synthetic images, see Braga et al. [37].
Table 1 illustrates the number of synthetic images generated in this work, as well as the
number of samples per synthetic image. Table 1 also illustrates the number of epochs and
samples collected for the Mask R-CNN in this work.
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Table 1. Deep learning samples manually delineated according to target and study area.

Delineation
Target Study Area Epochs

Training
Samples

Validation
Samples

Test
Samples

Samples in
Synthetic

Images

Total of
Synthetic

Train
Images

Total of
Synthetic
Validation

Images

Vismia sp.
Naturally

regenerating site
(NR)

150 144 48 48 1 6000 2000

Cecropia sp.

Actively restored
site with Cecropia

(ARCec)

150 240 80 80 5 1800 600

Actively restored
diverse site

(ARD)

- - - 50 - - -

All Trees

Actively restored
site with Cecropia

(ARCec)

150 369 123 50 50 9000 3000

Actively restored
diverse site

(ARD)

110 150 50 50 50 27,000 9000

The Diverse site only had test samples of Cecropia to evaluate the data shift phenom-
ena, which is a common issue in the remote sensing classification processes: it happens
when an algorithm that was trained in a single image is applied to another one and then
presents less accurate results due to differences on imaging conditions and local character-
istics [56].

Fine-tuning was performed on all Mask R-CNN training processes shown in Table 1
after 30 epochs, which trained only the heads of the convolution neural network with a
learning rate equal to 0.001. Then, the whole network was trained. From epochs 31 to 70,
the learning rate remained equal to 0.001, but from epochs 71 to 110, the learning rate was
divided by 10; from epochs 111 to 150, the learning rate was divided by 100 (except for
All Trees at the Diverse site, which had 110 epochs in the training process). ResNet50 and
feature pyramid network (FPN) were used as the backbone. The code for the Mask R-CNN
process can be seen in Braga et al. [37].

Table 1 and Figure 5 show that each synthetic image had more samples for All Trees
than for Cecropia and Vismia. It was due to the spatial resolution of the images, or the
GSD. A pixel degradation from 2 to around 30 cm considerably increased the All Trees
results accuracy because the 2-centimeter GSD results were inaccurate. Such pixel degra-
dation intended to simulate a satellite image where an accurate All Trees assessment was
performed [37]. Moreover, poor results in the original 2-centimeter GSD were somehow
expected because individual tree crowns are not clearly distinguishable via photointerpre-
tation after the canopy closes [28,30].

Each synthetic image had more Cecropia than Vismia samples due to the target sizes
(Table 1). Cecropia has a smaller crown size than Vismia, so hardware limitations allowed
5 and 1 samples, respectively, on each Cecropia and Vismia 2 cm GSD synthetic image.
The amount of Vismia synthetic images, therefore, was considerably higher than Cecropia
(see columns “total of synthetic train images” and “total of synthetic validation images”
in Table 1). Idem to the amount of synthetic images for All Trees: the Cecropia site area
(14.07 ha) is larger than the Diverse site area (3.32 ha); thus, the Cecropia site presented
more sample availability (consequently, the Diverse site presented more synthetic images
than the Cecropia site for All Trees). Figure 5 shows examples of synthetic images used in
this study to train Vismia, Cecropia, and All Trees.
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Figure 5. Examples of synthetic images that were used to train Vismia, Cecropia, and All Trees. In
these images, the samples are artificially added to a background image.

In Cecropia and Vismia mapping, the synthetic images had 1024 × 1024 pixels, as the
tests using 128× 128 pixels images generated inaccurate results. Increasing the background-
size for Vismia and Cecropia mapping was necessary to include the different possible
background objects that confused the algorithm, such as grass, bare soil, palm trees, and
general trees. The processing time of 1024 × 1024 images was slower than 128 × 128
images, but results were much better.

In the All Trees mapping, which was around 30 cm GSD, the synthetic images had
128 × 128 pixels and the background involving only grass generated the most accurate
results. After the training and prediction steps, the All Trees polygons with a maximum
canopy height model (CHM, which is the difference between DSM and DTM) value less
than 2 m and 0.3 m in height in the Cecropia site and the Diverse site, respectively, were
excluded because they were bulky grass.

Mapping All Trees in the Diverse site not only involved the Mask R-CNN trained in
this site but also the Mask R-CNN trained in the Cecropia site. Since the tree crowns in
the Diverse site were usually large, the Mask R-CNN trained in this site usually detected
the larger ones, as the smaller ones were omitted in the prediction process. To improve
the accuracy of All Trees (by detecting the smaller tree crowns) in the Diverse site, the
Mask R-CNN trained in the Cecropia site was also applied. As a result, two different
automatic predictions in the same area generated overlapping tree crowns, which was
not an “instance segmentation” characteristic. To handle the overlapping results, the tree
crowns predicted by the Mask R-CNN trained in the Cecropia site (which detected smaller
tree crowns) were excluded when its polygon overlapped with polygons predicted by the
Mask R-CNN trained in the Diverse site (which generally detected large tree crowns). This
procedure improved the accuracy of the All Trees final result in the Diverse site.

2.3.3. Regression Analysis for Generating the TCHI after Mapping All Trees

Less disturbed and undisturbed forests have species diversity that characterize hetero-
geneous CHM, while less diverse sites present a homogeneous CHM [16,17]. To evaluate
the low-cost RPA capacity for estimating species diversity, a regression analysis between
the tree crowns heterogeneity attributes measured by the RPA and the classic Shannon
index [57], measured by traditional fieldwork, was performed.

For the regression analysis, the RPA database was generated from the All Trees
results (Section 2.3.2), which then had some CHM attributes extracted for each polygon
that represented a tree. The attributes of each polygon (of All Trees results) were: area,
perimeter, CHM mean, CHM maximum, and principal component analysis (PCA) of the
Fourier-based textural ordination (FOTO) statistics (mean and standard deviation). In
this work, the defined acronyms of the attributes of the two principal components of
FOTO are Fourier textural principal component one (FTPC1) and Fourier textural principal
component two (FTPC2).
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FOTO evaluated the CHM heterogeneity by a Fourier transform and was implemented
using the python package Fototex [58]. FOTO assesses how the pixel values vary along
the area and output different values according to the amount of the variation. If the pixels
present similar values, FOTO detects a high frequency of these values, which is typical
of homogeneous areas, whereas non-frequent values characterize heterogeneous areas.
Thus, FOTO numerically expresses patches with more or less heterogeneity. For more
information about FOTO, see Bourgoin et al. [16] and Couteron et al. [59].

The traditional fieldwork database consisted of five field plots with a size 25 × 10 m:
one plot was located in the Cecropia site (14.07 ha); and four plots were located in the Di-
verse site (3.32 ha). Cecropia site, although larger, had only one plot because, unfortunately,
a fire event between the forest inventory and the RPA flight damaged the vegetation in
many patches (it is possible to see patches without trees, some of them with burnt palms,
in Appendix A).

A Shannon index [57] (Equation (1)) was calculated for each field plot. The Shannon
index considers the species richness and the number of representatives of each species. A
site with ten trees that has nine species A, and one species B, is considered less diverse
than another site with ten trees that has five species A and five species B. The greater the
diversity, the greater the Shannon index value. For more information about the Shannon
index, see Spellerberg and Fedor [39] and Pommerening [60].

H′ = −
n

∑
i=1

pi · ln pi (1)

where H′ is the Shannon index, pi is the probability of a randomly selected tree to belong
to the tree species i, and n is the number of tree species in the site.

Since the data of five field plots were available, only the automatic trees that intersected
these plots were considered on the regression analysis. Thus, each field plot presented
a number of trees (automatically identified by the RPA) that corresponded to a Shannon
index value (measured by traditional fieldwork). However, the All Trees results are subject
to omission errors (when one or more trees are not mapped automatically) and commission
errors (when one or more trees do not exist but were automatically mapped); thus, the field
plots intersected different amounts of trees. Since the different plots varied on the number
of trees associated with a Shannon index value, the average of the crowns’ attributes was
used. Thus, for each field plot, the average of each tree crown attribute was used in a
simple linear regression to estimate the corresponding Shannon index value. Since the
average of each attribute was used, the interpretation of the attribute Fourier textural
principal component one mean—FTPC1 mean—and the attribute Fourier textural principal
component two mean—FTPC2 mean—may be confusing, but it is relevant to emphasize
that each tree crown has a FTPC1 mean value and a FTPC2 mean value. Thus, the average
of these values were used in the simple linear regressions to estimate the corresponding
Shannon index. Appendix B presents the data that were used in this work.

A simple linear regression shows that results are statistically significant and the
variables are significantly related to each other when the p-value is < 0.05 and when a
clear linear relation exists between the two variables [61]. For linear regressions with
p-value < 0.005, R2adj values close to one and residual standard errors close to zero usually
indicate a clear linear relation between two variables [62], while R2 > 0.75 are also usually
a good fit in simple linear regressions [63]. If one of the tree crown attributes presents such
parameters in the simple linear regression, a preliminary equation that defines the TCHI
will show potential for estimating species diversity. However, even if one or more tree
crown attributes fill these criteria, it is relevant to emphasize that more field plots are going
to be needed in the future to cover a whole range of different FR situations. The TCHI
presented in this study is therefore a preliminary result, consisting of a first approach that
may lead to relevant studies in the future.
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2.3.4. Accuracy Evaluation of the Deep Learning Methods

The omission and commission errors, or the amount of false-positive (FP) and false-
negative (FN) occurrences, as well as the overall accuracy [64], allows calculating the recall,
precision, and F1 indexes [65], according to Equations (2)–(4), respectively.

r =
TP

(TP + FN)
(2)

p =
TP

(TP + FP)
(3)

F1 = 2 ∗ (r ∗ p)
(r + p)

(4)

where TP = True Positive, FN = False Negative, FP = False Positive, r = recall, p = precision.
The Mask R-CNN capacity of detecting individual objects must be evaluated as well

as the quality of the delineation outlines [37]. In this work, the target objects were the
individual crown of Vismia, Cecropia, and All Trees.

A tree crown test sample is properly identified (true-positive) when at least 50% of its
area is intersected with an automatically delineated tree crown. Regarding the delineation
quality of the true-positives, the accuracy indices recall, precision, F1, and intersection over
union (IoU) were used. The IoU calculation is in Figure 6. According to Braga et al. [37], an
object is correctly delineated when IoU ≥ 0.5, while IoU > 0.7 indicates high fidelity to the
reference data.

Figure 6. Recall, precision, and IoU to evaluate the quality of the automatic delineation.

Besides evaluating individual object detection and its delineation quality, omission
and commission errors must be assessed as areas instead of object detection to avoid
overestimation accuracy bias [66]. Object detection considers that the overlap between
prediction and test must be higher than 50% while area assessment evaluates the whole
reference data, which may degrade the accuracy indices even when overlap is greater than
50%. The area accuracy evaluation also occurred with the indices overall accuracy, recall,
precision, and F1.

3. Results

Results of Vismia, Cecropia, and All Trees are illustrated from Figures 7–10. The deep
learning prediction results for the whole study areas can be seen in Appendix A.

Regarding TCHI after mapping All Trees, Figure 11 shows the simple linear regression
results, which should be considered preliminary due to the limited amount of samples.
Despite being preliminary, the attribute Fourier textural principal component one mean
(FTPC1 mean) presented the most accurate results and showed potential for the low-cost
RPA images to estimate species diversity. Figure 11 also shows that the tree crown area
and the tree crown perimeter were highly related to the Shannon index.
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Figure 7. (a) Vismia training process; (b) and the prediction results in the naturally regenerating (NR)
site. The loss values reduced considerably from epoch 31 due to the transfer learning process, where
the whole network started to be trained instead of only the heads.

Figure 8. (a) Cecropia training process; (b) and the prediction results in the actively restored site with
Cecropia (ARCec). The loss values reduced considerably from epoch 31 due to the transfer learning
process, where the whole network started to be trained instead of only the heads.

Figure 9. (a) All Trees training process in the actively restored site with Cecropia (ARCec); (b) and
the corresponding prediction results. The loss values reduced considerably from epoch 31 due to the
transfer learning process, where the whole network started to be trained instead of only the heads.
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Figure 10. (a) All Trees training process in the Actively restored diverse (ARD) site, which was not
accurate; and (b) the prediction results that also used the convolutional neural network trained in
ARCec (Figure 9) to map small trees, as mentioned in Section 2.3.2 (b). The loss values reduced
considerably from epoch 31 due to the transfer learning process, where the whole network started to
be trained instead of only the heads.

Figure 11. Simple linear regression results. Each simple linear regression relates the average value of
a crown attribute of the trees that were automatically delineated in a field plot to the corresponding
Shannon index.
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Results Accuracy

Table 2 shows that Mask R-CNN results were accurate in general, except Vismia
delineation, which was poor. However, Vismia area distribution was accurate, which
means that its contour errors were somehow compensated, for instance, by projecting a
shape part on the left where it should be on the right. Cecropia was very accurate, not
only in the Cecropia site, but also in the Diverse site, which only had test samples; thus,
the data shift issue did not significantly decrease the prediction accuracy of this target (for
Cecropia mapping, the Diverse site was the target image considering the domain adaption
terminology). Figures 12 and 13 show in histograms the information in Table 2.

Table 2. Mask R-CNN accuracy for delineation and area distribution. Results were accurate in
general, except Vismia’s delineation, which was inaccurate. NR is a naturally regenerating forest
with Vismia occurrence, ARCec is an actively restored forest with Cecropia, and ARD is an actively
restored diverse forest.

Cecropia: ARCec Vismia: NR Trees: ARCec Trees: ARD Cecropia: ARD
(Test Only)

D
el

in
ea

ti
on

A
cc

ur
ac

y

Identified trees 91.25% 72.92% 72.00% 56.00% 80.00%
Tree crowns

correctly delineated 0.918 0.086 0.667 0.607 1.000

IoU 0.772 0.202 0.563 0.558 0.790
Precision 0.937 0.221 0.730 0.764 0.989

Recall 0.820 0.888 0.764 0.738 0.798
F1 0.875 0.354 0.746 0.751 0.883

A
re

a
A

cc
ur

ac
y Overall

Accuracy
0.993 0.926 0.902 0.642 0.981

Precision 0.976 0.760 0.893 0.932 0.943
Recall 0.752 0.796 0.616 0.565 0.669

F1 0.849 0.777 0.729 0.704 0.783

Figure 12. Mask R-CNN accuracy on the delineation of the targets: (a) identified trees; (b) tree crowns
correctly delineated; (c) intersection over union; (d) precision; (e) recall; (f) and F1. ARCec is actively
restored site with Cecropia and ARD is actively restored diverse site.
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Figure 13. Mask R-CNN accuracy on the area distribution of the targets: (a) overall accuracy;
(b) precision; (c) recall; (d) and F1. ARCec is actively restored site with Cecropia and ARD is actively
restored diverse site.

Regarding TCHI after mapping All Trees, the regression analysis showed that, despite
the small number of samples, FTPC1mean has high potential in estimating species diversity
via low-cost RPA. Thus, the preliminary TCHI is defined in Equation (5).

TCHI = 0.7095141 ∗ FTPC1mean + 1.5064680 (5)

where TCHI is the tree crown heterogeneity index and FTPC1mean is Fourier textural
principal component one mean.

4. Discussion

Results showed that, via low-cost RPA images, Mask R-CNN identifies three different
canopy elements in the Amazon FR: Vismia crown, Cecropia crown, and the crowns of
all trees in general (regardless of species). Moreover, since the automatic delineation of
All Trees was accurate, TCHI was assessed and, despite the small number of samples,
its preliminary results showed high potential in estimating the Shannon index, which
measures the species diversity.

The Mask R-CNN automatic predictions for the whole extension of the three FR sites
is available in Appendix A. Cecropia was very accurate because: (1) it has a considerable
distinguishing crown that presented specific responses even to SAR data [67]; and (2) many
samples were available in the Cecropia site. Vismia automatic delineation was not accurate,
but its canopy area was accurately mapped. Vismia mapping was challenging because:
(1) Vismia’s crown edges were not easily identifiable via photointerpretation due to an
irregular overlap between two or more individuals; and (2) the Vismia site did not contain
many Vismia individuals (as did the Cecropia site for Cecropia individuals); thus, fewer
samples were available. Regarding the All Trees mapping in the Cecropia site and in the
Diverse site, results were accurate.

Mapping the number of representatives of each species is relevant for planning forest
management with conservation or economic purposes because it is possible to know the
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protection status of each representative, as well as patches that have more or less abundance
of the species representatives [48,49]. Besides the relevance of mapping the number of
representatives of each species (which is possible via instance segmentation), the spatial
distribution and the distance between the representatives of each tree species (which is
possible via instance segmentation or semantic segmentation) are also relevant for checking
fragmentation, adjacency [49], proper distribution of each species, pollination, and FR
indicators assessment [48]. The percentage of canopy that Vismia or Cecropia covers is
also a relevant indicator of the Amazon FR and is possible via instance segmentation or
semantic segmentation.

Like Ferreira et al. [28] and Moura et al. [29], this study demonstrates that RPA has high
potential to map relevant species in the Amazon biome automatically. Besides mapping
species, this study also showed that low-cost RPA is capable of automatic mapping and
delineating individual crowns of all kinds of trees in a tropical high diverse forest. Due to
such capacity (of mapping all kinds of trees), a high potential to estimate species diversity
in general via TCHI was also demonstrated in this study, although more studies in the
future are mandatory to involve a broader range of FR situations that may improve the
generalization capacity of the proposed index.

In other studies on Cecropia, Wagner et al. [68] accurately identified Cecropia hololeuca
using deep learning (U-Net algorithm, which performs semantic segmentation) applied
on a satellite image of the Brazilian Atlantic Forest biome. Moura et al. [29] accurately
mapped Cecropia using faster_R-CNN_inception_v2_pets model on an RPA image, which
generates a bounding box in its results. In this work, each Cecropia crown was delineated
in an instance segmentation process.

Since Cecropia results were very accurate in this study, the Diverse site, where there
were not many Cecropia representatives, had only Cecropia test samples to assess the data
shift issue. The data shift did not affect the quality of the delineation of Cecropia crowns,
but identified a shorter amount of Cecropia individuals and decreased the accuracy of its
area distribution. Future studies must assess domain adaptation alternatives to enable the
automatic identification of Cecropia without the requirements of sample acquisition.

The All Trees training in the Diverse site was capable of detecting larger trees only, as
described in Section 2.3.2. After applying the Mask R-CNN trained in the Cecropia site, the
detection of smaller trees improved the accuracy of the All Trees results in the Diverse site.
The All Trees accuracy in both the Cecropia site and the Diverse site presented mean IoU
equal to 0.56, which is similar to the 0.61 achieved by Braga et al. [37]. Even so, improving
tree crown detection and delineation may improve FR monitoring because the proposed
TCHI depends on the automatic delineation of tree crowns regardless of species, which
reinforces such automatic delineation as a specific research branch.

Despite the limited amount of samples available, the statistical parameters of the
preliminary TCHI suggest that the methodology applied in this work, which is unprece-
dented as far as the authors know, has high potential in estimating species diversity. The
preliminary TCHI therefore reinforced the relation between canopy heterogeneity and
species diversity, and a hypothesis mentioned by Camarretta et al. [17] that a proper delin-
eation of tree crowns would improve heterogeneity detection, which is related to species
diversity. Although presenting accurate statistical parameters, the potential of TCHI in
estimating species diversity must be confirmed by future studies because a significant
range of different FR situations must be evaluated. Such potential of species diversity
estimation would also map, in a single area, where the FR is more-or-less diverse, which
would contribute for the concept of precision forest restoration [69].

Nuijten et al. [70] also stated that canopy heterogeneity is related to species composi-
tion in FR by using different remote sensing structural metrics and a statistical analysis
to classify a hexagonal tessellation in an RPA image of a Canadian boreal forest. While
Nuijten et al. [70] defined structural classes inside random hexagons considering statistical
CHM attributes in a boreal forest, this work automatically delineated tree crowns and
related them to field data of a tropical forest to estimate species diversity.
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This study performed instance segmentation processes, where Mask R-CNN was
used. Although the Mask R-CNN training process is slow [28,37], this disadvantage will
not be an issue if no more samples are needed. In deep learning, sampling and training
processes are a notable disadvantage [55], but, ideally, a convolutional neural network
should work like in the human face verification in photos [71], where no additional samples
are required for accurate prediction results. However, in remote sensing, new samples
are frequently required when classifying new images due to different geographic and
temporal conditions, which is a phenomenon known as a data shift [56]. To handle the data
shift, domain adaptation became a specific field of research [56], for instance, by collecting
samples in many places and times of the year [72] or by developing transfer learning
python packages to reduce the number of samples required for training [73]. Thus, when
considering that an ideal convolutional neural network does not require more samples for
training, Mask R-CNN becomes a good deep learning alternative because its prediction
process is fast.

Despite being relevant, domain adaptation is a specific field of research. In remote
sensing, machine learning processes are a relevant first step to check if the classifier maps
the targets accurately. Then, after mapping the targets accurately, a domain adaptation
effort may deal with the data shift issue [74]. In this study, this first step was performed as
the Mask R-CNN showed high potential to identify individual crowns of important tree
genders (Vismia and Cecropia) and of all trees (regardless of species) on Amazonian FR.
The automatic mapping of these targets therefore must present domain adaptation studies
in the future.

This work generated four different Mask R-CNN with different weights to perform
one-class remote sensing classification. Each Mask R-CNN had one target class and one
background class for detecting: Vismia (1); Cecropia (2); All Trees in the Cecropia site
(3); and All Trees in the Diverse site (4). Instead of developing different Mask R-CNN
for different goals, future studies should also evaluate creating one robust Mask R-CNN
with more than one target class and more than one background class. In addition, the
background class was essential for accurate results, so future studies should collect more
samples in other FR areas with different background contexts, which generally are grass
and bare soil. Thus, more target and background classes may develop a single robust
neural network that quickly identifies relevant Amazon FR monitoring parameters.

5. Conclusions

Mask R-CNN is capable of detecting the crowns of Vismia and Cecropia, as well as the
crowns of all kinds of trees, regardless of species in low-cost RPA images. When assessing
species diversity estimation after mapping all kinds of trees, the preliminary TCHI showed
high potential in mapping more or less diverse sites. These findings play an important role
in FR monitoring, as low-cost RPA proved its potential in estimating quality indicators of
Amazon FR projects, which improves FR management and monitoring.

Since low-cost RPA has high potential in detecting relevant Amazon biodiversity FR
issues, future studies should evaluate more areas and domain adaptation techniques so
that deep learning methods may be accurately applied with high generalization capacity.
Moreover, after collecting more data by mapping All Trees in different FR situations, the
TCHI equation parameters may improve its range of action. When such high generalization
capacity is achieved, and no more samples are required, a user-friendly plugin for open-
source geographic information system (GIS) software may be created in the future for the
automatic detection of Vismia, Cecropia, general trees, and TCHI.
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Appendix A. Deep Learning Results Illustrated in Whole Study Areas

Figures A1–A4 show the four deep learning results in the whole extension of the study
areas.

Figure A1. Vismia prediction results in the naturally regenerating (NR) site.
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Figure A2. Cecropia prediction results in the actively restored site with Cecropia (ARCec).
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Figure A3. All Trees prediction results in the actively restored site with Cecropia (ARCec).
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Figure A4. All Trees prediction results in the actively restored diverse site (ARD).

Appendix B. TCHI Data after Mapping All Trees via Deep Learning

Tables A1–A3 show the data that were used to calculate the preliminary TCHI after
mapping All Trees via deep learning.

Table A1. Forest inventory data that calculate the Shannon index for each field plot. These data were
collected via traditional fieldwork of the forest inventory.

Species Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Adenanthera pavonina

Anacardium occidentale 1 2

Apocinaceae

Astrocaryum aculeatum 2

Attalea speciosa 2 1

Bauhinia sp01 1

Belluccia grossularioides 1 2 35

Bixa orellana 2

Byrsonima sp02 3 4

Carapa guianensis

Cecropia distachya 5 1 1 4

Cecropia membranacea 2

Cecropia purpurascens 7 2 3 6

Cedrela fissilis

Ceiba samauma 1

Clitoria fairchildiana

Cochlospermum orinocense 8 1 4 1

Couratari macrosperma 2
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Table A1. Cont.

Species Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Croton matourensis 34

Cupania rubiginosa 3

Dipteryx odorata 3

Enterolobium sp 1

Eriotheca sp

Eschweilera coriacea

Genipa americana

Handroanthus serratifolius

Hevea guianensis 4 1

Himatanthus sucuuba 1

Hymenaea courbaril 2

Inga edulis 3 1

Inga heterophylla 1

Inga sp04 3

Isertia hypoleuca 17 9

Lindackeria paludosa 1

Mabea sp 76

Mangifera indica 1

Miconia pyrifolia 11 3 5 3 8

Myrcia sp02 12 102 82 52 10

Myrtaceae 2 1

Myrtaceae 3 2 10 1 5 1

Ocotea sp 1

Pachira aquatica

Pachira sp

Parkia multijuga 1

Physocalymma scaberrimum 5 1

Piper aduncum 1 6

Protium unifoliolatum 29 19

Psidium guajava 1 1

Pterodon emarginatus

Schizolobium amazonicum 2

Senna alata

Senna multijuga 1

Simarouba amara 1

Simarouba versicolor 3 1

Solanum spp

Stryphnodendron dunckeanum 1

Swartzia lucida 3 1

Tachigali tinctoria 1
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Table A1. Cont.

Species Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Tapirira guianensis 1 1

Trema micrantha

Vismia gracilis 15 10 39

Vismia guianensis 25 1 37 2 16

Vismia sandwithii 30 5 9 6

Shannon Index 2.334775 1.678342 1.511594 1.823349 2.394088
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Table A2. Heterogeneity attributes of each tree crown that was automatically delineated inside the field plots. These data were collected via remote sensing. FTPC1
is Fourier textural principal component one and FTPC2 is Fourier textural principal component two.

Plot Area Perimeter CHMmean CHMstdev CHMmin CHMmax FTPCA1mean FTPCA1stde FTPCA1min FTPCA1max FTPCA2mean FTPCA2stde FTPCA2min FTPCA2max

3 65.119 39.311 5.119435 3.280841 −0.00328 12.6938 0.404991 1.455045 −0.69597 9.669959 0.261663 2.074722 −1.71555 14.86461

3 28.129 26.406 3.366363 1.901713 0 7.040863 −0.31739 0.311524 −0.69597 1.197709 −0.01846 0.695184 −0.66874 4.122279

3 3.613 7.629 3.005856 1.947296 0 5.719925 −0.19006 0.397121 −0.66932 0.848243 0.352878 0.759364 −0.41275 2.348622

3 9.032 17.014 7.610554 1.196479 2.299583 9.182724 0.427152 0.261602 0.089069 1.550751 −0.57614 0.78659 −1.09639 3.872258

3 22.28 23.464 2.771878 1.024129 0 7.542839 −0.50516 0.157783 −0.66554 0.454597 −0.11437 0.148365 −0.34738 0.691951

3 6.108 11.136 6.347235 2.709253 0.004837 9.0868 0.886286 1.188347 −0.58509 4.260673 0.594698 2.166958 −1.06947 6.937483

3 22.452 28.753 5.069082 1.075359 0 10.96689 −0.12052 0.379077 −0.56762 2.985223 −0.20846 0.495652 −0.80686 2.843362

3 48.431 36.363 3.725492 1.71961 −0.11349 6.606369 −0.31098 0.339763 −0.6836 1.804834 −0.11054 0.487495 −0.50532 3.720053

2 6.538 11.142 7.378312 0.835771 3.856255 8.309235 0.335718 0.188526 −0.01269 0.813891 −0.5927 0.429563 −0.87881 1.176714

2 74.84 47.461 7.720049 1.813196 0.963417 11.14235 0.525326 0.498828 −0.65947 3.16911 −0.57892 0.685009 −1.44404 3.553976

2 4.731 9.379 7.965543 0.782673 2.244179 9.572548 0.419333 0.099508 0.233903 0.596738 −0.75094 0.394346 −1.00977 0.828341

2 57.807 35.177 6.714935 2.757263 −0.02056 11.04849 0.481698 0.846595 −0.69597 3.786057 −0.22817 1.255041 −1.55378 6.290686

2 32.689 34.029 4.735298 0.778733 2.378983 6.820885 −0.28059 0.136493 −0.49576 0.151903 −0.30785 0.111566 −0.54278 0.103714

2 5.936 12.899 4.955179 0.492389 4.045937 6.063095 −0.27546 0.074306 −0.38744 −0.11507 −0.35117 0.065346 −0.50046 −0.23339

2 2.409 7.045 7.636636 2.943989 3.691277 12.20493 2.063702 1.718944 −0.28772 4.599868 1.327158 1.91322 −0.47216 6.38865

2 64.603 42.868 8.511374 0.764597 4.643204 12.09242 0.574774 0.257937 −0.22508 2.294271 −0.89379 0.261569 −1.32826 1.713706

1 63.915 45.761 4.337894 1.651773 0.793602 12.22772 −0.30323 0.256276 −0.65293 0.56833 −0.27417 0.221224 −0.98045 0.557243

1 5.333 9.969 0.903739 1.251807 0 3.760948 −0.47756 0.308349 −0.69597 0.392144 0.236693 0.485465 −0.15663 1.493688

1 4.215 9.975 12.02187 4.007458 0 15.93677 7.834983 9.142468 1.774665 29.69638 8.372838 15.52596 −2.68251 39.13299

1 35.097 31.068 8.524904 4.193895 −0.10499 15.36579 2.141066 2.536678 −0.68205 15.8741 1.016266 4.251897 −2.58661 22.14248

1 4.731 10.565 11.25474 3.037268 2.662628 13.81744 3.407625 2.624248 1.12727 11.38162 2.008901 6.083042 −2.28632 14.96166

1 3.871 8.802 7.006234 3.731296 3.468102 12.91788 2.527597 2.859887 −0.41815 7.528047 2.490923 4.130253 −1.795 10.32378

4 44.904 34.016 6.244992 1.816363 0.996513 9.068893 0.173356 0.41305 −0.60792 1.815155 −0.29251 0.773015 −1.06127 3.919278

4 2.581 9.386 6.772082 3.101002 3.562378 11.19086 2.247702 3.012706 −0.36029 7.882115 1.863147 3.653275 −1.49495 8.587377

4 65.979 48.66 4.774225 2.003087 0.424896 10.94702 −0.03879 0.750378 −0.68859 6.519537 −0.04699 1.242492 −0.7953 12.68339

4 3.785 8.802 11.18225 2.132175 1.550011 13.90279 2.100087 1.444676 0.983257 8.191 −0.33297 3.448375 −1.98948 14.56447
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Table A2. Cont.

Plot Area Perimeter CHMmean CHMstdev CHMmin CHMmax FTPCA1mean FTPCA1stde FTPCA1min FTPCA1max FTPCA2mean FTPCA2stde FTPCA2min FTPCA2max

4 4.043 8.796 8.847744 3.095808 0.431656 12.70915 2.42247 2.344196 −0.60006 7.870145 1.434274 4.169788 −1.47805 15.05686

4 3.871 9.379 11.56552 2.705374 1.205254 13.88068 3.408568 2.312897 1.695313 9.796259 0.638469 4.27188 −2.25043 12.12099

4 89.807 45.736 5.710779 3.102415 1.64621 14.78353 0.726542 1.88475 −0.61801 8.226952 0.533843 2.356327 −1.83763 12.82553

4 86.797 52.26 3.097198 1.282993 0 10.37563 −0.43387 0.436039 −0.67807 3.297346 −0.0949 0.42824 −1.05175 4.798019

1 4.989 10.565 2.594007 0.506873 1.295456 3.367157 −0.55758 0.033358 −0.63448 −0.50407 −0.14113 0.077593 −0.20492 0.173152

1 5.763 11.142 3.537497 0.499803 1.566437 4.706284 −0.45407 0.051183 −0.53054 −0.33943 −0.18381 0.122273 −0.29835 0.203358

1 3.441 8.796 4.337077 0.992384 1.794785 5.625793 −0.29708 0.053235 −0.42464 −0.19068 −0.24132 0.214781 −0.41681 0.244165

3 40.344 35.19 6.642838 0.605936 3.950012 9.699669 0.070372 0.147227 −0.19429 0.855601 −0.58871 0.116883 −1.07072 −0.07084

3 6.194 10.565 3.579031 1.17162 0 5.186081 −0.21053 0.448625 −0.54826 1.195263 0.110991 0.765588 −0.33293 2.763646

3 6.538 11.738 2.132504 0.660017 0 3.347786 −0.55308 0.125729 −0.67807 −0.0338 −0.02748 0.243737 −0.18173 1.039601

3 3.613 8.219 6.835736 0.651863 4.250809 7.99382 0.10962 0.117666 −0.17384 0.314418 −0.51713 0.249941 −0.78584 0.28765

3 5.247 9.975 7.189706 0.577249 5.691086 8.36628 0.197599 0.120036 −0.09026 0.371255 −0.66221 0.11313 −0.83086 −0.40648

2 2.065 5.866 6.328863 0.774717 4.998161 7.379341 0.085219 0.084087 −0.06179 0.1692 −0.44667 0.197249 −0.6946 −0.1985

2 2.581 6.456 2.516833 0.273776 1.735298 3.363579 −0.57799 0.019402 −0.60178 −0.53215 −0.13763 0.022468 −0.16155 −0.08298

2 6.022 9.975 7.104853 1.958472 2.622948 10.26601 0.593139 0.496412 −0.40358 1.998008 −0.32734 0.865179 −1.33871 2.749068

2 3.957 9.392 4.496574 1.151446 1.601051 5.517975 −0.19725 0.261226 −0.60149 0.515177 −0.14092 0.447423 −0.44077 1.183987

2 3.441 7.623 6.913352 1.097175 4.765274 9.905563 0.339027 0.466996 −0.07205 1.498015 −0.32178 0.492166 −0.83903 1.172888

1 4.215 8.796 3.107001 0.970136 0.442558 4.464371 −0.48844 0.082112 −0.64182 −0.37683 −0.15895 0.105838 −0.31404 0.047556

4 8.774 12.899 4.364909 1.038066 0.549828 5.440331 −0.32587 0.148639 −0.66997 0.176937 −0.18504 0.430464 −0.41643 2.120316

4 6.624 10.559 2.655107 0.435818 1.801559 3.993599 −0.5565 0.057155 −0.6307 −0.35925 −0.15082 0.029417 −0.21058 −0.06705

4 7.656 12.911 3.628137 1.344258 1.239876 5.857239 −0.36409 0.165487 −0.64384 0.017518 −0.11675 0.231081 −0.43421 0.321494

4 4.817 9.386 4.308281 1.429484 1.84951 6.648903 −0.25823 0.187091 −0.61735 0.212086 −0.07847 0.275433 −0.60457 0.520399

4 8.172 12.309 2.745759 1.21562 0 4.274643 −0.42806 0.174489 −0.66996 0.014023 −0.02432 0.267492 −0.29852 0.903595

4 4.817 9.386 4.824788 1.137 2.2743 6.535606 −0.19017 0.1711 −0.55245 0.132062 −0.28883 0.21769 −0.56395 0.076414

4 1.29 4.693 1.99779 0.114795 1.788002 2.433456 −0.63025 0.004002 −0.6365 −0.62539 −0.1262 0.002236 −0.12905 −0.12288

4 3.871 8.79 2.232366 1.483713 0 11.91653 −0.10782 1.319545 −0.63316 3.957197 0.528906 1.699226 −0.16908 6.286868
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Table A2. Cont.

Plot Area Perimeter CHMmean CHMstdev CHMmin CHMmax FTPCA1mean FTPCA1stde FTPCA1min FTPCA1max FTPCA2mean FTPCA2stde FTPCA2min FTPCA2max

4 4.129 8.808 7.194678 0.863822 5.4515 9.093864 0.267943 0.21689 −0.05229 0.690447 −0.56302 0.229609 −0.86612 −0.05738

4 1.979 5.872 9.90452 0.969666 7.360344 11.57283 1.286932 0.46469 0.872513 2.458546 −0.83582 0.520577 −1.24902 0.309813

5 4.051 9.596 6.993476 0.554035 2.319511 8.072655 0.721011 0.165133 0.362456 0.998681 −0.83646 0.204428 −1.04165 −0.29032

5 6.302 10.802 7.177172 0.962539 3.934128 8.710861 0.92671 0.206999 0.336062 1.464034 −0.73948 0.448283 −1.16833 0.420686

5 7.022 11.399 7.740243 0.938236 4.896156 9.538589 1.059383 0.32214 0.621426 1.621939 −0.98677 0.351309 −1.55799 −0.09234

5 28.54 26.983 6.871229 1.393398 0.894493 8.841682 0.927168 0.726795 −0.37189 5.661978 −0.52068 1.287771 −1.29739 7.181975

5 7.743 11.996 6.367768 0.818534 3.083389 8.828812 0.574648 0.244304 0.04083 1.405117 −0.65111 0.348197 −0.95097 0.358819

5 4.411 8.999 8.144852 1.777536 2.885094 9.614311 1.716011 0.506895 1.163184 3.193094 −0.25323 1.67511 −1.5567 3.901798

5 5.942 10.199 5.172714 0.436717 3.687805 7.992622 0.181246 0.05757 0.048333 0.271038 −0.57408 0.091129 −0.67794 −0.33007

5 2.881 7.201 6.094399 1.260213 3.810753 7.862221 0.667777 0.321439 −0.13697 1.329934 −0.4243 0.59697 −0.92484 0.985291

5 14.765 17.412 7.514438 1.895635 3.224686 9.724991 1.435498 0.777824 −0.03845 3.700222 −0.23322 1.390438 −1.62491 3.440152

5 7.563 11.99 6.417062 1.207018 4.493248 8.258713 0.656216 0.449859 −0.00052 1.596533 −0.5972 0.422816 −1.18557 0.477079

5 5.492 10.205 5.385297 0.62274 4.03315 9.073189 0.289163 0.273601 −0.01178 1.354232 −0.48864 0.35346 −0.76967 0.997614

5 6.662 11.399 7.782701 1.402899 3.656174 9.601425 1.289672 0.363723 0.078946 1.971506 −0.78493 0.833656 −1.45933 1.355572

5 6.212 10.802 7.36717 0.461894 4.689758 8.755592 0.857622 0.127292 0.704136 1.294942 −0.93603 0.145056 −1.12679 −0.62726

5 4.772 12.002 5.167382 1.19266 3.573372 8.392746 0.293052 0.452028 −0.08823 1.48954 −0.38059 0.31974 −0.987 0.323958

5 5.042 10.205 7.59755 1.479013 3.070595 9.733353 1.38104 0.595625 0.715453 2.795767 −0.25195 1.62803 −1.58962 5.121841

5 2.971 7.208 4.842277 1.418374 2.329239 8.578911 0.307523 0.448966 −0.20342 1.22301 0.295702 0.925839 −0.61559 2.450948

5 5.312 9.602 8.224847 1.599713 4.244247 9.736839 1.533879 0.679356 −0.06244 3.439811 −0.53613 1.324322 −1.57109 3.209459

5 6.032 10.796 4.526514 0.863805 1.949219 6.453194 0.086033 0.163719 −0.16705 0.433793 −0.38167 0.251908 −0.64997 0.241877

5 5.042 10.802 8.476414 1.178713 4.289162 11.74305 1.45153 0.532362 0.891494 2.879493 −1.00337 0.660389 −2.13556 1.238157

5 3.331 9.017 10.18775 1.185139 4.634438 12.37226 2.297686 0.384895 1.858209 3.104045 −1.44549 0.662927 −2.04331 −0.14826

5 36.822 28.787 6.697485 2.38479 1.730072 11.74391 0.999325 1.04185 −0.25401 5.554715 −0.54858 1.10566 −2.04423 5.28658

5 7.743 12.002 5.744165 0.359735 3.956627 6.189232 0.307561 0.063987 0.157081 0.448816 −0.65428 0.112285 −0.77074 −0.25877

5 7.473 12.002 7.598305 1.552404 4.781235 10.34891 1.347795 0.689081 0.19237 2.768367 −0.44058 0.805717 −1.51418 1.784046

5 10.083 13.209 9.906447 1.003685 5.13726 11.6647 2.029642 0.357005 1.326314 3.129253 −1.30954 0.9755 −2.12405 2.578822

5 6.842 10.802 6.438966 0.985115 5.438622 9.635727 0.632272 0.516692 0.266723 2.316442 −0.56945 0.559291 −1.51076 1.258503
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Table A3. Mean values of the heterogeneity attributes (shown in Table A2) calculated for each field plot and corresponding Shannon index measured by traditional
fieldwork. This sheet was used in the regression analysis. FTPC1 is Fourier textural principal component one and FTPC2 is Fourier textural principal component two.

Plot Area Perimeter CHMmean CHMstdev CHMmin CHMmax FTPCA1mean FTPCA1stde FTPCA1min FTPCA1max FTPCA2mean FTPCA2stde FTPCA2min FTPCA2max Shannon

1 13.557 15.5439 5.762497 2.084269 1.191858 9.219016 1.333331 1.794779 −0.17786 6.402963 1.312624 3.121833 −1.17216 8.928008 2.334775

2 20.58608 18.40862 6.382908 1.2634 2.886571 8.745109 0.314357 0.396097 −0.32853 1.457309 −0.28852 0.549242 −0.8619 1.895913 1.678342

3 20.54615 20.44331 4.876593 1.42472 1.236889 7.95645 −0.00859 0.419196 −0.47375 1.959594 −0.11564 0.700278 −0.75573 3.308784 1.511594

4 19.66089 17.36933 5.669507 1.626192 1.785102 9.145865 0.516664 0.861543 −0.28378 3.348483 0.103445 1.347034 −0.93891 5.269306 1.823349

5 8.36204 12.21668 6.977465 1.157382 3.629697 9.25874 0.958779 0.418766 0.29713 2.217852 −0.61008 0.699209 −1.31593 1.634646 2.394088
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