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Abstract 
An optimized sampling design to assess soil property variation across the field and within 
management zones is proposed and validated in a 72-ha crop field in southeastern Brazil. An 
optimized sample (18 sites) was derived by spatial simulated annealing from proximal sensor 
covariates. Soil properties were measured at 0-10 cm and validated against those measured 
at 72 sites on a regular grid. The optimized and regular grid samples had equal global spatial 
trend models and means for soil clay, pH and exchangeable Ca, Mg and K, and different 
ones for organic C and available P. Within zones, equal means between sampling designs 
were found for all soil properties in the “North” zone, and for most properties in the other two 
zones. Soil property correlations against proximal sensor variables were honored by the 
optimized samples in most cases, both globally and within zones. The optimized soil sample 
reduces costs while keeping most soil information for guiding management decisions. 
Keywords: Proximal soil sensing; Spatial simulated annealing; Spatial trends; Precision 
agriculture 

 
Introduction 
Site-specific soil management requires knowing the spatial distribution of soil 
properties that guide management recommendations. Producing this information 
using uniform soil sampling on a regular grid across the field may be expensive due 
to soil sampling and analysis costs. Alternatively, on-the-go field sensors measure 
soil properties at many sites covering the field efficiently (ADAMCHUK et al., 2004) 
and can provide data to delineate management zones (VASQUES et al., 2021) and 
optimize soil sampling (DOMENECH et al., 2017).  

For optimizing soil sampling, it is desirable that the number of sites is reduced while 
keeping enough soil information to support management decisions. For that, an 
optimized sampling design can be proposed, considering management zones and 
soil variation measured by proximal sensors, and validated to confirm that it 
represents soil property variation across the field and within zones.  

Thus, the objectives are to: (a) produce an optimized sampling design to assess soil 
property variation; (b) compare global spatial trend models from optimized versus 
regular grid samples; and (c) compare soil property means and correlations against 
proximal sensor variables from optimized versus regular grid samples, globally and 
within management zones.  
 
Methodology 
Three management zones were delineated on a 72-ha no-till irrigated crop field in 
Itaí, São Paulo, southeastern Brazil, by k-means clustering based on kriged maps of 



 

 

 

 

proximal sensor variables, including apparent electrical conductivity (aEC) and 
magnetic susceptibility (aMS) measured by a EM38-MK2 sensor (Geonics, 
Mississauga, Canada), and equivalent thorium (eTh) and uranium (eU) contents 
measured by a MS1200 gamma radiometer (Medusa, Groningen, Netherlands) 
(VASQUES et al., 2021). Soils in the field are Latossolos (Oxisols, Ferralsos). 

To assess soil property variation across the field, a regular grid sampling design 
comprising 72 sites was derived (Figure 1a, black dots). An optimized sampling 
design comprising 18 sites (Figure 1a, red dots) was derived by selecting six sites in 
each zone by spatial simulated annealing (SAMUEL-ROSA, 2019) reproducing the 
marginal distributions and correlations among aEC, aMS, eTh and eU. Soil samples 
were taken at 0-10 cm at the 90 sites (72+18) and analyzed for clay, organic C (OC), 
pH, available P, and exchangeable bases, according to Teixeira et al. (2017) (Figure 
1b-h). Sensor variable values from their kriged maps were extracted to the 90 sites. 

To check whether the optimized samples capture the global spatial trends of soil 
properties, analyses of variance and F tests (p=0.05) were used comparing first-
degree spatial trend models – soil property=f(x*y) – against full models including the 
sampling design and interaction terms – soil property=f(x*y*sampling design). In 
addition, spatial trend models were derived from optimized and regular grid samples, 
respectively, and compared by Chow’s test (p=0.05).  

Welch’s analysis of variance was used to compare soil property means from the 
optimized versus regular grid samples globally, using all observations from both sets, 
and locally at each zone, respectively. Soil property correlations against proximal 
sensor variables from the optimized versus regular grid samples were compared at 
p=0.05 using Fisher r-to-z transformation of correlation coefficients, both globally and 
at each zone, respectively. 
 
Results and discussion 
The global spatial trend models did not differ significantly between optimized and 
regular samples for all soil properties except OC and available P, according to both F 
and Chow’s tests. Soil OC and available P models differed significantly between 
sampling designs in the regression intercepts, but not in the slopes of either the x or 
y variable, that is, the geographic coordinates. This shows that all soil property trends 
described by the regular grid samples in both the E-W and N-S directions were 
captured by the optimized samples.  

Globally, the Welch’s tests showed that only OC and available P differed significantly 
between optimized and regular grid samples, though OC means were similar (Table 
1). Locally, all soil properties had equal means between sampling designs in the 
“North” zone, while significant differences were found for pH, available P and 
exchangeable Mg in the “Southeast” zone, and for clay, OC and available P in the 
“Southwest”, though their means were similar between designs, except P. Mean soil 
exchangeable K varies between designs, but their high within-group variances hinder 
statistically significant differences.  

Globally, correlations among soil properties and proximal sensor variables from the 
regular grid samples were honored by the optimized samples for all paired variables 
except pH x aEC, and P x eU. The same behavior was observed within the 



 

 

 

 

management zones, where most soil property-proximal sensor correlations were 
respected by the optimized samples. Significant differences in correlations between 
sampling designs were observed for: pH x aEC, Ca x aEC, Mg x aEC, and Mg x aMS 
in the “North”; Ca x eTh in the “Southeast”; and Mg x eTh in the “Southwest”. 

Overall, the optimized samples captured the global spatial trends of most properties 
and honored their mean values both globally and locally within management zones, 
as mean property values were very close between designs (except for available P 
and exchangeable K) despite significant differences in some cases (Table 1). They 
also captured the correlations among soil properties and proximal sensor variables 
both globally and within zones. This represents a reduction of 75% (from 72 to 18 
sites) in soil sampling and analysis costs, while keeping most soil information.  
 
Conclusions 
Soil sampling and analytical costs can be reduced considerably by reducing the 
sample size while keeping most soil information across the field and within 
management zones. For that, a combination of proximal sensor surveys that catch 
soil variations efficiently across the field and a sample optimization algorithm like 
spatial simulated annealing can be used with positive results, as shown in this paper.   

In principle, management decisions based on soil data obtained at the optimized 
sampling sites would be mostly correct. Along these lines, whether investing in more 
samples, say one sample per hectare, provides more accurate management 
decisions that are worth the extra cost is open for debate and further research. 
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Table 1. Soil property means from regular grid and optimized samples. Equal letters 
indicate equal means between sampling designs globally, and within management 
zones, respectively, according to Welch’s tests at p=0.05. 

Property 

N Mean N Mean N Mean N Mean N Mean N Mean N Mean N Mean 

Global North Southeast Southwest 

Grid Optimized Grid Optimized Grid Optimized Grid Optimized 

Clay (g kg
-1

) 72 413
a
 18 424

a
 33 392

a
 6 367

a
 27 430

a
 6 463

a
 12 433

b
 6 443

a
 

OC (g kg
-1

) 72 15
a
 18 14

b
 33 14

a
 6 13

a
 27 16

a
 6 15

a
 12 15

a
 6 13

b
 

pH 72 6.6
a
 18 6.5

a
 33 6.6

a
 6 6.6

a
 27 6.6

b
 6 6.7

a
 12 6.4

a
 6 6.2

a
 

P (mg dm
-3

) 72 143
a
 18 99

b
 33 141

a
 6 137

a
 27 151

a
 6 79

b
 12 127

a
 6 81

b
 

Ca (cmolc dm
-3

) 72 6.3
a
 18 5.9

a
 33 6.0

a
 6 5.7

a
 27 6.7

a
 6 6.2

a
 12 6.4

a
 6 5.9

a
 

Mg (cmolc dm
-3

) 72 1.9
a
 18 2.0

a
 33 1.8

a
 6 1.9

a
 27 2.1

b
 6 2.2

a
 12 1.9

a
 6 1.9

a
 

K (cmolc dm
-3

) 72 458
a
 18 501

a
 33 451

a
 6 173

a
 27 583

a
 6 1110

a
 12 197

a
 6 220

a
 

N, number of observations; Stdev, standard deviation. 
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Figure 1. (a) Soil management zones, regular grid samples (black dots) and 
optimized samples (red dots); (b-h) Soil clay (g kg-1), organic C (g kg-1), pH, available 
P (mg dm-3), and exchangeable Ca, Mg and K (cmolc dm-3), respectively. Optimized 
samples are circled in the soil property maps. Coordinates are in UTM zone 22S. 


