

Azospirillum brasilense NO CONSÓRCIO MILHO-BRAQUIÁRIA EM INTEGRAÇÃO LAVOURA-PECUÁRIA*

<u>Denise Prevedel Capristo</u>⁽¹⁾, Gessí Ceccon⁽²⁾, Odair Honorato de Oliveira⁽³⁾, Matheus Aguiar do Nascimento⁽⁴⁾ e Rodrigo Arroyo Garcia⁽⁵⁾

Palavras-chave: *Zea mays*, bactérias promotoras de crescimento de plantas, plantio direto, renovação de pastagem.

O Cerrado brasileiro ocupa cerca de 204 milhões de hectares, incluindo áreas com pastagens degradadas (BRASIL, 2015 - https://antigo.mma.gov.br/biomas/cerrado/projeto-terraclass.html). Com o avanço da agropecuária neste bioma, surge o desafio de empregar práticas agrícolas que impulsionem a incorporação dessas áreas em sistemas produtivos. Uma estratégia que pode ser utilizada para tornar o sistema de produção mais sustentável, por proporcionar o aumento da produtividade das culturas, é a utilização de bactérias promotoras de crescimento de plantas do gênero *Azospirillum* (OLIVEIRA et al., 2018 - https://doi.org/10.1186/s40538-018-0118-z).

O trabalho foi realizado com o objetivo de avaliar o efeito de sistemas de renovação de pastagem utilizando *Panicum maximum* cv. Zuri, *Crotalaria ochroleuca* e da inoculação com *Azospirillum brasilense* na produtividade do milho safrinha e da *Brachiaria brizantha* cv. Marandu cultivados em consórcio na safrinha 2020, em plantio direto.

O experimento foi realizado em Bataiporã, MS (22°27'04" S; 53°18'13" W; a 292 m de altitude), em Latossolo Vermelho-amarelo distrófico, textura média (SANTOS et al., 2018 - https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1094003). Em setembro de 2018 foi aplicado calcário dolomítico, para elevação da saturação por bases a 60%, na camada 0 a 20 cm; e também foi aplicado superfosfato simples, incorporado nas camadas de 0 a 15 cm em todos os sistemas de renovação de pastagem.

O delineamento experimental foi em blocos casualizados, em esquema fatorial 2 x 6, com quatro repetições. O primeiro fator constitui-se pelos tratamentos com e sem inoculação de *A. brasilense* e, o segundo fator pelos sistemas de renovação de pastagem: 1) Soja 2019/20 - consórcio 2020; 2) Soja 2018/19 - consórcio milho safrinha com *B. ruziziensis* em 2019 - soja 2019/20 - consórcio 2020; 3) *P. maximum* cv. BRS Zuri 2019 - soja 2019/20 - consórcio 2020; 4) *P. maximum* cv. BRS Zuri 2018/19 - soja 2019/20 - consórcio 2020; 6) *P. maximum* cv. BRS Zuri+crotalária 2018/19 - soja 2019/20 - consórcio 2020.

As culturas foram implantadas mecanicamente com espaçamento entrelinhas de 0,50 m em outubro de 2018 (tratamentos 2, 5 e 6) e em janeiro de 2019 (tratamentos 1, 3 e 4) em parcelas constituídas de sete linhas de 6 m de comprimento. O capim utilizado nos sistemas de renovação de pastagem foi o *P. maximum* cv. BRS Zuri solteiro e consorciado com a *C. ochroleuca* e a *B. ruziziensis* em consórcio com o milho K9606 VIP3 na safrinha 2019 e *B. brizantha* cv. Marandu em consórcio com o milho K9606 VIP3 na safrinha 2020. Utilizou-se a soja cultivar BRS 1003 IPRO com população planejada para 240.000 plantas por hectare nas safras 2018/19 e 2019/20.

^{*} Fonte financiadora Embrapa Agropecuária Oeste e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

⁽¹⁾ Engenheira Agrônoma, Ma., Discente de doutorado do Programa de Pós-Graduação em Agronomia, Universidade Federal da Grande Dourados (UFGD), Unidade II, Rodovia Dourados/Itahum, km 12, CEP 79804-970, Dourados - MS. denise prevedel@hotmail.com

⁽²⁾ Engenheiro Agrônomo, Dr., Analista da Embrapa Agropecuária Oeste, Dourados - MS. gessi.ceccon@embrapa.br

⁽³⁾ Engenheiro Agrônomo, Msc., Discente de Doutorado do Programa de Pós-Graduação em Agronomia, Universidade Federal da Grande Dourados (UFGD), Dourados - MS. odairhonorato2020@gmail.com

⁽⁴⁾ Engenheiro Agrícola, Universidade Federal da Grande Dourados (UFGD), Dourados - MS. matheusaguiarnasc@gmail.com

⁽⁵⁾ Engenheiro Agrônomo, Dr., Pesquisador Embrapa Agropecuária Oeste, Dourados - MS. rodrigo.garcia@embrapa.br

Na maturação fisiológica do milho safrinha foram avaliados a altura de plantas de milho (APM) e altura de inserção de espiga (AIE); a produtividade de massa seca (MSM) e produtividade de grãos do milho (PGM) e a massa de cem grãos (MCG). As avaliações foram realizadas em duas linhas centrais de cinco metros de milho e a massa de braquiária (MSB) em uma linha de um metro.

Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey (p<0,05) utilizando programa computacional Sisvar (Ferreira, 2011 - https://doi.org/10.1590/S1413-70542011000600001).

Não houve diferença significativa entre os sistemas de renovação de pastagem para nenhuma das variáveis analisadas. Houve efeito simples da inoculação de *A. brasilense*, a qual proporcionou maior massa de cem grãos (MCG). (Tabela 1).

Tabela 1. Altura de plantas de milho (APM), altura de inserção de espiga (AIE), massa seca de braquiária (MSB) e de milho (MSM), massa de cem grãos (MCG) e produtividade de grãos (PGM), em sistemas de renovação de pastagem, com e sem inoculação de *Azospirillum brasilense*, em Bataiporã (MS), 2020

. , ,,						
Sistemas*	APM (cm)	AIE (cm)	MSB (kg ha ⁻¹)	MSM (kg ha ⁻¹)	MCG (g)	PGM (kg ha ⁻¹)
1	206,36 a	103,8 a	602,75 a	7.850 a	25,75 a	1.990 a
2	204,5 a	105,75 a	587,50 a	7.753 a	25,63 a	2.002 a
3	193,87 a	104,38 a	540,75 a	7.527 a	26,88 a	2.009 a
4	210,00 a	107,00 a	508,25 a	7.949 a	24,88 a	1.761 a
5	198,75 a	104,88 a	527,25 a	8.228 a	25,63 a	1.946 a
6	204,00 a	106,00 a	565,75 a	7.801 a	24,63 a	1.837 a
Com A. brasilense	204,71 a	107,00 a	567,66 a	8.061 a	26,13 a	1.979 a
Sem A. brasilense	201,13 a	103,63 a	543,08 a	7.508 a	25,00 b	1.869 a
Média	202,92	105,31	555,38	7.785	25,56	1.924
CV (%)	5,35	6,01	40,19	25,95	6,22	10,07

^{*1)} Soja 2019/20 - consórcio 2020; 2) Soja 2018/19 - consórcio milho safrinha com *B. ruziziensis* em 2019 - soja 2019/20 - consórcio 2020; 3) *P. maximum* cv. BRS Zuri 2019 - soja 2019/20 - consórcio 2020; 4) *P. maximum* cv. BRS Zuri+crotalária 2019 - soja 2019/20 - consórcio 2020; 5) *P. maximum* cv. BRS Zuri 2018/19 - soja 2019/20 - consórcio 2020; 6) *P. maximum* cv. BRS Zuri+crotalária 2018/19 - soja 2019/20 - consórcio 2020. Médias seguidas por letras iguais não diferem entre si pelo teste de Tukey a 5% de probabilidade. CV: Coeficiente de variação.

A inoculação de bactérias do gênero *Azospirillum* vem sendo utilizada na agricultura por estimular a produção de hormônios vegetais (auxinas, citocininas, giberelinas e etileno) que promovem o crescimento e desenvolvimento das plantas (GITTI, 2016 - https://www.fundacaoms.org.br/anuario-tecnologia-e-producao-soja-2015-2016). Esse efeito estimulante pode estar relacionado aos valores observados na tabela 1, onde a inoculação de *A. brasilense* proporcionou maior massa de cem grãos do milho (MCG) em comparação a testemunha sem inoculação.

Conclui-se que os sistemas de renovação de pastagem não interferem na produtividade do milho e da braquiária consorciados. A inoculação de *Azospirillum brasilense* contribui para o incremento da massa de cem grãos de milho.