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Abstract: Acquiring useful data from agricultural areas has always been somewhat of a challenge, as
these are often expansive, remote, and vulnerable to weather events. Despite these challenges, as
technologies evolve and prices drop, a surge of new data are being collected. Although a wealth of
data are being collected at different scales (i.e., proximal, aerial, satellite, ancillary data), this has been
geographically unequal, causing certain areas to be virtually devoid of useful data to help face their
specific challenges. However, even in areas with available resources and good infrastructure, data
and knowledge gaps are still prevalent, because agricultural environments are mostly uncontrolled
and there are vast numbers of factors that need to be taken into account and properly measured for a
full characterization of a given area. As a result, data from a single sensor type are frequently unable
to provide unambiguous answers, even with very effective algorithms, and even if the problem at
hand is well defined and limited in scope. Fusing the information contained in different sensors and
in data from different types is one possible solution that has been explored for some decades. The
idea behind data fusion involves exploring complementarities and synergies of different kinds of
data in order to extract more reliable and useful information about the areas being analyzed. While
some success has been achieved, there are still many challenges that prevent a more widespread
adoption of this type of approach. This is particularly true for the highly complex environments
found in agricultural areas. In this article, we provide a comprehensive overview on the data fusion
applied to agricultural problems; we present the main successes, highlight the main challenges that
remain, and suggest possible directions for future research.

Keywords: data fusion; sensors; variability; precision agriculture; artificial intelligence

1. Introduction

The number (and quality) of sensors used to collect data in different contexts have
been steadily growing. Even complex environments, such as agricultural areas, are now
being “sensed” via a wide variety of equipment, generating vast amounts of data that
can be explored to provide useful information about the area being observed. As a re-
sult, the number of studies attempting to explore the wealth of information contained
in the sensed data have increased [1–3]. However, it is often challenging to translate the
advancements achieved in experiments to the conditions found in practice. There are two
main reasons for this. First, the studies described in scientific texts are usually limited
in scope, because the data used in these experiments usually do not cover all of the vari-
abilities associated with the problem at hand. As a result, while the results reported in
those articles may seem encouraging, they often reveal nothing about the performance of
the proposed technique under real, unconstrained conditions. Second, even if the data
adequately cover the variable conditions found in practice, the adopted sensing technology
may not be capable of acquiring enough information to unambiguously resolve the data
and provide enough information. For example, even powerful artificial intelligence models
fed with RGB digital images are often unsuccessful in recognizing plant diseases from their
symptoms, because different disorders can produce similar visual signs [4].
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One way to reduce the gaps caused by data limitations is to apply data fusion tech-
niques. The term “data fusion” can be defined as “the process of combining data from
multiple sources to produce more accurate, consistent, and concise information than that
provided by any individual data source” [5]. Other stricter definitions do exist to better fit
narrower contexts. This type of approach has been applied to agricultural problems since
the first half of the 1990s [6], and there has been an increase in the use of this approach.
Arguably, the main challenge involved in the use of data fusion techniques involves finding
the best approach to fully explore the synergy and complementarities that potentially exist
between different types of data and data sources. This is particularly true with data having
significantly disparate characteristics (for example, digital images and meteorological data).

It is difficult to find a formalization for the data fusion process that fits all agricultural
applications, given the variety of data sources and approaches. The formalization presented
by Bleiholder and Naumann [7], although derived in a slightly different context, adopts a
three-step view of the data fusion process that is applicable in most cases. In the first step,
the corresponding attributes that are used to describe the information in different sources
need to be identified. Such a correspondence can be easily identified if the data sources
are similar, but it can be challenging as the different types of data are being used. This is
one of the main reasons for the existence of the three types of data fusion described in the
following paragraph. In the second step, the different objects that are described in the data
sources need to be identified and aligned. This step is particularly important when data
sources are images, because misalignments can lead to inconsistent representations and,
as a result, to unreliable answers. Once the data are properly identified and consistent,
the actual data fusion can be applied in the third step. In practice, coping with existing
data inconsistencies is often ignored [7]. This situation can be (at least partially) remedied
by auxiliary tools, such as data profile techniques, which can reduce inconsistencies by
extracting and exploring the metadata associated to the data being fused [8].

The most common categorization divides data fusion techniques into three groups [9]:
(a) raw data level (also denoted “low-level” and “early integration”), in which different
types of data (raw or preprocessed) are simply concatenated into a single matrix, being
used in cases in which pieces of data are of the same nature and were properly normalized.
(b) Feature level (also denoted “mid-level” and “intermediate integration”), in which
features are first extracted from different types of data and then concatenated into a matrix,
being mostly used when pieces of data can be treated in such a way they generate features
that are compatible and complementary. (c) Decision level (also denoted “high level” and
“late integration”), in which classification and regression algorithms are applied separately
to each type of datum and then the outputs generated by each model are combined, being
more appropriate when data sources are too distinct to be combined at an earlier stage.
An alternative classification of data fusion methods was proposed by Ouhami et al. [10]:
probability-based, evidence-based, and knowledge-based. Although both classifications
are useful, the first one is more appropriate in the context of this work (Figure 1).

In the specific case of agriculture, data can be collected at three different scales—
proximal, aerial, and orbital (satellites) (Figure 1). Applications that use proximal data
include navigation systems for autonomous vehicles [11–17], fruit detection [18–21], plant
disease detection [22–24], delineation of homogeneous management zones [25–29], soil
analysis [30–36], plant phenotyping [37], among others. Aerial data (collected using UAVs)
is used mostly for detection of certain objects (e.g., certain plant species and fruits) [38] and
for estimation of agricultural variables (e.g., soil moisture and nitrogen content) [39–41].
Satellite data are used for mapping variables as diverse as soil moisture [42–44], crop
type [45–50], crop phenological states [51,52], evapotranspiration [40,53–58], nitrogen
status [59–62], biomass [63,64], among others. While most data fusion approaches only
use data in the same scale, a few studies have applied data originating from different
scales [10,26,28,31,38,40,51,52,64–71].
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Figure 1. Categorization of data fusion approaches adopted in this work.

The objective of this article was to characterize the current state-of-the-art regarding
the process of applying data fusion for agricultural applications. First, a comprehensive
overview of the literature is provided, with emphasis on articles published after 2010. Then,
the aspects involved in the use of data fusion to different types of data are explored in detail,
together with some possible solutions for the weaknesses that prevent technologies based
on data fusion from being more widely used in practice. Although there have been a few
reviews dedicated toward data fusion in agriculture, they focused on specific applications
and themes [9,10,68,70,72], while this one adopts a more general and systemic view of
the subject.

The remainder of the article is organized as follows. Section 2 describes the literature
related to the three different scales—proximal, aerial, and orbital. A discussion on several
aspects relevant to data fusion in agriculture is presented in Section 3. Finally, Section 4
offers some final remarks and possible directions for future research.

2. Literature Review

A search was carried out via Google Scholar and Scopus using the keywords “data
fusion” and “agriculture”. Almost 400 articles were originally selected, but this number
was reduced to 119 after we removed low quality documents or documents outside of the
scope of this work. From this total, 50 explore proximally collected data, 45 explore satellite
data, 8 explore aerial (UAV) data, and 16 use data collected at multiple scales (Figure 2).
Each scale is treated separately in this section, as they have some peculiarities that require
more focused descriptions and analyses. To improve the legibility of the tables containing
the full list of references, many acronyms are used, all of which are defined in Table 1.

Figure 2. Number of references selected in this review.
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Table 1. List of acronyms.

Acronym Meaning Acronym Meaning

AMSR-E Advanced Microwave Scanning Radiometer MLP Multilayer Perceptron
on the Earth Observing System MLR Multiple Linear Regression

ANN Artificial Neural Network MOA Model Output Averaging
ASTER Advanced Spaceborne Thermal Emission and MODIS Moderate-Resolution Imaging Spectroradiometer

Reflection MSDF-ET Multi-Sensor Data Fusion Model for Actual
BK Block Kriging Evapotranspiration Estimation
BPNN Backpropagation Neural Network MSPI Maximum Sum of Probabilities Intersections
CACAO Consistent Adjustment of the Climatology NB Naïve Bayes

to Actual Observations NDSI Normalized Difference Spectral Index
CHRIS Compact High Resolution Imaging Spectrometer NDVI Normalized Difference Vegetation Index
CNN Convolutional Neural Network NIR Near-infrared Spectroscopy
CP-ANN Counter-Propagation Artificial Neural Networks NMDI Normalized Multiband Drought Index
CV Computer Vision OLI Operational Land Imager
DEM Digital Elevation Model PCA Principal Component Analysis
DNN Deep Neural Network PDI Perpendicular Drought Index
DRF Distributed Random Forest PLSR Partial Least Square Regression
ECa Apparent Soil Electrical Conductivity RF Random Forest
EDXRF Energy dispersive X-Ray Fluorescence RFR Random Forest Regression
EKF Extended Kalman Filter RGB Red–Green–Blue
ELM Extreme Learning Machine RGB-D Red–Green–Blue-Depth
EMI Electromagnetic Induction RK Regression Kriging
ESTARFM Enhanced Spatial and Temporal Adaptive RTK Real Time Kinematic

Reflective Fusion Model SADFAET Spatiotemporal Adaptive Data Fusion
ET Evapotranspiration Algorithm for Evapotranspiration Mapping
FARMA Fusion Approach for Remotely-Sensed Mapping SAR Synthetic Aperture Radar

of Agriculture SF Sensor Fusion
GBM Gradient Boosting Machine SfM Structure from Motion
GKSFM Gaussian Kernel-Based Spatiotemporal Fusion Model SKN Supervised Kohonen Networks
GLM Generalized Linear Model SMLR Stepwise Multiple Linear Regression
GNSS Global navigation satellite system SPA Successive Projections Algorithm
HUTS High-resolution Urban Thermal Sharpener SPOT Satellite Pour l’Observation de la Terre
INS Inertial Navigation System SRTM Shuttle Radar Topographic Mission
IoT Internet of Things STARFM Spatial and Temporal Adaptive Reflective Fusion
ISTDFA Improved Spatial and Temporal Data Fusion Model

Approach SVR Support Vector Regression
kNN k-Nearest Neighbors TLS Terrestrial Laser Scanning
LAI Leaf Area Index TRMM Tropical Rainfall Measuring Mission
LPT Laplacian Pyramid Transform TVDI Temperature Vegetation Dryness Index
LR Linear Regression UAV Unmanned Aerial Vehicle
LSTM-NN Long Short-Term Memory Neural Network XGBoost Extreme Gradient Boosting

To better organize the literature presented in this section and the subsequent discussion,
both the data fusion techniques and the data being fused were categorized in a few more
general classes (Table 2).

Table 2. Categories adopted for the data fusion techniques and the data being fused.

No. Classes of Data Fusion Technique No. Classes of Data Being Fused

1 Regression methods 1 RGB images
2 STARFM-like statistical methods 2 Multispectral images
3 Geostatistical tools 3 Hyperspectral images
4 PCA and derivatives 4 Thermal images
5 Kalman filter 5 Laser scanning
6 Machine learning 6 SAR images
7 Deep learning 7 Spectroscopy
8 Decision rules 8 Fluorescence images
9 Majority rules 9 Soil measurements
10 Model output averaging 10 Environmental/weather measurements
11 Others 11 Inertial measurements

12 Position measurements
13 Topographic records and elevation models
14 Historical data
15 Others
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2.1. Proximal Scale

The majority of studies dedicated to the proximal scale are concentrated in three
main areas: prediction of soil properties, delineation of homogeneous zones, and robotic
navigation and control. Applications, such as disease and fruit detection, prediction of
water content and water stress, estimation of phonological state and yield prediction, are
also present. Ten of the references also explored satellite data, and five studies combined
proximal and aerial data. Data sources included cameras (RGB, multispectral, thermal,
hyperspectral) spectrometers, conductance and resistivity sensors, GPS, inertial sensors,
weather data, among many others. With such a variety of sensors available for field ap-
plications, efforts to explore their complementarities have been steadily growing (Table 3),
but most problems still lack reliable solutions [73].

Table 3. References considered in this study–proximal scale. L, M, and H mean low-, mid-, and
high-level data fusion, respectively. The numbers in the fourth column are those adopted in Table 2
for each “fused data” class.

Reference Application Fusion Technique Fused Data Mean Accuracy

[30] Estimation of soil indices SF (L), MOA (H) 7 0.80–0.90

[74] Sustainable greenhouse management Decision rules (L) 10 N/A

[73] Human—robot interaction LSTM-NN (L) 11 0.71–0.97

[25] Delineation of homogeneous zones in viticulture GAN (L), geostatistical tools (L) 2, 9 N/A

[26] a Delineation of homogeneous zones Kriging and other geostatistical tools (L) 2, 9 N/A

[51] a Estimation of crop phenological states Particle filter scheme (L) 2, 6, 10 0.93–0.96

[18] Fruit detection LPT (L) and fuzzy logic (L) 1, 4 0.80–0.95

[31] a In-field estimation of soil properties RK (L), PLSR (L) 3, 9 >0.5

[75] Delineation of homogeneous management zones Kriging (L), Gaussian anamorphosis (L) 9, 15 0.66

[76] Delineation of homogeneous management zones Kriging (L), Gaussian anamorphosis (L) 9, 15 N/A

[27] Delineation of homogeneous management zones Kriging (L), Gaussian anamorphosis (L) 9, 15 N/A

[77] Crop nutritional status determination PCA (L) 7, 8 0.7–0.9

[22] Detection of olive quick decline syndrome CNN (M) 1 0.986

[65] b Monitoring Agricultural Terraces Coregistering and information extraction (L/M) 5 N/A

[78] Prediction of canopy water content of rice BPNN (M), RF (M), PLSR (M) 2 0.98–1.00

[11] Localization of a wheeled mobile robot Dempster–Shafer (L) and Kalman filter (L) 11, 12 0.97

[19] Immature green citrus fruit detection Color-thermal probability algorithm (H) 1, 4 0.90–0.95

[28] a Delineation of management zones K-means clustering (L) 2, 9, 14 N/A

[79] Segmentation for targeted application of products Discrete wavelets transform (M) 1 0.92

[12] System for agricultural vehicle positioning Kalman filter (L) 11, 12 N/A

[13] System for agricultural vehicle positioning Kalman filter (L) 11, 12 N/A

[67] a Yield gap attribution in maize Empirical equations (L) 15 0.37–0.74

[32] Soil environmental quality assessment Analytic hierarchy process, weighted average (L) 15 N/A

[33] Predict soil properties PLSR (L) 7, 9, 13 0.80–0.96

[14] System for agricultural vehicle positioning Discrete Kalman filter (L) 11, 13 N/A

[34] Estimating soil macronutrients PLSR (L) 7, 9 0.70–0.95

[20] Citrus fruit detection and localization Daubechies wavelet transform (L) 1, 2 0.91

[15] Estimation of agricultural equipment roll angle Kalman filtering (L) 11 N/A

[80] Predicting toxic elements in the soil PLSR, PCA, and SPA (L/M) 7, 8 0.93–0.98

[68] a Review: image fusion technology in agriculture N/A N/A N/A

[81] Heterogeneous sensor data fusion Deep multimodal encoder (L) 10 N/A

[82] Agricultural vulnerability assessments Binary relevance (L), RF (L), and XGBoost (L) 10, 14 0.67–0.98

[35] Prediction of multiple soil properties SMLR (L), PLSR (L), PCA/SMLR combination (L) 7, 9 0.60–0.95

[83] Prediction of environment variables Sparse model (L), LR (L), SVM (L), ELM (L) 10 0.96
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Table 3. Cont.

Reference Application Fusion Technique Fused Data Mean Accuracy

[64] a Estimation of biomass in grasslands Simple quadratic combination (L) 2, 15 0.66–0.88

[23] Plant disease detection Kohonen self-organizing maps (M) 3, 8 0.95

[84] Water stress detection Least squares support vectors machine (M) 3, 8 0.99

[85] Delineation of water holding capacity zones ANN (L), MLR (L) 7, 9 0.94–0.97

[86] Potential of site-specific seeding (potato) PLSR (L) 2, 9 0.64–0.90

[87] 3D characterization of fruit trees Pixel level mapping between the images (L) 4, 5 N/A

[88] Measurements of sprayer boom movements Summations of normalized measurements (L) 11 N/A

[10] a,b Review: IoT and data fusion for crop disease N/A N/A N/A

[89] Prediction of wheat yield and protein Canonical powered partial least-squares (L) 7, 10 0.76–0.94

[69] a Wheat yield prediction CP-ANN (L), XY-fused networks (L), SKN (L) 2, 7 0.82

[90] Topsoil clay mapping PLSR (L) and kNN (L) 7, 9, 13 0.94–0.96

[21] Fruit detection CNN (L); scoring system (H) 1, 2 0.84

[37] 3D reconstruction for agriculture phenotyping Linear interpolation (L) 1, 10 N/A

[29] Delineation of site-specific management zones CoKriging (L) 2 0.55–0.77

[91] Orchard mapping and mobile robot localization Laser data projection onto the RGB images (L) 1, 5 0.97

[24] Modelling crop disease severity 2 ANN architectures (L) 10, 15 0.90–0.98

[92] Tropical soil fertility analysis SVM (L), PLS (L), least squares modeling (L) 2, 8 0.30–0.95

[93] Internet of things applied to agriculture Hydra system (L/M/H) 9, 10, 15 0.93–0.99

[70] a,b Review: data fusion in agricultural systems N/A N/A N/A

[36] Soil health assessment PLSR (L) 7, 9 0.78

[94] Prediction of Soil Texture SMLR (L), PLSR (L) and PCA (L) 7, 8 0.61–0.88

[95] Rapid determination of soil class Outer product analysis (L) 7 0.65

[16] Navigation of autonomous vehicle MSPI algorithm with Bayesian estimator (L) 11, 12 N/A

[38] b Detection of cotton plants Discriminant analysis (M) 2, 7 0.97

[96] Map-based variable-rate manure application K-means clustering (L) 2, 9 0.60–0.93

[17] Navigation of autonomous vehicles Kalman filter (L) 11, 12 N/A

[97] Robust tomato recognition for robotic harvesting Wavelet transform (L) 1 0.93

[98] Navigation of autonomous vehicle Self-adaptive PCA, dynamic time warping (L) 1, 11 N/A

[99] Recognition of wheat spikes Gram–Schmidt fusion algorithm (L) 1, 2 0.60–0.79

a Also explores satellite data. b Also explores aerial data.

2.2. Aerial Scale

Studies employing UAVs to solve agricultural problems are growing in number,
but they are still outnumbered by proximal and orbital approaches. Most studies are
dedicated to crop monitoring and object detection (weed, crops, etc.), although applications,
such as phenotyping and water management, are also present. Almost all techniques are
based on some kind of digital image (RGB, multispectral, thermal, hyperspectral). Many
approaches explore the complementarity of aerial images with proximal (four articles) and
orbital (six articles) data. Only eight studies employed the aerial data alone (Table 4).
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Table 4. References considered in this study–aerial scale. L, M, and H mean low-, mid-, and high-level
data fusion, respectively. The numbers in the fourth column are those adopted in Table 2 for each
“fused data” class.

Reference Application Fusion Technique Fused Data Mean Accuracy

[100] Root zone soil moisture estimation NN (M), DRF (M), GBM (M), GLM (M) 2, 11 0.90–0.95

[101] Gramineae weed detection in rice fields Haar wavelet transformation (L) 1, 2 0.70–0.85

[65] a Monitoring agricultural terraces Coregistering and information extraction (L) 5 N/A

[66] b Spectral–temporal response surfaces Bayesian data imputation (L) 2, 3 0.77–0.83

[102] Phenotyping of soybean PLSR (L), SVR (L), ELR (L) 1, 2, 4 0.83–0.90

[39] Soybean yield prediction PLSR (M), RF (M), SVR (M), 2 types of DNN (M) 1, 2, 4 0.72

[52] b Crop monitoring PLSR (M), RF (M), SVR (M), ELR (M) 1, 2 0.60–0.93

[40] b Evapotranspiration estimation MSDF-ET (L) 1, 2, 4 0.68–0.77

[10] a,b Review: IoT and data fusion for crop disease N/A N/A N/A

[103] Arid and semi-arid land vegetation monitoring Decision tree (L/M) 3, 5 0.84–0.89

[41] Biomass and leaf nitrogen content in sugarcane PCA and linear regression (L) 2, 5 0.57

[70] a,b Review: data fusion in agricultural systems N/A N/A N/A

[104] Navigation system for UAV EKF (L) 11, 12 0.98

[38] a Detection of cotton plants Discriminant analysis (M) 2 0.97

[71] b Vineyard monitoring PLSR (M), SVR (M), RFR (M), ELR (M) 2 0.98

a Also explores proximal data. b Also explores satellite data.

2.3. Orbital Scale

A large portion of the articles employing satellite images aimed to either compensate
for data gaps present in a primary data source by fusing it with another source of data
(for example, combining optical and SAR images) [6,45,47–49,51,105,106], or increase the
spatial resolution of the relatively coarse images collected by satellites with high revisit
frequencies [42–44,55,57,58,107–110]. In the latter, the fused results usually inherit the
details of the high spatial resolution images and the temporal revisit the frequencies
of their counterparts, although the quality of the fused data usually do not match that
obtained through actual missions, especially when surface changes are rapid and subtle [72].
As argued by Tao et al. [111], different sensors and image processing algorithms lead
inevitably to data with some level of inconsistency, which can make rapid changes difficult
to detect.

Landsat and MODIS images and products still dominate, but other satellite constel-
lations, such as Sentinel, Worldview, GeoEye, and others, are being increasingly adopted.
Data fusion has been applied to satellite images for quite some time, and well established
techniques, such as STARFM and its variants, are still often used, but the interest for
machine learning techniques, especially in the form of deep learning models, has been
growing consistently. Water management in its several forms (evapotranspiration esti-
mation, mapping of irrigated areas, drought detection, etc.) is by far the most common
application. Yield estimation, crop monitoring, land cover classification, and prediction of
soil properties are also common applications.

A major challenge associated with the orbital scale is the existence of highly hetero-
geneous regions with a high degree of fragmentation [109,112]. Solutions to this problem
are not trivial and, as stated by Masiza et al. [113], “. . . successful mapping of a fragmented
agricultural landscape is a function of objectively derived datasets, adapted to geographic
context, and an informed optimization of mapping algorithms”. However, there are cases
in which target areas can have sizes smaller than the pixel resolution of the satellite im-
ages [53]. In theses cases, pairing the images with images or other types of data obtained at
higher resolutions (aerial or proximal) may be the only viable solution. Satellite data were
fused together with proximal and aerial data in ten and six studies, respectively (Table 5).
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Table 5. References considered in this study–orbital scale. L, M, and H mean low-, mid-, and high-
level data fusion, respectively. The numbers in the fourth column are those adopted in Table 2 for
each “fused data” class.

Reference Application Fusion Technique Fused Data Mean Accuracy

[42] Soil moisture mapping ESTARFM (L) 2 0.70–0.84

[45] Crop type mapping 2D and 3D U-Net (L), SegNet (L), RF (L) 2, 6 0.91–0.99

[43] Estimation of surface soil moisture ESTARFM (L) 2 0.55–0.92

[26] a Delineation of homogeneous zones Kriging and other geostatistical tools 2, 9 N/A

[51] a Estimation of crop phenological states Particle filter scheme (L/M) 2, 6, 10 0.93–0.96

[53] Evapotranspiration mapping at field scales STARFM (L) 2 0.92–0.95

[31] a In-field estimation of soil properties RK (L), PLSR (L) 3, 9 >0.5

[59] Estimation of wheat grain nitrogen uptake BK (L) 2, 3 N/A

[44] Surface soil moisture monitoring Linear regression analysis and Kriging (L/M) 2, 15 0.51–0.84

[46] Crop discrimination and classification Voting system (H) 2, 6 0.96

[9] Review on multimodality and data fusion in RS N/A N/A N/A

[47] Crop Mapping Pixelwise matching (H) 2, 6 0.94

[72] Review on fusion between MODIS and Landsat N/A N/A N/A

[107] Mapping crop progress STARFM (L) 2 0.54–0.86

[66] b Generation of spectral—temporal response Bayesian data imputation (L) 2, 3 0.77–0.83

[28] a Delineation of management zones K-means clustering (L) 2, 9, 14 N/A

[114] Mapping irrigated areas Decision tree (L) 2 0.67–0.93

[54] Evapotranspiration mapping Empirical exploration of band relationships (L) 2, 4 0.20–0.97

[67] a Yield gap attribution in maize Empirical equations (L) 15 0.37–0.74

[63] Change detection and biomass estimation in rice Graph-based data fusion (L) 2 0.17–0.90

[108] Leaf area index estimation STARFM (L) 2 0.69–0.76

[55] Evapotranspiration estimates STARFM (M) 2 N/A

[115] Classification of agriculture drought Optimal weighting of individual indices (M) 2 0.80–0.92

[56] Mapping daily evapotranspiration STARFM (L) 2 N/A

[20] Mapping of cropping cycles STARFM (L) 2 0.88–0.91

[116] Evapotranspiration partitioning at field scales STARFM (L) 2 N/A

[68] a Review: image fusion technology in agriculture N/A N/A N/A

[52] b Crop monitoring PLSR (M), RF (M), SVR (M), ELR (M) 1, 2, 4 0.60–0.93

[113] Mapping of smallholder crop farming XGBoost (L/M and H), RF (H), SVM (H), ANN (H),
NB (H) 2, 6 0.96–0.98

[64] a Estimation of biomass in grasslands Simple quadratic combination (L/M) 2, 15 0.66–0.88

[40] b Evapotranspiration estimation MSDF-ET (L) 1, 2, 4 0.68–0.77

[117] Semantic segmentation of land types Majority rule (H) 2 0.99

[118] Eucalyptus trees identification Fuzzy information fusion (L) 2 0.98

[10] a,b Review: IoT and data fusion for crop disease N/A N/A N/A

[69] a Wheat yield prediction CP-ANN (M), XY-fused networks (M), SKN (M) 2, 7 0.82

[112] Drought monitoring RF (M) 2, 15 0.29–0.77

[48] Crop type classification and mapping RF (L) 2, 6, 13 0.37–0.94

[119] Time series data fusion Environmental data acquisition module 10 N/A

[57] Evapotranspiration prediction in vineyard STARFM (L) 2 0.77–0.81

[109] Daily NDVI product at a 30-m spatial resolution GKSFM (M) 2 0.88

[49] Crop classification Committee of MLPs (L) 2, 6 0.65–0.99

[6] Multisource classification of remotely sensed data Bayesian formulation (L) 2, 6 0.74

[111] Fractional vegetation cover estimation Data fusion and vegetation growth models (L) 2 0.83–0.95

[120] Land cover monitoring FARMA (L) 2, 6 N/A

[121] Crop ensemble classification mosaicking (L), classifier majority voting (H) 2 0.82–0.85

[70] a,b Review: data fusion in agricultural systems N/A N/A N/A

[50] In-season mapping of crop type Classification tree (M) 2 0.93–0.99
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Table 5. Cont.

Reference Application Fusion Technique Fused Data Mean Accuracy

[122] Building frequent landsat-like imagery STARFM (L) 2 0.63–0.99

[58] Evapotranspiration mapping SADFAET (M) 2 N/A

[123] Temporal land use mapping Dynamic decision tree (M) 2 0.86–0.96

[124] High-resolution leaf area index estimation STDFA (L) 2 0.98

[125] Monitoring cotton root rot ISTDFA (M) 2 0.79–0.97

[110] Monitoring crop water content Modified STARFM (L) 2 0.44–0.85

[105] Soil moisture content estimation Vector concatenation, followed by ANN (M) 2, 6 0.39–0.93

[126] Impact of tile drainage on evapotranspiration STARFM (L) 2 0.23–0.91

[127] Estimation of leaf area index CACAO method (L) 2 0.88

[106] Mapping winter wheat in urban region SVM (M), RF (M) 2, 6 0.98

[128] Leaf area index estimation ESTARFM (L), linear regression model (M) 2 0.37–0.95

[71] b Vineyard monitoring PLSR (M), SVR (M), RFR (M), ELR (M) 2 0.98

a Also explores proximal data. b Also explores aerial data.

Another important challenge is the difficulty of obtaining/collecting reference data
for validation of the techniques applied. This problem can be particularly difficult if the
reference data need to be gathered in-loco. It is also important to consider that, even if
reference data can be collected, differences in granularity and the positions of the sample
points can make the comparison with the fused data difficult or even unfeasible [112].

These and other challenges related to data fusion applied to satellite data were dis-
cussed in depth in [9], so they are not explored in detail here, although some of them are
revisited in a more general context in the next section.

3. Discussion
3.1. Comparison of the Results Yielded by Fused and Individual Sources of Data

The last columns of Tables 3–5 show the accuracies reported in each study considered
in this article. There are a few important observations to be made before analysing those
results. First, the value “N/A” is used in three situations: when accuracy values are
not applicable (for example in review articles), when accuracy values are not available,
and when the performance of the proposed models is evaluated using either qualitative
criteria or metrics that cannot be summarized in a few numbers. Second, some studies
report a wide range of accuracy values. This happens when different experimental setups
are adopted and also when different variables are considered. This is particularly prevalent
in studies dealing with soil variables, in which case, the effectiveness of models can vary
significantly from variable to variable. Third, the application of data fusion in agriculture
vary significantly, so does the way accuracies are assessed, which partially explains the wide
differences observed in the tables. More importantly, even the results reported in studies
dealing with similar applications cannot, in general, be directly compared, unless the exact
same datasets were used in the experiments. Because of these limitations, the analysis in
this section focuses on the effects of data fusion, and not on differences between studies.
However, it is worth noting that not all studies explicitly compare results produced with
and without data fusion.

The impact of data fusion varies with the type of application. Studies that focused
on the fusion of digital images invariably showed improvements with respect to the re-
sults obtained using single data sources [18,19,39,84,99,106], although in some cases the
improvement may not be substantial enough to justify the capture of additional data [21,71].
The success of data fusion applied to digital images can be linked not only to the comple-
mentarities shown by different types of images, but also to the fact that the images can be
easily made compatible using simple normalization operations when needed. As a result,
proven techniques, such as deep learning, can be applied. In the case of agriculture, image
data fusion has been particularly effective at the orbital level, both for artificially increasing
the spatial resolution of sources with revisit frequencies [43,53,57,107,108,114] and for com-
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pensating cloud cover using the information present in SAR images [45,47,51,113]. In these
cases, the improvement can exceed 50% [66].

The use of data fusion for the estimation of soil variables in agricultural areas is more
complex, due to the significant differences between the variables that are normally con-
sidered. In these cases, data fusion can be effective at improving the estimation of some
variables [30,33,35,36], but may fail to produce any improvement for others [31,33,35,95],
mostly because those variables do not correlate well with any of the current soil sensors.
Some studies also remark that no single data fusion approach works for all soil vari-
ables of interest, so a comprehensive variable estimation may require the use of multiple
techniques [35,92].

Conversely, the usefulness of data fusion for determining homogeneous zones and
producing soil maps, which usually employ soil property measurements, can also be
highly dependent on the sensed data, as the inclusion of certain variables can actually
decrease accuracy due to the weak link with the properties being used to determine
homogeneous areas [90]. This is not a trivial task, and although some studies report
encouraging results [28,95], in many cases, further research is needed to better understand
how to properly explore the data collected by the sensors [25,27,76]. This has led some
authors to remark that the choice of data is more important than the data fusion method
employed [90].

Another application in which the use of data fusion has some particular characteristics
is the positioning and navigation of autonomous vehicles to be deployed in agricultural
areas. In all studies considered in this article, fusing different sensors led to decreased
errors, as long as the data fusion methods were calibrated correctly [11–14,16,17,98]. It is
worth noting that a variety of different vehicles were considered in those studies, and the
error requirements varied from case-to-case. As a result, the level of success of the data
fusion process is relative; that is, the same error levels could be considered a success or a
failure depending on the vehicle and environment where it will be used.

Some of the studies considered in this article use types of data that are more particular
and do not fit a general category, normally in combination with some of the more commonly
used variables [24,44,64,67,93]. In general, the performance of the data fusion reported
on in those cases compares favorably with single data sources, although some difficulties
related with data compatibility have also been reported [82,129].

3.2. Data Fusion Techniques

The variety of data fusion approaches found in the literature indicates that there is no
technique that fits all (or even the majority) of the possible applications. Tavares et al. [92]
argued that the best data fusion approach depends on the application and attributes
considered, and that the selection of an appropriate method should be conducted using
independent sample subsets (independent validations) to avoid bias. It is worth noting
that, depending on the problem being addressed, experiments sometimes reveal that data
fusion is simply not effective [41]. It is important to keep in mind that data fusion is not
always the best approach to prevent the practice of attempting to force the results to fit the
original hypothesis, which often leads to biased and unrealistic claims.

The use of conventional regression models (proximal and aerial scales) and well-
established spatiotemporal methods (orbital scale) is still prevalent. These types of methods
have been exhaustively tested and have consistently yielded good results. Because different
studies usually employ different datasets, it is not possible to make a direct comparison,
but the general trend seems to indicate a lack of progress and a certain level of redundancy
between studies using this type of approach. Machine learning techniques have also been
applied for some time, but their full potential has yet to be realized. There are a few reasons
for this. First, practicing data fusion using machine learning and artificial intelligence
models is far from straightforward. Different types of data need to be handled properly
in order to make them compatible within the confines of the model. Since many machine
learning techniques have poor interpretability [83], it is often difficult to determine how to
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achieve an acceptable degree of compatibility. Second, there are a lack of databases that
properly cover the entire variability associated to a given application. Although this is
a problem for any type of technique [48], the effects of data gaps become more evident
when machine learning techniques are applied. Third, machine learning techniques (deep
learning in particular) require large amounts of computational power for model train-
ing. This problem has become much less damaging in recent years as the computational
power availability increases [1]. This, combined with the fact that deep leaning has shown
remarkable potential for combining and extracting information from different types of
images [21,45,81], will probably lead to this type of technique being increasingly used in
the future.

3.3. Data Fusion Level

Even the level of fusion to be adopted is not a straightforward choice. The majority
of studies employ low-level fusion, arguably because this is a more straightforward and
computationally lighter approach [121]. Some studies seem to indicate that higher fusion
levels tend to produce better results [30,77,80], arguing that the poorer results observed
when lower level fusion is applied is likely the result of data redundancies arising from
complementary information from distinct sensors [30]. Other studies have come to the
opposite conclusion, with results favoring the low-level approach [113]. Because few studies
have compared the different fusion levels, no definitive conclusions on the matter can be
drawn. More comparative studies tackling different fusion levels are needed for a better
understanding on how to treat data under different contexts and conditions.

Low-level fusion attempts to directly combine different types of data directly. Since
these have different value ranges and formats, some kind of normalization is almost always
needed in order to make those different databases compatible [77]. If the only difference
is the range of values, normalization tends to be relatively straightforward. On the other
hand, if the types of data employed are of different natures (for example, images and
meteorological data), the normalization process can be complex or even unfeasible, in which
case, the use of higher data fusion levels may be inevitable.

Mid-level fusion can be viewed as a two-step information extraction procedure, as data
are first processed in order to generate meaningful features, which are then combined into
the final answer. Although in most cases the features are extracted from different types
of data (the features themselves are often also different), in some cases, different features
are extracted from the same dataset [79]. Calling the combination of features originating
from the same dataset “data fusion” is not appropriate in most cases, but sometimes those
features represent such different aspects of the data, where the techniques used to combine
them are akin those employed in actual data fusion.

As mentioned before, high-level fusion tends to yield solid results, but this approach
is the least used among the three levels of fusion. The explanation for this seems to be
related to two main factors. First, high-level fusion can be computationally expensive,
especially during training [121]. This is particularly true if one or more of the classifiers are
based on deep neural networks. Second, choosing the right variables to feed a single model
usually is challenging enough, so the process of selecting variables for multiple models may
become somewhat impractical. Nevertheless, the use of high-level fusion tends to grow
as the availability of computational resources becomes less of a problem, as the research
on data fusion matures, and as the characteristics of each type of model/classifier become
better understood.

3.4. Differences between Fusion Techniques

Directly comparing the results yielded by different data fusion techniques is difficult
for several reasons: the datasets used in the studies are different in terms of data distribution
and characteristics of the experimental areas, assessment criteria are diverse, and constraints
on the experimental setup usually make the results not generalizable. In addition, results
reported in the literature are usually quite similar, but such similitude is often related to
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limitations in the representativeness of the datasets, and not to the methods themselves.
Thus, instead of comparing the results yielded by different approaches, a qualitative
comparison is carried out, with the classes of techniques and applications shown in Table 2
as basis.

Almost all regression methods used in the context of data fusion are of the linear type.
They attempt to fit a line that fits the data observed, thus providing a means for predicting
values that are not present in the training datasets. In general, this type of technique can
be used only when the different sources of data are of the same type or can yield features
that are highly compatible. This kind of approach is still commonly used to derive soil
properties, as the sensors used in this kind of application generate strings of numbers that
can be easily made compatible, but it is seldom adopted in other applications.

STARFM is a data fusion method created specifically to explore the temporal and spa-
tial characteristics of satellite images in order to generate synthetic images that combine the
high temporal and spatial resolutions provided by different sensors [130]. This technique
and its derivatives [122,131,132] have been successfully applied for more than 15 years,
being particular prevalent for fusing Landsat and MODIS images [20,42,53,55,57,58,107,108,
110,116,122,126]. Despite the growth of machine learning and deep learning techniques,
the fusion of satellite imagery is still dominated by this kind of approach. There are two
main reasons for this. First, these techniques were specifically designed for this type of
application and have been continuously perfected, achieving high levels of accuracy and
robustness. Second, although machine learning and deep learning techniques can deliver
good results, they are susceptible to regularization and overfitting issues that cannot be
easily avoided with satellite images [133].

Geostatistical tools, such as kriging, cokriging, and Gaussian anamorphosis, are
frequently used for the delineation of homogeneous zones in agricultural areas. This is
accomplished by combining different types of variables into a map according to predefined
criteria. This type of approach has some competition from machine learning-based models
(e.g., K-means clustering), but the latter is usually applied only when digital images are
employed in combination with soil measurements [28].

PCA aims at removing redundancies that are often found in data, retaining only the
components that provide new information. Although PCA has been used in a wide variety
of situations and types of data, in the case of data fusion, its use has been most applied
when images are combined with spectroscopy data [77,80], or as a preliminary step to
prepare the data to be processed by the actual fusion models [35,41].

In the context of data fusion, Kalman filters are almost exclusively applied to combine
inertial and position measurements to aid in the navigation and positioning of autonomous
vehicles. This is a well-established approach that is dominating this kind of application.
Although some alternative techniques have been proposed [16,98], there is not enough
evidence in the literature to favor any given method over Kalman filters.

Machine learning techniques have been applied to a wide variety of problems since (at
least) the 1990s. In the case of data fusion in agriculture, techniques, such as fuzzy logic [18],
random forest [78,82], support vector machines [83,92,113], k-nearest neighbors [90], and
shallow neural networks [24,69,85] have been employed, often showing advantages when
digital images were involved, but without ever dominating other strategies. This began to
change with the inception of deep neural networks. Deep learning is a branch of machine
learning in which the models have deep architectures; that is, the neural networks have
many layers with well-defined purposes [134]. They are particularly well suited to deal
with digital images and, with the exception of satellite images, this type of technique is
quickly becoming the standard for image data fusion [39]. The downside of this success is
that deep learning is frequently to unsuitable datasets. Deep learning models are known
to require a large number of samples to properly capture the data distributions of the
classes to be considered [1]. The minimum number of samples depends on several factors,
but in general, the larger the variabilities associated with the problem, the more samples
are needed. This is bad news for agricultural applications because the number of factors
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that introduce variabilities in image datasets captured in the field is very large [1]. When
the dataset lacks variability and training and test samples come from the same dataset
(which is almost always the case), accuracies tend to be unrealistically high, and the trained
model will almost certainly suffer from overfitting and will tend to fail when fed with new
samples. Image augmentation is often used to mitigate this problem, but in many cases this
process is not applied correctly, thus aggravating the overfitting problem [4]. The literature
has strong evidence that deep learning is indeed the best approach when dealing with all
types of digital images [21,22,39], as long some of the pitfalls associated with this type of
approach are carefully avoided.

Decision rules [74], majority rules [46,117,121], and model output averaging [30] are
all relatively simple techniques applied in high-level fusion with the purpose of combining
the information extracted by different models. Because model selection tends to have a
greater impact on the fusion effectiveness, the combination of the model outputs is usually
carried out using one of these standard approaches.

3.5. Limitations of Current Studies

One problem that plagues most studies based on field data (not only those based
on data fusion) is that the results are not realistically weighed against the limitations of
the dataset used in the experiments. In particular, in the case of agriculture, it is very
unlikely that a single dataset will cover all the variability that can be found in practice [1].
As emphatically put by Øvergaard et al. [89], “how well a model fits a calibration data set
does not reveal any information on how good the model performance will be for other
data, i.e., for real predictions”. In their work, the model was tested using data collected in
a different year, under the justification that validating a model with data captured under
very similar conditions to those used for training will almost invariably lead to unrealistic
results, which unfortunately is usually the case. Indeed, when this approach was applied
by Zhou et al. [71], the results obtained for different years were strongly disparate, thus
revealing that the data used for training was not representative enough. Veum et al. [36]
added that it is difficult to find the ideal sample distribution due to too much homogeneity
and presence of extraneous factors. Additionally, even if the process of training, testing and
validating is carried out properly, virtually all datasets used in research will have certain
limitations, and these always need to be properly considered when analyzing the results.
Unfortunately, with some exceptions [33,63,94,123], this is seldom the case. As a result,
unrealistic claims are often found in scientific texts, hampering the progress on the subject.

3.6. Types of Data

In many cases, the level of useful information that can be extracted from different types
of data are asymmetrical. However, it is important to note that the usefulness of certain
types of data in isolation is not an indicator of how it will perform in combination with
other data sources. In fact, the most important indicator for including or not a variable is
its degree of complementarity with respect to the other ones [113]. In this context, variables
that perform poorly in isolation can greatly improve the effectiveness of other variables if
they have a high degree of complementarity [19]. In some cases, even if all variables perform
poorly individually, they can yield good results when fused together [64]. Conversely,
variables that perform well in isolation can match poorly with other variables if they share
a high degree of redundancy. Poor synergies [86,90] and high levels of redundancy [102]
between different types of data can even lead to the deterioration of the results. However,
it is also important to consider that, in some contexts, even if results do not improve with
the inclusion of new data types, the robustness to conditions not considered during the
development of the models may increase [30]. Moreover, the complementarity of different
types of data can be increased by the application of techniques capable of decreasing
redundancy (e.g., PCA). In any case, determining if it is worth to include or not a certain
type of data are not trivial and usually requires thorough experiments exploring different
data combinations [33,36].
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Different types of data can have peculiarities that need to be taken into account in
order to maximize the performance of the data fusion process. For example, the amount
and quality of the information contained in thermal images is highly dependent on the
time of day and weather conditions at the time of collection [18,19]. Moreover, some
types of data tend to be noisy and prone to outliers, especially if generated from low cost
sensors [16], which can potentially introduce error instead of improving the results. In cases
like these, applying noise reduction and outlier removal techniques is recommended [33,73].
A comprehensive analysis of several outlier removal techniques in the context of water
management is presented by Torres et al. [93]. Despite the problems associated with
spurious data, many studies simply ignore this issue, thus limiting the level of detail and
quality of the resulting fused information [68].

3.7. Other Issues

In its most basic definition, the term “support” refers to the size or volume associated
with each data value [25]. Depending on the context, however, this term may encompass
other factors. For example, in the field of geostatistical research, spatial support is related
not only to the area and volume associated with the data, but also includes the shape and
orientation of the spatial units involved in the measurements [27]. Differences in data
representativeness can be very pronounced [95], and if not properly addressed, can cause
the data fusion process to fail [25,90]. As stated by Castrignanò et al. [27], “at present,
the advantages of using multi-sensor data cannot yet conceal the complexity of the problem
encountered in combining disparate spatial data”. These authors added that while spatial
data fusion has advanced greatly in the last years, the apparent progress can be deceiving
as it is often built upon unrealistic assumptions regarding support differences. Given
the complexity of the problem, more rigorous validations with more realistic data and
assumptions are needed to enable the development of methods with real potential for
practical applications.

Overfitting is the phenomenon in which even small noisy variations in the data distri-
bution are captured by the model, making predictions unreliable when applied to indepen-
dent data [1]. This problem is particularly pervasive with small datasets with limited vari-
ability [105]. There are many techniques that can help preventing overfitting, such as data
augmentation and cross-validation. Unfortunately, with a few exceptions [34,35,60,77,105],
the problems of overfitting is often ignored, thus rendering the results unreliable.

Data gap filling is usually applied to satellite data to compensate for cloud cover
and other factors that cause data to be lost or unusable. This can be done either by using
data from other satellites or employing data collected at other levels, especially proximal,
but the latter does not always improves results [51]. Data gap filling can also refer to the
improvement of spatial completeness for a more detailed representation of a given area [42].
Having multiple sensors, even if they are of different types, can also help to deal with
situations in which one of the data sources become unavailable for a certain amount of time
due to hardware or communication problems [14]. In these cases, even if the effectiveness
of the system is diminished, useful information can still be produced until the problem
is resolved.

Owing to different time of acquisition, platform modes, and spectral bands of the
source images, direct fusion leads to a loss of information and even the failure of fusion [68].
Currently, the most effective way to minimize this problem is by applying image regis-
tration, which has, as a main goal, to spatially match different images [19]. This step,
which is often pointed out as the most important step in data fusion processes involving
images [65], is essential to guarantee that the data present in different types of images are
correctly fused into more complete and informative data [18]. This can be challenging,
especially if the images being matched are obtained at different scales, at different bands
of the spectrum, with different spatial resolutions, or are captured in areas with complex
objects and topography. Additionally, the agricultural environment is highly dynamic,
with plant canopies changing positions due to the wind or animals moving across the field,
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among other elements that may change between image captures [37]. To make matters even
more complicated, significant differences between images may exist, especially if these are
obtained by different acquisition methods [68]. In many cases, some kind of transformation
capable of aligning the points in different images according to a given reference system is
required [65].

4. Conclusions

Considerable effort is being made toward finding effective ways at dealing with the
wealth of data that are currently being generated in the agricultural environment. Con-
siderable progress has been made, but there are many factors that still prevent techniques
that are based on data fusion from being more widely employed in practice. Three of these
factors appear to be particularly relevant. First, although large amounts of data are being
generated, the complexity of the agricultural environment is such that the databases being
generated are not enough to cover all variabilities found in practice. As a result, models
and methods proposed in the literature tend to fail under real practical conditions. Second,
as the datasets used in research almost invariably have some gaps, the results reported
on in scientific articles need to be weighed against those limitations. Unfortunately, this
is seldom the case, and often those same results serve as the basis for the development of
technologies that will likely fail. Third, even if the technology is robust enough for practical
use, there are many technological, economic, political, social, and environmental barriers
that prevent its adoption [135].

Despite these hurdles, the potential for growth is still there. In addition to technical
advancements, there is some progress towards improving the quantity and quality of the
data being collected. The practice of data sharing is steadily growing, with many research
groups making datasets available under the findable, accessible, interoperable, and reusable
(FAIR) principles [1,136]. When data come from a variety of sources, the representativeness
of datasets tend to be much better. Additionally, “citizen science principles” [137,138]—
calling for the involvement of individuals outside of the research community, in effort to
build datasets—are being applied across different disciplines, with encouraging results.
Once a technology truly brings benefits to potential users, adoption barriers tend to weaken.
As a result of all of these efforts, the gap between academic research and practical adoption
will likely continue to decrease.
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