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Abstract
The dissection of genotype × environment interaction (GEI) is a crucial aspect of

the final stages of plant breeding pipelines and recommendation of cultivars. Linear-

bilinear models used to analyze this interaction, such as the additive main effects

and multiplicative interaction (AMMI) and genotype plus GEI (GGE), often assume

homogeneity of the residual variances across environments which affects the esti-

mates and therefore, interpretations and conclusions. Our main objective was to

propose a GGE model that considers heteroscedasticity across environments using

Bayesian inference and to evaluate its implications in the interpretation of real and

simulated data. The GGE model assuming common variance was also fitted for com-

parison purposes. The great flexibility of the Bayesian inference is transferred to the

biplots, allowing the construction of credible regions for genotypic and environmen-

tal scores. The inference on the stability and adaptability of genotypes might change

when heteroscedasticity is ignored. When real data are used, different patterns of cor-

relations between environments also affect the representativeness and discrimination

of the target environment. The modeling of heteroscedasticity allowed the clustering

of environments into subgroups, with similar effects for GEI. The proposed GGE

model was more adequate and realistic to deal with scenarios of heterogeneous vari-

ance in multienvironment trials, which can be useful for exploiting the GEI.

Abbreviations: AE, average environment; AEA, axis of the average environment; AEC, average environment coordination; AMMI, additive main effects and

multiplicative interaction model; BGGE, Bayesian GGE model under homogeneity of residual variances across sites; BGGEH, Bayesian GGE model under

heterogeneity of residual variances across sites; FA, Factor-Analytic Model; G, Genotype; GEI, Genotype × environment interaction; GGE, Genotype main

effect + genotype × environment interaction; HPD, Highest posterior density; IG, ideal genotype; MCMC, Markov chain Monte Carlo; MET,

Multienvironmental trial; MLM, mixed linear model; SSGGE, total sum of squares for G + GEI; SVD, Singular value decomposition.

© 2021 The Authors. Crop Science © 2021 Crop Science Society of America.
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1 INTRODUCTION

Multienvironment trials (MET) are conducted over several

years. They are used to estimate the yield of cultivars in a

set of locations (or environments) of interest, with the aim

of selecting and recommending superior genotypes. The

differential response of cultivars across environments is

referred to as the genotype × environment interaction (GEI).

The crossover GEI makes the plant breeder’s job difficult

because it causes changes in the ranking of genotypes from

one environment to another. As a result, assessments and

recommendations cannot be performed in general. In this

sense, different methodologies were developed to analyze

MET data, seeking to identify highly adaptable genotypes

or those that adapt in a specific way to take advantage of the

positive effects of GEI for regionalized recommendations.

Multiplicative (or linear-bilinear) models are useful for

analyzing data organized in two-way tables and have gained

great popularity in the study of GEI. The models that include

the main effect of genotypes (G) plus GEI, referred to in the

literature as GGE (Xu et al., 2014; Yan et al., 2000) and the

additive main effects and multiplicative interaction (AMMI;

Gauch et al., 2008) deserve special mention due to the wide

applicability by researchers and breeders in the analysis of

MET data.

The GGE model and other linear-bilinear models com-

bine the study of adaptability and stability in a single

approach, providing more possibilities for analysis compared

with regression methods, such as those suggested by Finlay

and Wilkinson (1963) and Eberhart and Russell (1966). More-

over, bilinear term selection methods allow obtaining more

parsimonious models because of the GEI (AMMI) or G+GEI

(GGE) matrices are obtained by singular value decomposi-

tion (SVD) and approximated by lower dimensional matrices,

although they still describe the pattern obtained by the origi-

nal matrices.

By simplifying data in a few dimensions, the patterns of

genotype responses across environments can be graphically

visualized using biplots (Gabriel, 1971). The graphical repre-

sentation of genotypic and environmental scores of the first

main axes has become a standard procedure when using mul-

tiplicative models. Its interpretation has been the basis for

important decisions on the analyzed data. The GGE biplot

model, a variant of GGE, when using only the first two sin-

gular axes, has become a popular method for evaluating the

responses of cultivars across environments (Yan et al., 2000;

Yang et al., 2009).

Conventional implementations of AMMI and GGE have

many limitations associated with the standard method of esti-

mating fixed effects. They do not consider heteroscedastic-

ity, although theoretically, there are procedures based on SVD

for the same purpose (Rodrigues et al., 2014; Yan, 2014);

however, such procedures are adjusted in two stages and

Core Ideas
∙ The GGE model is useful for studying genotype

responses across environments.

∙ Heterogeneity of residual variances across envi-

ronments occurs routinely in MET trials.

∙ To assume homogeneity of the residual variances

across environments affects the interpretations.

∙ Bayesian modeling offers wide flexibility to model

complex variance-covariance structures.

∙ The Bayesian GGE model brings promising per-

spectives for MET data analysis.

may lead to loss of information (Gogel et al., 2018; Romão

et al., 2019).

Mixed linear models offer greater flexibility when com-

pared to fixed-effects modeling, and this class of models has

been well developed (Oakey et al., 2006; Smith et al., 2005;

Smith & Cullis, 2018). Mixed models are versatile in dealing

with the heterogeneity of variances, incomplete data, and the

spatial correlation within and between environments (Crossa,

2012; Smith et al., 2015).

Versions of mixed linear-bilinear models for AMMI and

GGE have been proposed and result from assuming a factor-

analytic structure for the genetic variance-covariance matrix

and, for this reason, they are referred to as Factor-Analytic

Models (FA; Piepho, 1997, 1998; Piepho & Mohring, 2006;

Smith et al., 2001). In these models, it is unclear how paramet-

ric confidence regions can be constructed for biplot points,

and approximate alternatives have been proposed, as high-

lighted by Crossa et al. (2011). Some of these problems were

overcome by Nuvunga et al. (2019), who applied Bayesian

FA.

Bayesian modeling offers practical advantages and wide

flexibility to model complex variance-covariance structures

and better exploit interactions. The first studies on Bayesian

inference applied to the AMMI model were conducted by

Viele and Srinivasan (2000) and Liu (2001), who showed how

the sampling process could be conducted correctly, using the

Markov Chain Monte Carlo (MCMC) method, mainly for the

parameters that describe GEI, whose support for a posteriori

distribution is not trivial.

Crossa et al. (2011) and Perez-Elizalde et al. (2012) empir-

ically demonstrated the flexibility of the Bayesian model to

incorporate uncertainty into the AMMI model fitted with two

first principal components biplot through bivariate credibility

regions built for genotypic and environmental scores, as well

as using information from previous experiments incorporated

through prior distributions. Other contributions to this method

have been recently published (da Silva et al., 2015, 2019; de
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F I G U R E 1 Average yields of genotype subgroups, relative to the simulated genotype × environment interaction pattern, in each environment

Oliveira et al., 2015, 2016; Jarquin et al., 2016; Romão et al.,

2019).

Most recent studies involving the application of Bayesian

inference to multiplicative models only use the AMMI model,

and research and applications with the Bayesian version of

GGE are still scarce in the literature. Jarquin et al. (2016), de

Oliveira et al. (2016), Oliveira et al. (2021), and Omer and

Singh (2017) are exceptions and addressed aspects related to

the Bayesian GGE model; however, specific prior distribu-

tions have not been explicitly assumed for residual variance

components at these locations. The implications and impor-

tance of such assumptions in modeling the main effects of

genotypes and GEI effect, as well as details of their imple-

mentations in the Bayesian AMMI analysis, were presented

by da Silva et al. (2019).

The GGE model has a strong graphic appeal and presents

a plausible biological explanation for the use of the first two

main axes in the biplot analysis (Yan et al., 2000); moreover,

there is the potential for a more precise estimation of the sin-

gular values, and the genotypes can be evaluated with different

experimental precisions in each environment.

Thus, the main objectives of this study were to (a) propose a

Bayesian GGE model to deal with heteroscedasticity in MET

and (b) verify the implications of this model on the interrela-

tionship of genotypes and environments in biplot representa-

tions using simulated and real data, when compared with the

homoscedastic model.

2 MATERIALS AND METHODS

2.1 Simulated data

The environmental effects were initially simulated propor-

tional to the normal density for quantiles derived from envi-

ronmental deviations equally spaced between −4.5 and 4.5.

The effects are produced as 5pj − 1, where pj is the normal

density for the jth quantile. For the effect of GEI, three distinct

genotype response patterns were simulated: (a) stable geno-

types (lower, G1 to G4; median, G5 to G12; and higher, G13

to G16), (b) unstable genotypes with positive environmen-

tal reinforcement (G17 and G18), and (c) unstable genotypes

with negative environmental reinforcement (G19 and G20).

The matrix of the simulated data was corrected for the average

of the rows and columns. The main effects of genotypes were

obtained through a Gaussian N(0, 3) distribution and ordered,

in ascending order, from G1 to G20.

The average response patterns of each of the subgroups (in

relation to the simulated GEI pattern) highlighted above, in

each environment, added to a common constant (μ = 10), are

shown in Figure 1.

To emulate the homogeneous variance, we considered σ2
𝑒
=

1. To emulate the heterogeneous variance, the diagonal of the

covariance matrix was as follows: diag{V} = [10.5, 0.5, 3.0,

2.0, 3.0, 5.0, 9.0, 9.0, 15.0, 17.0]. The data were simulated

using a multivariate normal distribution.
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T A B L E 1 Geographic characteristics of the locations where the sorghum trials were carried out in the 2014–2015 crop season

Environments Lat Lon ALTa PD HD
m

E1 - Dourados-MS 22˚13’S 54˚48’W 430 11 Nov. 2014 13 May 2015

E2 - Dracena-SP 21˚28’S 51˚31’W 421 15 Nov. 2014 28 Apr. 2015

E3 - Goiânia-GO 16˚40’S 49˚15’W 823 18 Dec. 2014 23 May 2015

E4 - Guaíra-SP 24˚04’S 54˚15’W 220 26 Nov. 2014 14 Apr. 2015

E5 - Lavras-MG 21˚14’S 45˚00’W 919 22 Nov. 2014 12 May 2015

E6-Nova Porterinha-MG 15˚48’S 43˚18’W 85 22 Nov. 2014 20 May 2015

E7 - Pelotas-RS 31˚46’S 52˚20’W 7 6 Dec. 2014 25 Mar. 2015

E8 - Sete Lagoas-MG 19˚27’S 44˚14’W 761 6 Nov. 2014 12 May 2015

E9 - Sinop-MT 11˚50’S 55˚38’W 384 4 Dec. 2014 11 May 2015

E10 - Uberlândia-MG 18˚55’S 48˚16’W 863 6 Dec. 2014 24 May 2015

Lat, latitude; Lon, longitude;aALT, altitude; PD, planting dates; HD, harvest dates.

2.2 Real data

The real dataset comes from a network of cultivation and

use value trials coordinated by Embrapa Maize and Sorghum

with 36 sorghum genotypes; of these, 33 are experimental

hybrids developed by the biomass sorghum breeding program

of Embrapa Maize and Sorghum, and the remaining geno-

types are control cultivars. The genotypes were evaluated dur-

ing the 2014–2015 crop season in 10 different locations in

Brazil. The geographic characteristics and cultivation aspects

of these locations are listed in Table 1.

The experiments were arranged in a 6 × 6 triple lattice

design. The plots consisted of four rows of 5.0 m in length,

spaced 0.7 m apart, considering only the two central rows as

useful. The trait assessed was the dry mass yield of the plot,

which was converted into tonne ha−1. The crop management

is described in detail by Delgado et al. (2019).

2.3 Statistical model

The GGE model, in matrix notation, is given by

𝐲 = 𝐗1 𝛃 +
𝑡∑

𝑘 = 1
λ𝑘diag

(
𝐙𝛂𝑘

)
𝐗2𝛄𝑘 + 𝛆 (1)

Where yn×l is the vector of phenotypic data with n = r × c
× b, where r is the number of genotypes, c is the number of

locations (or environments), and b is the number of blocks or

replications within each location; βl×1 where l = c × b is the

vector of fixed effects of blocks within environments; λk is

the kth singular value, with k = 1, . . . , t. The t = min (r − 1,
c) is the rank of the interaction matrix (GGEr×c) with errors

of nonadditivity to the main effects of environments; αk and

γk, of dimensions r × 1 and c × 1, respectively, are the kth

singular vectors of genotypes and environments, respectively,

related to the kth principal component.

In addition, X1(n×l), X2(n×c), and Zn×c are the design matri-

ces associated with β, αk and γk, respectively, and εn×1 is the

vector of random errors in which ε ∼ N(0, V), where 0n×1 is

the null vector and Vn×n is a block diagonal matrix of dimen-

sion n × n composed of σ2
𝑒𝑗

, with j = 1,. . . , c. The bilinear part

of the model is subject to order restrictions λk ≥ λk+1 and the

orthonormality of singular vectors, that is, 𝛂⊤
𝑘
𝛂
𝑘
= 𝛄⊤

𝑘
𝛄
𝑘
= 1

and 𝛂⊤
𝑘
𝛂
𝑘′
= 𝛄⊤

𝑘
𝛄
𝑘′
= 0; 𝑘 ≠ 𝑘′ for k = 1, . . . , t. The distribu-

tion of y, conditioned to the parametric vector θ = (β, λk, αk,
γk, V), is multivariate normal denoted by y | θ ∼ N (μy,V),

with 𝛍𝑦 = 𝐗𝟏𝛃 +
∑𝑡

𝑘=1 λ𝑘diag(𝐙𝛂𝑘)𝐗𝟐𝛄𝑘.

2.4 Prior distributions for model
parameters

The prior distributions assumed for the parameters β, λk, αk
and γk of the model are the same as those described by de

Oliveira et al. (2016) under the homogeneity of variances:

𝛃|𝛍β, σ2β ∼ 𝑁

(
μβ, 𝐈σ2β

)
, 𝛍β = 0 and σ2β = 108

λk|μλk , σ2λk ∼ 𝑁+
(
μλk , σ

2
λk

)
, μλk = 0 and σ2λk = 108;

αk ∼ spherical uniform on the correct subspace and γk ∼

spherical uniform on the correct subspace.

For the residual variance component associated with envi-

ronment j, with j = (1, . . . , c), a Jeffreys priori is assigned, that

is, p(σ2
𝑒𝑗
) ∝ 1∕σ2

𝑒𝑗
.
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2.5 Full Conditional Posterior distributions

The likelihood function for θ according to model (1) is given

by

𝐿(𝛉|𝐲) = 1
(2π)

𝑛

2 |𝑽 | 𝑛2 exp
[
−1
2
(𝐲 − 𝛍𝑦)⊤𝑽 −1 (𝐲 − 𝛍𝑦

)]
(2)

Connecting likelihood with a priori information (via Bayes’

theorem), a posteriori joint distribution is obtained, which can

be written as:

𝑝(𝛉|𝐲) ∝ 𝐿(𝛉|𝐲)𝑝(𝛃|𝛍𝛃, σ2𝛃
)
×

×

[
𝑡∏

𝑘 = 1
𝑝(λ𝑘|μλ𝑘 , σ2λ𝑘)𝑝 (𝛂𝑘

)
𝑝
(
𝛄𝑘
)] 𝑐∏

𝑗 = 1
𝑝

(
σ2
𝑒𝑗

)
(3)

The full conditional posterior distributions for the param-

eters of the model in Equation 1 are obtained by alge-

braic manipulations from the joint posteriori distribution in

Equation 3, under the assumptions considered a priori, and

are presented in Supplemental Appendix S1.

Owing to the orthogonality constraint (𝛂⊤
𝑘
𝛂𝑘′ = 𝛄⊤

𝑘
𝛄𝑘′ =

0 for 𝑘 ≠ 𝑘′), the vectors αk (genotype scores) should be dis-

tributed only in a restricted subspace of the unitary sphere in

Rr and γk (environmental scores) should be distributed in a

restricted subspace of the unitary sphere in Rc. They must

be orthogonal to s (0 ≤ s ≤ t − 1) the directions indicated

by the vectors in dimension p. The sampling of singular vec-

tors is performed in the corrected subspace (p − s), with

the correct support, by the definition of auxiliary variables
∼
𝛂𝑘 = 𝐇⊤

𝑘
𝛂𝑘 and

∼
𝛄
𝑘 = 𝐃⊤

𝑘
𝛄𝑘, where Hk and Dk are orthogonal

linear transformation matrices. The complete a posteriori con-

ditional distributions for the singular vectors in the corrected

subspace and algebraic details are presented in Supplemental

Appendix S1.

The a posteriori conditional hypotheses and distributions

described above refer to the Bayesian modeling of GGE under

heterogeneity of residual variances across locations and this

model will be referred to throughout the text as BGGEH.

For the purpose of comparison, the GGE model that

assumes a single variance in all locations (BGGE) was also

adjusted. For this analysis, the sample distribution is y | θ ∼ N
(μy, Iσ2

𝑒
), where I is the identity matrix of order n. The a priori

densities attributed to the parameters are basically the same

as those used for the heterogeneous case. The exception, as

already pointed out, is the hypothesis of the variance structure.

In BGGE, a residual variance-covariance matrix is a variance

component structure in which a priori is p(σ2
𝑒
) ∝ 1∕σ2

𝑒
. Under

this assumption, the conditional posterior densities are differ-

ent and are extensively described by de Oliveira et al. (2016).

2.6 Sampling and inference for linear and
bilinear parameters

The implemented sampling process was the Gibbs sampler,

which is a procedure that belongs to the class of MCMC

method. The algorithm, analogous to that described by da

Silva et al. (2019), is exemplified in Supplemental Appendix

S1.

For Markov chains, values were discarded to eliminate the

initial effect (burn-in). In addition, the autocorrelation func-

tion of the chains was analyzed by adopting fixed thinning
intervals to select a sample approximately unrelated to the

parameters. These corrections were based on training samples

according to the Raftery and Lewis (1992) criteria. The con-

vergence of the MCMC chains was monitored by the meth-

ods of Heidel-Berger and Welch (1983), Raftery and Lewis

(1992), and Geweke (1992).

The estimates and intervals for β, λk, and σ2
𝑒

were obtained

by the mean, maximum a posteriori (MAP) and median of the

simulated MCMC samples. Highest posterior density inter-

vals (HPD), at the 95% credibility level, were constructed

using the method of Chen and Shao (1999). Estimates of αk
and γk, were obtained by the method used by Liu (2001).

Bivariate credibility regions (95%) for genotypic

(λ1∕21 α𝑖1, λ
1∕2
1 α𝑖2) and environmental (λ1∕21 γ𝑗1, λ

1∕2
1 γ𝑗2)

scores, with i = 1, . . . , r and j = 1, . . . , c, were incorporated

into the biplot using the method of Hu and Yang (2013).

3 RESULTS

The posterior distributions for all models showed good prop-

erties, as assessed by diagnostic tests. Trace plots of the chains

of the residual variance components for the real data are pre-

sented in Supplemental Figures S1–S4. Random oscillations

around a value are a good indication of the posterior sampling.

This pattern was observed for all parameters in all scenarios.

In Supplemental Table S4 (Supplemental Appendix S2), val-

ues obtained by applying the convergence tests for these same

parameters are presented.

3.1 Analysis of simulated data

The parametric value of error variance was covered by HPD

regions from both models in homoscedastic simulated sce-

nario (Table 2). Although greater precision is declared for

the BGGE homoscedastic model, it is noteworthy that the

BGGEH model also addressed the homoscedastic structure of

errors in the locations.

The two Bayesian versions of the GGE model resulted

in similar estimates for singular values, with the principal
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T A B L E 2 Summaries of the posterior densities of the residual variance components from Bayesian genotype main effect + genotype ×
environment interaction model under heterogeneity of residual variances across sites (BGGEH) and Bayesian genotype main effect + genotype ×
environment interaction model under homogeneity of residual variances across sites (BGGE) models for simulated data considering the

homoscedastic scenario

HPD intervals at 95% credibility
Model PARa MAP MED M SD LL UL
BGGE σ2

𝑒
1.02 1.04 1.04 0.07 0.91 1.17

BGGEH σ2
𝑒1

1.03 1.05 1.08 0.23 0.68 1.55

σ2
𝑒2

0.92 0.98 1.01 0.22 0.62 1.46

σ2
𝑒3

0.75 0.79 0.82 0.18 0.50 1.20

σ2
𝑒4

1.03 1.06 1.09 0.24 0.67 1.58

σ2
𝑒5

1.01 1.06 1.08 0.23 0.68 1.53

σ2
𝑒6

1.03 1.10 1.13 0.25 0.71 1.64

σ2
𝑒7

1.12 1.15 1.19 0.25 0.73 1.68

σ2
𝑒8

0.88 0.91 0.94 0.21 0.56 1.37

σ2
𝑒9

0.98 1.09 1.12 0.24 0.70 1.60

σ2
𝑒10

0.65 0.70 0.73 0.18 0.42 1.08

aPAR, parameter; MAP, maximum a posteriori; MED, median; M, mean; SD, standard deviation; HPD, highest posterity density; LL, lower limit; UL, upper limit.

F I G U R E 2 Genotype main effect + genotype × environment interaction (GGE) biplots with 95% bivariate credibility regions for genotypic

(G), environmental (E), average environment (AE), and ideal genotype (IG) scores in the homoscedastic scenario Bayesian GGE model under

homogeneity of residual variances across sites (a) and Bayesian GGE model under heterogeneity of residual variances across sites (b). AEA, axis of

average environment; PC, principal component

components capturing, practically, the same information as

shown in Supplemental Table S1.

In Figure 2, biplots are presented with their bivariate cred-

ibility regions for genotypic and environmental scores, this

graphical configuration displays the “Mean vs. Instability”

form of the GGE biplot (Yan, 2001). In each biplot, a sec-

ondary system of axes comprising the axis of the average

environment (AEA) and its ordinate (AEC) was inserted.

The average environment (AE) and the ideal genotype (IG),

defined to have the maximum yield among environments,

were also represented with their regions of credibility. The

direction of the semi-straight line in the AEA (from the ori-

gin to the IG) indicates higher values of the average yield

for genotypes. As for the AEC, the further away a point

is from this axis (either in the positive or negative direc-

tion), the greater the contribution of the respective genotype

(or environment) to the interaction. Environmental vectors

were inserted to assist in visualizing the correlations between

environments. The norms of these vectors are measures of

the environment’s ability to discriminate between genotypes.
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T A B L E 3 Point and interval summaries of a posteriori densities of the residual variance components of the Bayesian genotype main effect +
genotype × environment interaction model under heterogeneity of residual variances across sites (BGGEH) and Bayesian genotype main effect +
genotype × environment interaction model under homogeneity of residual variances across sites (BGGE) models for simulated data considering the

heteroscedastic scenario

HPDa intervals at 95% credibility
PAR SPV Model MAP MED M SD LL UL
σ2
𝑒

– BGGE 7.53 7.62 7.64 0.54 6.62 8.69

σ2
𝑒1

10.50 BGGEH 10.41 10.75 11.02 2.22 7.19 15.35

σ2
𝑒2

0.50 0.57 0.64 0.68 0.55 0.35 1.09

σ2
𝑒3

3.00 2.20 2.36 2.44 1.01 1.52 3.49

σ2
𝑒4

2.00 1.98 2.17 2.24 0.60 1.37 3.25

σ2
𝑒5

3.00 3.21 3.37 3.46 0.81 2.19 4.89

σ2
𝑒6

5.00 5.81 6.10 6.26 1.58 4.01 8.90

σ2
𝑒7

9.00 12.86 13.78 14.15 3.01 8.98 20.30

σ2
𝑒8

9.00 12.24 12.79 13.16 2.99 7.61 18.99

σ2
𝑒9

15.00 19.29 20.56 21.10 4.48 13.01 29.77

σ2
𝑒10

17.00 15.22 16.61 17.08 3.81 10.16 24.54

aHPD, highest posterior density; PAR, parameter; SPV, simulated parametric value; MAP, maximum a posteriori; MED, median; M, mean; SD, standard deviation; LL,

lower limit; UL, upper limit.

The smaller the angle between a given environment, and the

average environment, the more representative it will be in

the target population of environments. Genotypes, in turn,

are compared (in the average environment) according to their

Euclidean distance to the ideal genotype. These concepts, in

specific terms, are described by Yan and Kang (2003) and

Yan (2014). Only genotypes and environments whose bivari-

ate regions do not include the origin are represented to sim-

plify visualization and interpretation.

Biplots exhibited almost the same pattern for both GGE

models (Figure 2). The amplitudes are slightly higher for

regions of credibility in the BGGEH biplot, especially for

genotypes farther away from the origin (Figure 2). However,

these differences in amplitudes did not affect the interpreta-

tion in terms of adaptability and stability. It is noteworthy

that the BGGEH model was able to address the simulated

homoscedastic scenario.

The estimates of the residual variance components at the

locations obtained from the BGGEH model were similar to

the parametric values, considering the heteroscedastic sce-

nario (Table 3). Conversely, the estimate of the common resid-

ual variance by the BGGE model is included only in the cred-

ible intervals of the components associated with locations

Environments 1, 6, and 8 (Table 3). In addition, none of the

simulated values were included in the HPD interval of the

common variance. These results indicate that the BGGEH

model was efficient in capturing the present heterogeneity

structure and the assumption of a common variance would

not be consistent.

The point and interval estimate for singular values pre-

sented in Supplemental Table S2 indicate that the first princi-

pal component of the BGGEH explained approximately 97%

of the sum of squares for genotype + GEI (SSGGE), which

was significantly higher than the percentage explained by

the BGGE model (86.14%). In contrast, the second axis of

the BGGEH model explained only 2%, with 11% explained

by the second principal component of the BGGE model. The

SSGGE is obtained by summing the squares of the singular val-

ues for the full interaction model (λ21 + λ22 +⋯ + λ2
𝑡
) and the

partial recovery of the SSGGE, in each model, is obtained by

the sum of squares of the singular values accumulated in each

dimension k (k = 1, . . . t). The model sum of squares recov-

ered by the BGGE is greater (3,537.98) than that obtained by

the BGGEH (2,983.55) and this difference is more accentu-

ated when compared to the analysis with homogeneous data.

This may be an indication that the interaction is being overes-

timated in the BGGE model.

The biplots shown in Figure 3a and 3b illustrate the het-

eroscedastic scenario. As it is possible to perceive the basic

pattern is maintained in the two biplots, but different exper-

imental precision is shown in the BGGEH biplot, captur-

ing the residual variance heterogeneity simulated. Further-

more, differences can be observed, such as the greater dis-

tance from the average environment and ideal genotype in

relation to the origin in the BGGE model (Figure 3a), and

a more pronounced rotation of the secondary system of

axes in the BGGEH biplot (Figure 3b). It is noteworthy

that these and other changes indicate that the assumptions

on the structure of the residual variance are important in

the analysis and affect the interpretations in the biplot. For

these simulated data, they affect more the analysis in average

environment.
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F I G U R E 3 Biplot genotype main effect + genotype × environment interaction (GGE) with 95% credibility bivariate regions for genotypic (G),

environmental (E), average environment (AE), and ideal genotype (IG) scores in a heteroscedastic scenario Bayesian GGE model under homogeneity

of residual variances across sites (a) and Bayesian GGE model under heterogeneity of residual variances across sites (b). AEA, axis of average

environment; PC, principal component

For the BGGE model, the genotype closest to the ideal

was Genotype 15 (Figure 3). This genotype can be consid-

ered stable because its credibility region is intercepted by

the AEA axis and presents a yield higher than the general

mean, since the region of bivariate credibility is above the

AEC (average yield is not likely). The Genotypes 17 and

18 could also be considered stable. For the BGGEH model,

Genotypes 15 and 16 are the genotypes with the shortest dis-

tance to the ideal, but their regions of credibility are inter-

cepted by the AEC axis, which indicates that the general mean

of the yields is probable, which also occurs for Genotypes 17

and 18. These interpretations differ from those based on the

BGGE biplot. This figure also shows that the simulated sta-

ble genotypes respond positively to environmental improve-

ment (which corroborates the information in Figure 1). In gen-

eral, this information was better identified using the BGGEH

model.

Biplots showing the “who won where” pattern are shown in

Supplemental Figures S5 and S6. Although the sectors have

differentiated between biplots for heterogeneous data (Sup-

plemental Figure S6), there were no strong implications in

terms of mega-environments when comparing the two mod-

els, which is of great importance when generating polygons

in the biplot.

3.2 Analysis of real data

The common variance estimate of the BGGE model is

included in credible intervals of only three components, which

are those related to Environments 2, 5, and 10. For other envi-

ronments, the HPD intervals for the components did not over-

lap with the common variance (Table 4).

Estimates of residual variances at each location obtained

by adjusting the mixed linear model (MLM) using the lme4

package are included in the Bayesian intervals estimated

for the respective environments, according to the BGGEH

(Table 4). This indicates similarities between the BGGEH

and MLM analyses. It was also observed that in nine of

the 10 environments, the BGGEH model presented esti-

mate of the residual variance smaller than the MLM anal-

ysis. Although we do not want to rigorously compare the

joint analysis with the individual analysis (in each environ-

ment), this result suggests a better adjustment for the BGGEH

model.

The first two principal components explained 93.09 and

91.41% of the SSGGE for BGGE and BGGEH, respectively

(Supplemental Table S3). However, the a posteriori estimate

of the percentage explained by the first BGGEH component

was slightly higher. Smaller magnitudes and more expres-

sive shrinkage are also noted for a posteriori estimates of

the first three singular values in the BGGEH model; from

then on, the opposite behavior is observed, with an ever

more marked shrinkage effect for BGGE. The SSGGE for

BGGEH was lower than that for BGGE as in the simulated

scenario.

The results of the application of the information criteria for

model selection (Akaike, 1974; Raftery et al. 2007; Schwarz,

1978) are shown in Figure 4. In general, the BGGEH models

obtained significantly lower values for both criteria. In rela-

tion to the winning models (in each GGE version) and with

two bilinear terms, BGGEH also achieved remarkably better
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T A B L E 4 Estimates obtained by mixed linear model and point and interval summaries of posterior densities for residual variance components

of the BGGEH and BGGE models applied to the real MET of sorghum for the total dry biomass in ton/ha

HPDa intervals at 95% credibility
PAR MLM Model MAP MED M SD LL UL
σ2
𝑒

– BGGE 141.17 141.90 142.19 7.42 128.69 157.60

σ2
𝑒1

372.59 BGGEH 420.46 434.53 440.75 70.84 304.47 578.74

σ2
𝑒2

123.84 122.15 126.80 129.20 22.56 87.34 172.53

σ2
𝑒3

88.92 81.33 83.78 85.70 15.54 58.47 117.88

σ2
𝑒4

303.02 262.76 266.35 270.37 40.80 197.38 351.28

σ2
𝑒5

121.65 118.24 121.75 123.89 20.91 86.89 166.49

σ2
𝑒6

60.28 53.55 55.20 56.24 9.61 39.17 74.90

σ2
𝑒7

45.37 37.74 39.91 40.54 6.94 28.71 54.12

σ2
𝑒8

89.51 85.23 85.51 87.00 15.11 59.21 116.42

σ2
𝑒9

67.70 59.41 63.21 64.3 11.11 44.52 86.60

σ2
𝑒10

150.96 126.42 131.57 133.93 21.12 97.14 176.78

aHPD, highest posterior density; PAR, parameter; MLM, individual analyses using the mixed linear model; MAP, maximum a posteriori; MED, median; M, mean; SD,

standard deviation; LL, lower limit; UL, upper limit.

F I G U R E 4 Results of the information criteria used to select models. AIC, Akaike information criterion; BIC, Bayesian information criterion;

AICM, Akaike Monte Carlo information criterion; BGGE, Bayesian genotype main effect + genotype × environment interaction model under

homogeneity of residual variances across sites; BGGEH, Bayesian genotype main effect + genotype × environment interaction model under

heterogeneity of residual variances across sites

performance (with emphasis on Akaike Monte Carlo Informa-

tion Criterion). These results suggest that the heteroscedastic

model was better adjusted to the data and was more adequate

than under assumption of homogeneity.

The biplots for the analysis considering real data are shown

in Figure 5, and different experimental precisions are also

addressed by the BGGEH, with emphasis on Environments 1

and 8. It is observed that Environment 1 is shrunk towards the

average interaction in BGGEH but stands out as the environ-

ment with the greatest ability for discrimination of genotypes

in BGGE, being considered as the most important environ-

ment for interaction. The opposite occurs with Environment

8, which has an apparently small contribution to the interac-

tion in the BGGE and due to the relatively small variance, it

appears more distant from the middle axis in the BGGEH.

Other changes are visible, such as that the average envi-

ronment and the ideal genotype are further removed from

the origin in BGGE (Figure 5), which also presents a more
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F I G U R E 5 Genotype main effect + genotype × environment interaction (GGE) biplots with 95% credibility bivariate regions for genotypic

scores (G), environmental scores (E), average environment (AE), and ideal genotype (IG); (a) Bayesian GGE model under homogeneity of residual

variances across sites biplot and (b) Bayesian GGE model under heterogeneity of residual variances across sites biplot. AEC, average environment

coordination; PC, principal component

F I G U R E 6 Genotype main effect + genotype × environment interaction (GGE) biplots with 95% credibility bivariate regions for genotypic

and environmental scores showing “the standard who won where”; (a) Bayesian GGE model under homogeneity of residual variances across sites

biplot and (b) Bayesian GGE model under heterogeneity of residual variances across sites biplot. PC, principal component

accentuated rotation of the secondary axis system (AEA ×
AEC). There is also a greater distance between the average

environment and the IG in the BGGE analysis, in which more

genotypes were interpreted as unstable. On the other hand,

a greater subdivision of environments is observed in simi-

lar subgroups in the BGGEH biplot, which can be observed

more clearly using the graphic presentation “who won where”

(Figure 6). This fact can also be seen in Supplemental Figure

S7, in which genotypic, polygon and semi-straight regions are

removed to facilitate interpretation.

The slight differences in these biplots indicate that ignor-

ing the presence of heteroscedasticity can compromise inter-

pretations, mistakenly suggesting a simplification of the GEI

structure. Better visualization of the pattern of environments
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and genotypes can also be obtained in biplots built with a pos-

teriori means (Supplemental Figure S8). When removing the

regions of credibility, the differences in rotations of average

scores are more clearly observed, which can affect interpreta-

tions and possible inferences.

The GGE biplots for fixed effects models are also shown in

the supplemental material for comparison purposes. In Sup-

plemental Figure S9a, the GGE biplot, obtained without any

preliminary scaling procedure for the genotype + GEI matrix

(scale or weight), exhibits a pattern similar to that observed

for the BGGE model. Conversely, the GGE biplot (Supple-

mental Figure S9b) was obtained from the standardization

of the cell means by the phenotypic standard deviation in

each column, as well as by weighting the square root of heri-

tability in each environment. The biplot from the “corrected”

data exhibits a pattern more similar to that presented to the

BGGEH. Yan (2014) emphasizes the need for this prelimi-

nary procedure (scale, weighting) to deal with heterogeneity

in the biplot analysis, which is yet another argument in favor

of the method proposed here.

4 DISCUSSION

Heterogeneity of residual variances across test sites occurs

routinely in MET trials and can lead to inefficient estimates if

it is not addressed in the analysis (Crossa et al., 2006; Smith

et al., 2001). This fact was confirmed here by the results of

the information criteria applied to the real data and showed

that methods for modeling specific variances in environments

would be more appropriate.

The implications of the differences in the models can be

seen in the biplots for the simulated and real data. It is

observed in the BGGEH biplot that in an environment with

greater variance, there will be greater shrinkage of interac-

tions in relation to the general average, and in environments

with less variance, the interaction will be more preserved.

This was evident in Environments 1 and 8 of the real data

(Figures 4, 5; Supplemental Figure S3). Such findings lead

us to believe that the estimate in the BGGE model may over-

estimate the interaction and could lead to the belief that the

model with homogeneous variances is superior (greater inter-

action variance), but the heterogeneous model is clearly more

suitable.

Rotational changes in the system of additional axes and dif-

ferent precision, reflected in different ranges of the intervals

for the environmental scores (Figures 2, 4, 5; Supplemen-

tal Figures S1, S2, S3), directly affect the interpretations of

adaptability and stability. Graphical changes similar to those

observed here (due to the structure of variances) were reported

by Rodrigues et al. (2014) using the weighted AMMI, by da

Silva et al. (2019) who modeled heterogeneity of variances

in the AMMI-Bayesian model, and by Nuvunga et al. (2015),

who compared the standard of the GGE model and the FA

version of the sites regression model with two-factor fitted

(FA-SREG2).

The method proposed in this study is an extension of the

modeling by da Silva et al. (2019) to the GGE model to ver-

ify the impact of inferences on the bilinear parameters and,

consequently, on the GGE biplot graphical representation.

As already noted, studies addressing the GGE model from a

Bayesian perspective (de Oliveira et al., 2016; Jarquín et al.,

2016; Omer & Singh, 2017) did not consider heteroscedastic

scenarios across locations.

Heteroscedasticity is disregarded in most applications

involving the standard procedure of estimation in linear-

bilinear models with fixed effects (such as AMMI and GGE).

It is worth noting that it is a possible to model the phenomenon

using algorithms based on SVD, such as the weighted AMMI

proposed by Rodrigues et al. (2014). In the GGE biplot, Yan

(2014) recommends the use of data dimensioning methods as

a preliminary step to obtain the graphic representation. For the

author, the essence of the process is to review the scale and

weigh the data from different environments, with appropriate

weights in the joint analysis. These weights are expressed as

the lengths of the environmental vectors in the GGE biplot.

These procedures are, however, controversial because

lower weights are attributed to environments that have a

higher residual mean square. A disadvantage of this method

is that the weights can be correlated to the responses in

the environment. Thus, environments with high yields may

present greater error variance and environments with low

yields present reduced error variances which may mask the

true performance of some genotypes in certain environments

(da Silva et al., 2019; Crossa, 1990); moreover, the equations

presented for fixed multiplicative models are valid only for

ideal situations, that is, when complete and balanced data are

available. Although there are procedures for imputing miss-

ing data based on the SVD (Yan, 2013), in nonorthogonal and

unbalanced scenarios, components of variance and derived

measures such as heritabilities are best estimated from direct

modeling methods, such as mixed models (Kelly et al., 2007;

Spilke et al., 2005).

Mixed models have become popular for MET analysis,

especially the class of mixed multiplicative models (MMM),

also referred to as the analytic factorial (FA) model. They

are identified as the best among the mixed model classes for

analyzing cultivar tests (Kelly et al., 2007). The FA mod-

els have been considered superior to fixed effects models in

several aspects, including regular biplot analyses, especially

the GGE biplot. They stand out for their ample flexibility to

manipulate missing data, heterogeneity among environments,

genotypes, and correlations within environments, in addition

to being able to accommodate spatial dependence between

environments (Beeck et al., 2010; Crossa, 2012; Cullis et al.,

2010; Smith et al., 2001). Despite these advantages, MMM is
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computationally demanding and eventually estimates param-

eters outside the parametric space, which is referred to as

Heyhood cases. Although there are several alternatives to

overcome these limitations, including the sparse matrix algo-

rithm or modified Average Information by Thompson et al.

(2003) and parameter expanded expectation–maximization

algorithm (Diffey et al., 2017), its modeling remains a chal-

lenge.

Conversely, the Bayesian method has been shown to be

promising for estimating parameters related to stability and

genotypic adaptability in MET data. Nuvunga et al. (2019)

showed that under the Bayesian approach, full-dimension

models can be considered in the FA analysis without requir-

ing axis rotation. Another advantage is that the estimates are

restricted to the parametric space. The Bayesian method also

allows the incorporation of more complex structures for the

variance-covariance matrices (Cotes et al., 2006; Edwards &

Jannink, 2006; Orellana et al., 2014). In our approach, the

components of variance are considered directly in a single-

stage analysis, only establishing hypotheses and a priori infor-

mation. In addition, all dimensions of the GGE can be esti-

mated, overcoming the limitations of the weighted approach

as proposed by Rodrigues et al. (2014) in which, for weighted

AMMI, the number of components must be decided before

the algorithm is executed.

It is worth mentioning that the graphic analysis imple-

mented here is an extension of the inference about the joint

a posteriori distribution. Such an inference is not feasible in

fixed effects models and is not usually presented in FA mod-

els. The Bayesian version of the FA-SERG (Bayesian Ana-

lytical Factor model) by Nuvunga et al. (2019), similar to

our proposal, is also flexible and allows the incorporation of

bivariate credible regions in the biplot. However, the authors

themselves recommend caution regarding the interpretation,

which must be performed separately for genotypes and envi-

ronments. Their responses do not have the same scale and do

not have the properties of the internal product. The incorpora-

tion of uncertainty about biplot scores, in the frequentist con-

text, on the other hand, has been controversial in the literature

(Crossa et al., 2011; Yan et al., 2010; Yang et al., 2009).

The BGGEH was better adjusted to the data for all the

model selection criteria used. As pointed out by Piepho

(1998), the usefulness of any measure of stability primarily

depends on how well the model fits the data. This means that

the choice of the candidate model class and the estimate of the

variance component have direct implications for the stability

measure (Hu et al., 2014). Thus, the BGGEH model would

be a better alternative to represent the stability of genotypes

in MET trials than its version that considers homogeneity of

variances across environments.

The impacts of heteroscedasticity modeling on point esti-

mates and inference on genotype effects have been recognized

and presented in several studies (Casanoves et al., 2005; Hu

& Spilke, 2011; Hu et al., 2013), with the classification of the

genotype yield stability based on the estimates of the parame-

ters of the model used. Thus, a reliable estimate of the model’s

parameters is also an important prerequisite for valid infer-

ences regarding the analysis of genotype stability (Hu et al.,

2014). Here, we show that assuming homogeneity of vari-

ances in a situation of clear deviation from this assumption,

far from being a harmless practice, can lead to misinterpre-

tations and influence the evaluation of genotype stability in

MET trials. This was particularly striking in the analysis of

real data.

The simulated genotype + GEI matrix with a low dimen-

sion and contrasting subgroups compared to the GEI effect

may have influenced some similarity between the BGGE

and BGGEH biplots, as the first two principal components

explained practically the entire pattern in the data. In particu-

lar, the most interesting pattern is explained by the first axis;

however, this simple example was sufficient to show the main

differences between the models in terms of biplot analysis and

information retrieved by singular values.

A slightly more complex interaction pattern can be

observed for the real data, although the first two axes also

have captured most of the variation. For this specific exam-

ple, the effect of shrinkage is more clearly observed in the

estimates of the first three singular values of BGGEH (Sup-

plemental Table S3). Thereafter, however, the opposite behav-

ior is observed, that is, a lower decay of the higher order esti-

mates values of BGGEH model compared to BGGE. Thus,

we expect that for other examples (and with more complex

interaction pattern) higher order BGGEH models would be

needed to better explain the interaction. This is consistent with

da Silva et al. (2019) for the Bayesian AMMI model with het-

erogeneity model. From the aspects observed here, we believe

that modeling the heterogeneous variances brings promising

perspectives for multi-environmental data analysis.
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