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Abstract 
Volume and biomass equations are essential tools to determine forest prod-
uctivity and enable forest managers to make informed decisions. However, 
volume and biomass estimation equations are scarce for Afromontane forests 
in Africa in general and Ethiopia in particular. This limits our knowledge of 
the standing volume of wood, biomass, and carbon stock of the forests there-
in. In this study, we developed a new mixed-species volume and biomass 
equations for Afromontane forests and compared them with generic pan- 
tropical and local models. A total of 193 sampled trees from seven dominant 
tree species were used to develop the equations. Various volume and biomass 
equations were fitted using robust linear and nonlinear regression. Model 
comparison indicated that the best model to estimate stem volume was 

( ) ( )2ln 9.909 0.954 lnv d h= − + ∗ , whereas the best model to estimate biomass 

was ( ) ( )2ln 2.983 0.949 lnb d h= − + ∗ ρ . These equations explained over 85% 

of the variations in the stem volume and biomass measurements. The mean 
density and basal area of trees in the forest with d ≥ 2 cm was 631.5 stems∙ha−1 
and 24.4 m2∙ha−1. Based on the newly developed equations, the forest has on 
average 303.0 m3∙ha−1 standing volume of wood and 283.8 Mg∙ha−1 biomass 
stock. The newly developed allometric equations derived from this study 
can be used to accurately determine the stem volume, biomass, and carbon 
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storage in the Afromontane forests in Ethiopia and elsewhere with similar stand 
characteristics and ecological conditions. By contrast, the generic pan-tropical 
and other local models appear to provide biased estimates and are not suit-
able for dry Afromontane forests in Ethiopia. The estimated stem biomass 
and carbon stock in the Chilimo forest are comparable with the estimates 
from various tropical forests and woodlands elsewhere in Africa, indicating 
the importance of dry Afromontane forest for climate change mitigation. 
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1. Introduction 

Afromontane forests constitute a unique forest type occurring on high African 
mountains (White, 1983). They are mostly found in Ethiopia, Cameroon, and 
South Africa (White, 1983; Grimshaw, 2001; Gadow et al., 2016). Although they 
are widely separated, Afromontane forests share a similar mix of plant species 
(over 4000 species, of which ~3000 are endemic), which are often distinct from 
the surrounding lowland forests (White, 1983). Dry Afromontane forests are 
among the major natural forest types widely dispersed in the central, south- 
eastern, eastern, northern, and southern highlands of Ethiopia (Friis et al., 2010, 
UN-REDD, 2017). This forest type has ecological significance, being the rem-
nant forest in different parts of the country; it provides habitat for many endan-
gered species and stores a large amount of carbon (Girma et al., 2014; UN- 
REDD, 2017; Gebeyehu et al., 2019). The forest also supports the livelihoods of 
many people by providing diverse forest products (Gobeze et al., 2009; Asfaw et 
al., 2013; Shiferaw et al., 2019). However, the potential of these forests has been 
impaired by severe anthropogenic disturbances, and the forests have been heav-
ily deforested and degraded due to their location in areas suitable for settlement 
and agriculture (Lemenih & Bongers, 2011). Hence, these forests require man-
agement intervention, which could help to maintain their biodiversity, produc-
tivity, and sustainability (Teketay et al., 2010). 

Sustainable forest management requires an accurate estimation of the impor-
tant characteristics of the forest resources, i.e., stem density, basal area, the 
standing volume of wood, and biomass stock (Adekunle et al., 2013; Bettinger et 
al., 2016). This information is fundamental to determining the productivity of a 
forest and guiding forest management decisions (Husch et al., 2003; Akindele & 
LeMay, 2006; Adekunle et al., 2013). Quantifying the biomass stock of forests is 
also important for commercial uses (e.g., timber, fuel-wood, and fiber), for 
scientific studies of ecosystem productivity, energy, and nutrient flows, and for 
assessing the contribution of forests to the carbon cycle and climate change mi-
tigation. Parresol (2001) stated that the biomass and volume of a tree are accu-
rately estimated through regression analysis (allometric models). For this pur-
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pose, the biomass and volume estimations of selected trees/shrubs were obtained 
through direct or indirect methods (i.e. tree harvesting, multiple height, and 
stem diameters measurements along the stem, weighing, and sub-sampling of 
tree components for laboratory-based moisture determination to convert fresh 
weight to dry weight) and related with one or more dimensions of a tree i.e. stem 
diameter and/or total height. 

Stem volume and biomass assessment have global interest, especially in the 
context of the Kyoto Protocol rules and climate change agreements (Lindner & 
Karjalainen, 2007). Hence, developing countries involved with REDD+ (reduc-
ing emissions from deforestation and forest degradation) need to have a robust 
Measurement, Reporting, and Verification (MRV) system. Volume and biomass 
estimation models are a key element of the MRV system and enable us to prop-
erly assess the national wood, biomass, and carbon stocks. Despite this fact, in-
formation is scarce on stem wood volume and biomass stock in Afromontane 
forests in both Ethiopia and Africa in general; this is mainly due to the lack of 
locally developed biomass and volume estimation models. Developing a site- 
specific biomass model is a key element in the accurate estimation of forest bio-
mass, carbon stock, and fluxes (Williams et al., 2008). Such information is gain-
ing both economic and political currency in renewable energy development, 
carbon credit markets, and REDD + projects (Nath et al., 2019). Very few spe-
cies-specific volume models (Pohjonen, 1991; Teshome, 2005; Berhe et al., 2013; 
Gereslassie et al., 2019; Tsega et al., 2019; Takenaka et al., 2020) and mixed and 
species-specific biomass models (Tesfaye et al., 2016; Solomon et al., 2017; Feyisa 
et al., 2018; Mokria et al., 2018; Abich et al., 2019; Daba & Soromessa, 2019; Te-
temke et al., 2019) are available in Ethiopia. These models are developed either 
for single tree species or mixed species by using a very small number of trees 
and/or the sampling does not include the larger diameter size trees in the forest. 
Hence, precise estimates of the standing volume of wood and biomass stock are 
lacking in Ethiopia’s various forests. 

The limited availability of models in Ethiopia has led to the use of pan- 
tropical models, principally (Chave et al., 2014) and the general volume equation 
(v = d × h × f) where f = 0.5 (e.g., (Sisay et al., 2017)), to estimate tree biomass 
(Abere et al., 2017; Dibaba et al., 2019, Gebeyehu et al., 2019; Eshetu & Hailu, 
2020) in different forests. The use of such a model often leads to biased biomass 
and volume estimates for particular species, forests, and sites because there are 
variations in wood density, tree allometry, form factor, and growthstage among 
species (Návar et al., 2002; Henry et al., 2011). Hence, it is vital to develop the 
site and species-specific models. However, given the great diversity of species 
and variability within species in tropical forests, various efforts have been made 
to develop mixed-species biomass and volume models (e.g., (Asrat et al., 2020a; 
Chave et al., 2014; Mugasha et al., 2016; Mokria et al., 2018)). However, very few 
efforts have been made in this aspect for Afromontane forests in Africa in gene- 
ral and Ethiopia in particular. As a result, our knowledge of the standing volume 
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of wood, biomass stocks, and carbon storage is limited for Afromontane forests. 
Therefore, the objective of this study was to develop mixed-species biomass 
and volume estimation model and accurately estimate the standing volume of 
wood, biomass, and carbon stock in the Chilimo dry Afromontane Forest in 
Central Ethiopia. In addition, we compared the predictive performance of our 
newly developed model with the previously developed pan tropical and other 
models. We believe that these models will be useful for conservation, REDD+ 
projects, and research on global environmental change in Afromontane forests 
across Africa. 

2. Materials and Methods 
2.1. Study Site Description 

This study was conducted in the Chilimo forest, located 97 km west of Addis 
Ababa in central Ethiopia. It is geographically located at 38˚05'E to 38˚15'E and 
9˚00'N to 10˚10'N longitude and latitude, at an altitudinal range of 2170 - 3054 
m above sea level (Figure 1). 

Chilimo forest currently covers a total area of 4500 ha. It is one of the few 
remnants of a dry Afromontane forest that once covered Ethiopia’s Central Plateau. 
Soromessa & Kelbessa (2013) recorded 213 plant species in 83 families from this  

 

 
Figure 1. Map of the study area overlaid with the distribution map of dry Afromontane forests 
following Friis et al. (2010). 
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forest. The main species in the canopy layers are Juniperus procera, Podocarpus 
falcatus, Prunus africana, Olea europaea ssp. cuspidata, Hagenia abyssinica, 
Apodytes dimidiata, Ficus spp., Erythrina brucei, and Croton macrostachus 
(Kassa et al., 2009; Soromessa & Kelbessa, 2013). In the past, the Chilimo forest 
was under state control. Since 1991, state control over the forest has weakened, 
and deforestation has increased significantly despite its designation as one of the 
National Forest Priority Areas (Kassa et al., 2009). Increasing timber extraction 
rates along with grazing and farming pressure radically reduced forest cover 
(Kassa et al., 2009). Currently, the forest is managed by local forest user groups 
organized as cooperatives under the participatory forest management schemes 
(Mohammed & Inoue, 2014). 

2.2. Forest Inventory 

We employed a systematic random sampling technique to collect vegetation data 
in February and March 2018. Overall, 161 sample plots (20 × 20 m) were estab-
lished along the transect lines. The first transect was aligned parallel to the 
edge of the forest (20 m) and others were laid out systematically at 500 m inter-
vals. The first plot was located randomly and the subsequent plots were estab-
lished at 300 m intervals along the transect lines. The boundary of each plot was 
marked with pegs and/or plastic ropes. Then, the diameter at breast height (d) 
and the total height (h) of all trees with d ≥ 2.0 cm which falls within the plot 
boundary were measured using a diameter tape and Vertex IV ultrasonic hyp-
someter (Haglöf Sweden AB, Långsele, Sweden). A tree was judged to be within 
the plot when the center of the stem appeared to fall on or within the margins 
of the plot. Besides, the spatial location (latitude and longitude), elevation, and 
slope of each plot were measured using the Garmin GPS-72 receiver and Suunto 
Clinometer. 

2.3. Tree Species Selection and Measurements 

First, we selected seven dominant tree species (Juniperus procera, Podocarpus 
falcatus, Allophylus abyssinicus, Olea africana ssp. cuspidata, Olinia rochetiana, 
Rhus glutinosa, and Scolopia theifolia) based on the basal area information 
generated from the inventory data from the Chilimo forest. Second, representa-
tive sample trees were randomly chosen across the range of diameter sizes for 
the seven species among the fallen tree species during the asphalt road con- 
struction that passes through the Chilimo forest. Additional stem volume data 
were obtained from Tesfaye et al. (2016). The selected seven dominant tree 
species altogether contributed over 89% of the total basal area of the Chilimo 
forest. 

A total of 194 trees were used to develop the stem volume and biomass model. 
The number of harvested trees was determined based on the relative abundance 
and diameter size distribution of each tree species. Hence, we sampled a larger 
number of trees from the abundant trees with a larger diameter size distribution 
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(e.g., Juniperus procera and Podocarpus falcatus) and a lower number of trees 
for the less abundant trees. Before felling, the diameters at the ground level, 0.3 
m, 1.3 m, and the total height of the selected trees were measured. These mea-
surements were used to calculate the stump volume (the part of the stem from 
ground level until 0.3 m). After felling, the stem was sectioned and the total 
length, and over bark diameters at the lower and upper part of each section were 
measured. The section volume was computed by using the Smalian formula 
whereas, the top section was computed using a cone formula (Burkhart & Tomé, 
2012; West, 2015). The section volumes were summed up to estimate the total 
stem volume of each tree. The volume of branches and leaves was not considered 
in this study. The stem volume data were collected between February and March 
2019. The wood densities (determined at 12% moisture content) of five tree spe-
cies (Allophylus abyssinicus, Olea Africana ssp. Cuspidata, Olinia rochetiana, 
Rhus glutinosa, and Scolopia theifolia) recorded from the Chilimo forest were 
obtained from Tesfaye et al. (2016) and densities of Juniperus procera and Po-
docarpus falcatus were obtained from ICRAF’s wood density database (Carsan et 
al., 2014). The stem biomass was calculated by multiplying the stem volume es-
timates by their basic wood densities following the procedures in Burkhart & 
Tomé (2012). 

2.4. Model Development 

The commonly used dendrometric variables i.e., diameter (d), height (h), and 
wood density (ρ) were used as independent predictor variables. We tested six- 
volume and eight biomass equations (Table 1). 

We selected the equations from the forestry literature based on their wide-
spread use in Ethiopia and elsewhere (Berhe, 2009; Burkhart & Tomé, 2012; Pi-
card et al., 2012; Mugasha et al., 2013; Gereslassie et al., 2019). 

It must be noted that M1, M2, and M3 are the linear versions of the nonlinear 
volumes M4, M5, and M6, respectively. Similarly, among the biomass models, 
M1, M2, M3, and M4 are the linear versions of the nonlinear M5, M6, M7, and 
M8, respectively. Although the linear and nonlinear versions (e.g. M1 and M4 of 
the volume equations) are mathematically equivalent, they are not identical in 
the statistical sense (Parresol, 1999; Sileshi, 2014). As a result, the estimated pa-
rameters (e.g., slope) and biomass may slightly differ. Therefore, we compared 
the linear with the nonlinear versions because some authors use linear functions, 
while others apply nonlinear functions when developing biomass estimation 
models. We intended to see whether the linear functions significantly differ from 
their nonlinear versions in their performance. 

Although 194 trees were initially sampled, one tree with a diameter of 98.0 cm 
consistently appeared as a leverage point across all models. Therefore, we ex-
cluded that tree from all analyses. Even then, we noted a variable number of out-
liers and leverage points depending on the model. Since the combined effect of 
outliers and leverage points can destabilize coefficients of models with multiple  
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Table 1. Volume and biomass models tested in this study. 

Form Models Mathematical forms References 

Volume models 

Linear 
models 

M1 ( ) ( ) ( )0 1ln ln lnv d= β + β + ε
 

Husch (1963) 

M2 ( ) ( ) ( )2
0 1ln ln lnv d h= β + β + ε

 
Spurr (1952) 

M3 ( ) ( ) ( ) ( )2
0 1 2ln ln ln lnv d h= β + β + β + ε

 
Schumacher (1933) 

Nonlinear 
models 

M4 ( ) 1
0v d β= β ∗ ∗ε

 
Husch (1963) 

M5 ( ) 12
0v d h

β
= β ∗ ∗ε

 
Spurr (1952) 

M6 ( ) ( )1 22
0v d h

β β= β ∗ ∗ε
 

Schumacher (1933) 

Biomass models 

Linear 
models 

M7 ( ) ( ) ( )0 1ln ln ln εb d= β + β +
 

Husch (1963) 

M8 ( ) ( ) ( ) ( )2
0 1 2ln ln ln ln εb d h= β + β + β ρ +

 
Spurr (1952) 

M9 ( ) ( ) ( ) ( ) ( )0 1 2 3ln ln ln ln ln εb d h= β + β + β + β ρ +
 

Schumacher (1933) 

M10 ( ) ( ) ( )2
0 1ln ln ln εb d h= β + β ρ +

 
Chave et al. (2014) 

Nonlinear 
models 

M11 ( ) 1
0b d β= β ∗ ∗ε

 
Husch (1963) 

M12 ( ) ( )1 22
0b d h

β β= β ∗ ρ ∗ε
 

Spurr (1952) 

M13 ( ) 12
0b d h

β
= β ∗ ρ ∗ε

 
Chave et al. (2014) 

M14 ( ) ( ) ( )1 2 3
0b d hβ β β= β ∗ ρ ∗ε

 
Schumacher (1933) 

ln = natural logarithm, v = stem volume (m3), b = stem biomass (kg), h = total height 
(m), d = diameter at breast height (cm), and ρ = wood density (g cm3). 

 
predictors, we used robust regression (Taskinen & Warton, 2013) in preference 
to ordinary least square (OLS) regression. The model fitting was done by rlm 
and nlrob function in the MASS and robust base package of R, respectively. 
These R functions fit models by iteratively re-weighted least squares (IRLS) me-
thod using the Tukey bisquare weighting method (Riazoshams et al., 2019). We 
compared the performance of the different models using model selection criteria 
and graphical analysis of residuals. Since linear models cannot be compared di-
rectly with nonlinear models, we conducted all model comparisons on the 
arithmetic scale. First, we back-transformed the predictions of linear models to 
original units to allow comparisons with our nonlinear models and other pub-
lished equations. We used a correction factor (CF) to correct the systematic bias 
induced during the back-transformation of logarithmically transformed data 
(Chave et al., 2005; Sileshi, 2014). The CF is normally computed from the mean 
square of error (ε) as follows: 
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2εCF EXP
2

 
=  

 
                        (1) 

Then we calculated various model selection criteria in the arithmetic domain 
to make the comparison of linear and nonlinear models straightforward. For 
this purpose, we chose the Nash and Sutcliffe efficiency factor (NSEF), the 
bias-corrected Akaike information criterion (AICc), the average systematic error 
(bias), and the root means square of error (RMSE). We did not include the R2 
due to its well-known limitations (Sileshi, 2014). Instead, we used the NSEF as 
its calculation is straightforward for both linear and nonlinear models. The 
NSEF formula is the same as the R2 of linear regression but it is applied directly 
to the original biomass data and the predictions from any one of the models as 
follows: 

( )
( )

2
1

2

ˆ
NSEF 1 i i

n
i

i y

y y

y
=

−
= −

−

∑
∑

                    (2) 

where yi is the observed (measured) value, ŷi is the predicted value; ȳ is the aver-
age of yi. NSEF varies from −∞ to 1; values close to 1 being the best while nega-
tive values indicate an unacceptable model performance. 

Calculation of the AIC (Akaike, 1973) for models estimated using least square 
methods is tricky because AIC is originally formulated based on the negative 
log-likelihood from maximum likelihood estimation. Following (Gagné & Day-
ton, 2002; Chave et al., 2014), we calculated the AIC from the residual sum of 
squares (RSS) of the regression as follows: 

RSSAIC ln 2n p
n

 = ∗ + 
 

                    (3) 

where n is the number of observations (sample size) and p is the number of 
model parameters. To correct for small sample sizes, we used the bias-corrected 
AIC (hereafter AICc) computed as: 

( )
c

2 1
AIC AIC

1
p p

n p
+

= +
− −

                     (4) 

Then, we computed the Akaike weights (AICw) from the AICc cohort of models 
as recommended by Johnson & Omland (2004). AICw indicates the probability 
that the model is the best among the set of candidate models, thus measuring the 
strength of evidence for each model. Therefore, we chose the model with AICw 
close to 1 as the best. For all models, the bias (%), MAPE (%), and RMSE (%) 
were calculated as follows in the arithmetic domain: 

( ) 1 1

ˆ1 100Bias % R i
i

n i
i

i

Y Y
R n Y= =

−
= ∑ ∑                  (5) 

( ) 1 1

ˆ1 100MAPE % R i

i
n i

i
i

Y Y

R n Y= =

−
= ∑ ∑                (6) 

https://doi.org/10.4236/ojf.2022.123015


M. Teshome et al. 
 

 

DOI: 10.4236/ojf.2022.123015 271 Open Journal of Forestry 
 

1 1

ˆ1 1RMSE(%) 100 i iR n
i i

i

Y Y
R n Y= =

 −
=   

 
∑ ∑               (7) 

where R is the number of resampling (200), n is the number of trees per resam-
pling r, and yi and ŷi are the observed and predicted biomass and volume values. 

We also calculated a relative measure hereafter referred to as rRMSE% calcu-
lated as a ratio of RMSE to the mean of the predicted biomass and expressed 
in %, i.e., 100 * (RMSE/mean). This measure is sometimes called the coefficient 
of variation and is used for comparing models e.g., (Vonderach et al., 2018; 
Chianucci et al., 2020). The rRMSE % gives an estimate of the error in estima-
tion as a percentage of the predicted mean biomass. Since the above criteria do 
not reveal problems inherent in the model specification (Sileshi, 2014), we con-
ducted various model diagnostics including tests of normality, homoscedasticity 
of errors, and influence statistics (Table S1). We used the Shapiro-Wilk test to 
determine the normality of residuals. Test of normality and homogeneity alone 
are not adequate (Sileshi, 2014). Therefore, we conducted additional diagnostics 
to check whether certain observations have undue “influence” on the coeffi-
cients. There are two types of outliers, i.e. those in the response variable and out-
liers to the predictors are called leverage points (Taskinen & Warton, 2013). We 
used residual plots of standardized residuals to detect outliers against the expla-
natory variables to reveal patterns, and deemed values exceeding −2.0 or +2.0 as 
outliers that can cause serious heteroscedasticity. Since residual plots cannot re-
veal leverage points, we identified leverage points from the robust regression 
analysis (Table S1). We conducted a one-way analysis of variance (ANOVA) to 
test whether or not residuals from our best model vary with species. In linear 
models where two or more variables were included, we also checked the variance 
inflation factor (VIF) to assess the presence of multicollinearity between the 
predictor variables (Sileshi, 2014). In the case of nonlinear models, we checked 
for symmetry in estimated parameters using Hougaard’s measure of skewness 
(|g|). It must be noted that nonlinear regression assumes that parameters are 
close to linear so that the uncertainty about the value of each parameter is sym-
metrical. A parameter with g > 0.25 is said to be noticeably skewed, and in such 
cases, alternative model parameterization is strongly advised (Hougaard, 1985). 

2.5. Model Validation 

In the analyses above, we have only examined the ability of various models to 
describe the data at hand, which is referred to as in-sample fit. This is some-
times confused with the predictive power of the model or its out-of-sample fit. 
However, models usually have a grossly inflated performance in-sample com-
pared to their performance in follow-up studies (Ioannidis, 2008). The goodness 
of fit and model selection criteria also tend to better fit the sample data, espe-
cially when models are over-fitted (Sileshi, 2014). Therefore, we employed the 
Monte Carlo cross-validation technique to evaluate the biomass prediction per-
formance of the models. The fits of the models were examined by randomly 
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splitting the data into two parts, with 70% for model development and 30% for 
model validation; this process was repeated 200 times. The commonly used 
model fit statistics (Equations (5)-(7)) were calculated during every repetition 
using the randomly selected data, and finally, the average values of the 200 repe-
titions were computed (Temesgen et al., 2014). A model that provides smaller 
values of these metrics was considered the best model. The final parameter esti-
mates of the best model were obtained by fitting the model with the entire data-
set. All of the statistical analyses were computed using the R software (R Core 
Team, 2013). 

2.6. Comparison with Previously Published (Generic) Models 

We compared the predictive performance of our biomass models with the pre-
viously published pan-tropical models and models from tropical dry forests in 
Africa (Table 2). We chose these models for comparison with our model be-
cause they are commonly used for biomass estimation in Ethiopia and else-
where, see (Gebeyehu et al., 2019; Kendie et al., 2021; Siraj, 2019). 

The usual criteria used for comparing local models have some limitations 
when comparing local with generic models. For example, R2 is an inadequate 
criterion for comparing linear and nonlinear models because a nonlinear model 
does not have a true R2 due to the absence of a true intercept. The RMSE is 
scale-dependent, and therefore, it does not help compare models in different 
formulations (e.g., linear vs. nonlinear). It is also hard to determine the magni-
tude of RMSE in the absence of a reference point. Hence, we used the rRMSE, 
MAPE (%), and NSEF (%) applied directly to the original data and the predic-
tions from any one of the models. 

2.7. Estimation of Stand-Level Basal Area, Volume, Biomass, and 
Carbon Stocks 

The density (stem∙ha−1) and basal area (m2∙ha−1) were calculated for each tree 
species. Each tree’s stem volume and biomass were calculated using the newly 
developed volume (M2) and biomass model (M10) in this study. The below-
ground (root) biomass was estimated by using a 0.20% conversion factor of the  

 
Table 2. Previously published models tested using our data set. 

No Mathematical forms References 

1. ( )0.91620.112b d h= ∗ ρ
 

Chave et al. (2005) 

2. ( )0.97620.0673b d h= ∗ ρ
 

Chave et al. (2014) 

4. ( ) ( )2.141 0.6250.196b d= ∗ ∗ ρ
 

Tetemke et al. (2019) 

3. ( ) ( ) ( ) ( )ln 1.134 1.969 ln 0.295 ln 1.185 lnb d h= − + ∗ + ∗ + ∗ ρ
 Djomo et al. (2016) 

ln = natural logarithm, b = stem biomass (kg), h = total height (m), d = diameter at breast 
height (cm), and ρ = wood density (g cm3). 
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stem biomass (MacDicken, 1997). The total biomass (the sum of the stem and 
root biomass) was converted into carbon by dividing the total biomass value by 
2, following the procedures in Pearson et al. (2005). 

3. Results 
3.1. Harvested Tree Species 

The 194 trees used here accounted for 7 dominant tree species accounting for 
89% of the total basal area in the Chilimo forest (Table 3). The diameter, total 
height, and wood density ranged between 6.2 and 85.0 cm, 5.6 and 27.4 m, and 
0.52 and 0.82 g∙cm−3, respectively. The majority of the tree species had diameters 
concentrated in a narrow range. For example, Olea africana ssp. cuspidata, Al-
lophylus abyssinica, Olinia rochetiana, Rhus glutinosa, and Scolopia theifolia 
had a diameter of less than 29 cm while Juniperus procera and Podocarpus fal-
catus had a diameter ranging between 11.6 and 85.0 cm. However, most of the 
tree species exhibited little variation in the wood density values (Table 3). 

3.2. Volume Estimation Model 

The parameter estimates, their corresponding standard errors, and the PRSE sta-
tistics of the evaluated volume models are given in Table 4. All parameters of the 
models were statistically significant at α = 0.001 levels. The Monte-Carlo 
cross-validation statistics of the models are given in Table S4. Among the mod-
els, model 2 (M2) was the best model to predict the stem volume. This model 
produced the lowest RMSE, MAPE, and AICc and higher NSEF values. The ob-
served and predicted stem biomass graphs using the evaluated models are shown 
in Figure S1. Among the models, M2 and M6 provided the closest prediction to 
the observed stem volume. 

 
Table 3. Tree species used for model building and their wood density, diameter at breast 
height, and total height measurements. 

No Tree species N ρ 
d (cm) h (m) 

Mean ± SD Range Mean ± SD Range 

1 Juniperus procera 89 0.58 34.3 ± 17.3 11.6 - 85.0 16.2 ± 5.3 6.8 - 27.4 

2 Podocarpus falcatus 15 0.52 40.6 ± 15.4 20.0 - 64.0 19.2 ± 4.9 11 - 25.6 

3 Olea africana 20 0.82 14.5 ± 5.9 6.3 - 28.8 10.6 ± 2.1 5.9 - 14.5 

4 Allophylus abyssinicus 15 0.59 11.3 ± 3.9 6.4 - 21.3 10.6 ± 3.1 7.0 - 17.0 

5 Olinia rochetiana 20 0.66 14.9 ± 6.7 6.2 - 27.5 12.6 ± 2.9 7.3 - 19.4 

6 Rhus glutinosa 15 0.61 15.6 ± 4.9 9.0 - 23.5 11.3 ± 3.0 6.0 - 17.4 

7 Scolopia theifolia 20 0.64 11.8 ± 4.1 6.4 - 22.0 8.2 ± 1.9 5.6 - 13.0 

SD = standard deviation, N = number of sample trees, d = diameter at breast height (cm), 
h = total height (cm), ρ = wood density (g∙cm−3), and Range = minimum and maximum 
values. 
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Table 4. Parameter estimates, standard errors (in parenthesis), and PRSE statistics for the 
evaluated volume estimation models. 

Models 
Estimated parameters 

 
PRSE 

β0 β1 β2  
β0 β1 β2 

Linear models 

M1 
−8.907 2.385 

 
 

1.25 1.5 
 (−0.112) (−0.036) 

 

M2 
−9.909 0.954 

 
 

0.96 1.12 
 (−0.095) (−0.011) 

 

M3 
−9.883 0.962 0.925 

 
1.29 2.72 9.7 

(−0.127) (−0.026) (−0.090) 

Nonlinear models 

M4 
0.0015 1.751 

 
 

18.15 2.55 
 (0.000) (−0.045) 

 

M5 
0.0002 0.845 

 
 

15.09 1.6 
 (0.000) (−0.014) 

 

M6 
0.0001 0.827 0.939 

 
18.02 2.35 7.28 

(0.000) (−0.019) (−0.068) 

The best fit model is given in bold. 
 

The residual graphs of the evaluated models are shown in Figure 2. The resi-
duals of linear models were randomly scattered around zero lines for all fitted 
values, while the residuals of nonlinear models followed a funnel shape distribu-
tion indicating non-constant variance. Furthermore, the nonlinear models 
tended to have more outliers than the linear models and the parameter “β0” in all 
nonlinear models was also significantly skewed (Table S1 and Table S2). Taking 
all these into consideration, we selected M2 rather than the non-linear models 
for volume estimation. ANOVA did not reveal significant variation with species 
in residuals from M2. 

3.3. Stand Characteristics and Biomass Estimation at Chilimo Forest 

The number of trees, basal area, and stem biomass of trees in the Chilimo dry 
Afromontane forest is presented in Table 5. The average standing volume of wood 
was 303.0 m3∙ha−1. Overall, Podocarpus falcatus (43.5%), Juniperus procera (38.1%), 
Schefflera volkensii (7.5%), and Schefflera abyssinica (2.2%) were the tree species 
that exhibited the largest stem volume wood. Each of these species also comprised 
49.1%, 39.3%, 6.2%, and 2.1% of the total stem biomass. The measured stem bio-
mass values were highly variable across the plots, with an average value of 283.8 
Mg∙ha−1. The estimated carbon stocks also varied between 15.3 and 989.4 Mg∙ha−1, 
with a mean value of 170.3 Mg∙ha−1 in the Chilimo forest. 
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Figure 2. Residual graphs of the evaluated volume models. 

3.4. Biomass Estimation Model 

The parameter estimates, their corresponding standard errors, and the PRSE sta-
tistics of the evaluated models are given in Table 6. All parameters of the nonli-
near models were significantly different from zero (p < 0.001) except parameters 
β2 and β3 of M8 and M9, which were not. The goodness-of-fit statistics based on  
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Table 5. Summary of forest inventory results, estimated stem volume (M2), biomass 
(M10), and carbon stocks in the Chilimo dry Afromontane forest. 

Stand characteristics Unit Mean Minimum Maximum SD 

Stand density stems∙ha−1 631.5 25.0 2600.0 455.3 

Basal area m2∙ha−1 24.4 1.5 100.9 15.1 

Stem volume in the forest m3 ha−1 303.0 7.5 1592.0 312.8 

Stem biomass Mg∙ha−1 283.8 25.5 1649.0 298.9 

Belowground biomass Mg∙ha−1 56.8 5.1 329.8 59.8 

Total biomass Mg∙ha−1 340.6 30.63 1978.8 358.7 

Carbon stock Mg∙ha−1 170.3 15.3 989.4 179.4 

 
Table 6. Parameter estimates, standard errors (in parentheses), and PRSE statistics for the 
evaluated biomass models. 

Models 
Estimated parameters PRSE 

β0 β1 β2 β3 β0 β1 β2 β3 

Linear models 
    

M7 
−2.238 2.301 

  
4.8 1.5 

  (−0.107) (−0.034) 

M8 
−3.127 0.929 0.278* 

 
3 1.2 55.9 

 (−0.093) (−0.011) (−0.155) 

M9 
−3.142 1.847 0.945 0.274* 

3.9 2.8 8.8 57.2 
(−0.123) (−0.051) (−0.083) (−0.157) 

M10 
−2.983 0.949 

  
3.1 1.2 

  (−0.092) (−0.011) 

Nonlinear models 
    

M11 
0.913 1.744 

  
17.8 2.5 

  (−0.162) (−0.044) 

M12 
0.123 0.847 0.593 

 
16.6 1.6 31.2 

 (−0.020) (−0.014) (−0.185) 

M13 
0.176 1.355 1.067 0.107 

14.2 1.6 25.8 3.5 
(−0.045) (−0.048) (−0.100) (−0.266) 

M14 
0.138 0.849 

  
9.4 248.6 

  (−0.020) (−0.013) 

*Indicates non-significant coefficients at α = 0.05. The best fit model is given in bold. 
 

cross-validation of the evaluated models are given in Table S4. The cross-validation 
statistics indicated that M9 from the linear models and M12 from the nonlinear 
models were the best for biomass estimation. However, the PRSE statistics have 
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shown that some of the parameters of M8, M9, M12, M13, and M14 had PRSE > 
25%. The observed and predicted stem biomass graphs using the evaluated mod-
els are shown in Figure 3. 

 

 
Figure 3. Residual graphs of the evaluated biomass models. 
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Visual analysis of the graphs shows that except for M7 and M11, the remain-
ing models overestimated the stem biomass (Figure S2). However, M10 pro-
vides the closest stem biomass prediction to the remaining biomass models. 

The residual graphs of the evaluated models are shown in Figure 3. The resi-
duals of linear models were randomly scattered around zero lines for all fitted 
values, while the residuals of nonlinear models followed a funnel shape distribu-
tion indicating non-constant variance. Furthermore, the parameter “β0” in all 
nonlinear models was significantly skewed, and the nonlinear models tended to 
have more outliers than the linear models (Table S1 and Table S2). Moreover, 
the assumption of multicollinearity was not violated, since none of the explana-
tory variables of the evaluated models showed a VIF value higher than 5. Taking 
all these into consideration, we selected M10 as the best model for stem biomass 
estimation. 

3.5. Comparison of Our Models with Published Biomass Models 

The stem biomass prediction and the associated fit statistics of the evaluated 
models are given in Table S5. The models by Chave et al. (2005, 2014) systemat-
ically overestimated stem biomass, especially for trees with d > 25 cm (Figure 4), 
which is evidenced by systematically declining residuals (Figure 5). Conversely, 
the model developed by Tetemke et al. (2019) was less accurate and severely un-
derestimated the stem biomass. Our best model (M10) and the model developed 
by Djomo showed the highest prediction performance (Table S5 and Figure 4). 
However, the model by Djomo et al. (2016) was developed for small-diameter 
trees (d < 32 cm) and is not consistent for larger trees. This indicated that  

 

 
Figure 4. Comparison of biomass prediction performance by our best model and previously 
published biomass models. The dots in different colors represent the biomass prediction by 
each model and the lines represent the best fit line. 
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Figure 5. Comparison of the residuals plots of our best models with the generic biomass models using our dataset. 
 

our best model (M10) is the most appropriate model to accurately estimate the 
stem biomass of trees. 

4. Discussions 

Very few studies have attempted to develop stem volume equations in Ethiopia 
(Pohjonen, 1991; Teshome, 2005; Berhe et al., 2013; Gereslassie et al., 2019; Tse-
ga et al., 2019; Takenaka et al., 2020). In this study, we developed mixed-species 
allometric equations using 193 individuals from seven dominant tree species 
from the Chilimo forest in central Ethiopia. The selected trees contributed over 
89% of the total basal area of the forest. The number and diameter size range of 
the sampled trees used in the present study were relatively higher than in pre-
vious biomass model development efforts in Ethiopia. For instance, Tetemke et 
al. (2019) used 86 trees and developed a mixed-species model for dry Afromon-
tane forests in Northern Ethiopia. Similarly, Mokria et al. (2018) and Asrat et al. 
(2020a) sampled 84 and 63 trees and developed biomass models for exclosures 
and dry Afromontane forests in north-western and south-central Ethiopia, re-
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spectively. 
The evaluated volume models exhibited varied stem volume prediction per-

formance (Table S4). The dbh-only model had the highest RMSE and MAPE 
and the lowest NSEF values, both in the linear and nonlinear forms. This indi-
cates that diameter alone is not a sufficient predictor for stem volume estima-
tion. The addition of height improved the prediction performance of the model 
by reducing the RMSE and MAPE by 11% and 5%, respectively. This is consis-
tent with the findings of (e.g., (Chave et al., 2005; Mate et al., 2015; Goussanou et 
al., 2016)), who reported that the inclusion of height improved the predictive 
performance of a model. On the contrary, various studies (e.g., (Asrat et al., 
2020b; Segura & Kanninen, 2005; Mugasha et al., 2016)) have argued that the 
dbh-only model outperformed a volume model with height and dbh. This is 
mainly attributed to the difficulty of height measurement in a closed canopy 
tropical forest due to the complex crown form and stand condition (Sharma & 
Parton, 2007). In this study, the combined variable model (M2), which incorpo-
rates diameter and height, becomes the best volume model. The predictor va-
riables of this model explained over 95% of the variances in the stem volume. 
Similarly, Pohjonen (1991) reported that a combined variable model (d and h) 
provided the best stem volume prediction with lower error (10% - 12%) for the 
Juniperus procera tree from the Menagesha Suba forest in Ethiopia. A combined 
variable function has been considered the most appropriate and preferred func-
tion for predicting the total stem volume of trees (Burkhart & Tomé, 2012). This 
is because the stem form of a tree is better explained by a combination of height 
and diameter than by height or diameter, alone (e.g. (Husch et al., 2003)). 

Very few tree volume estimation models have been found in Ethiopia (Pohjonen, 
1991; Teshome, 2005; Gereslassie et al., 2019; Tsega et al., 2019; Takenaka et al., 
2020). Most of the existing models were developed for single tree species mainly 
from pure plantation stands of Cupressus lusitanica, Juniperus procera, and Eu-
calyptus globulus. This study reported a mixed-species volume model developed 
using 193 individuals from seven tree species from the Chilimo dry Afromon-
tane forest. The newly developed mixed-species volume model will help to accu-
rately estimate the standing volume of wood and ensure sustainable manage-
ment efforts in dry Afromontane forests in Ethiopia. Generally, there is a high 
demand for wood in Ethiopia, and the country is currently importing a large 
amount of wood to satisfy national demand. This enables the country to allocate 
a large amount of hard currency to import processed wood (MEFCC, 2018). 
However, there is a huge amount of wood in the natural forests that can satisfy 
the increasing wood demand in Ethiopia (MEFCC, 2018). Accurate estimation 
of the standing volume of wood from the natural forests in Ethiopia is con-
strained by the lack of site-specific volume models. Using our newly developed 
stem volume model, we noted that on average, 303.0 m3∙ha−1 volume of wood is 
found in the Chilimo forest. The observed volume of wood is higher than the 
volume estimated from dry Afromontane forests in the Amhara region (Sisay et 
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al., 2017), Miombo woodlands in Tanzania (Luoga et al., 2002), moist tropical 
forests in Nigeria (Lowe, 1997), and closed tropical broadleaf forests (Brown et 
al., 1989) (Table S3). This implies that a large amount of wood is available in the 
Chilimo forest, which can be used under a sustainable forest management 
scheme. Additionally, the domestic wood production from the Afromontane 
forest will enable the country to save the hard currency allocated to import wood 
and use it for other purposes. However, care should be taken to enhance the re-
generation of the harvested trees, minimize damage during harvesting, and de-
velop locally applied logging regulations (i.e., determine minimum felling di-
ameter, annual allowable cut, and minimum impact harvesting techniques) be-
fore allowing logging from Chilimo forest. The observed variation in stand vo-
lume might be related to the differences in the stocking, basal area, tree allome-
try, and disturbance level among the forests. In our study, volume data is derived 
from the main stem of trees (branch wood volume is not accounted for), whe-
reas in the other studies, the total volume of trees was reported. The mean den-
sity (631.5 stems∙ha−1) and basal area (24.4 m2∙ha−1) in our study area were higher 
than the findings from Afromontane forests in the Amhara region (580 stems∙ha−1) 
and Miombo woodlands in Tanzania (347.6 stems∙ha−1 and 9.8 m2∙ha−1). On the 
other hand, the Chilimo forest is one of the community-managed forests, and 
most trees are concentrated in the lower and medium diameter size class (97% 
are < 60 cm diameter class), which indicates that the forest is regenerating and 
recovering from the past disturbances. It is well known that undisturbed forests 
with many trees accumulate more volume than disturbed forests. 

Biomass models are usually developed by adopting direct and indirect me-
thods. The direct method involves felling trees and weighting, whereas the indi-
rect method requires species-specific volume, wood density, and BEF informa-
tion (Picard et al., 2015). It is well known that tree biomass can be accurately 
determined by the direct weighting method. However, this method is time- 
consuming and expensive (Husch et al., 2003). In this study, we determined the 
stem biomass by multiplying each tree’s volume and the respective wood density 
following the procedures in Burkhart & Tomé (2012). This is mainly related to 
the shortage of time to harvest and collect the data from the study area. It is 
quite obvious that uncertainty in stem biomass estimation might occur for such 
computations compared to the direct weighting method. Despite this fact, the 
biomass model based on dbh alone has shown lower efficiency compared with 
multiple covariate models (Table 5). A model with one predictor variable (dbh- 
based model) has shown poor prediction performance as evidenced by larger 
RMSE (37%) and MAPE (24%) values (Table S4). The addition of height and 
wood density improved the biomass prediction performance of the model by 
reducing the RMSE by 9% and MAPE by 5%. This indicates that height and 
wood density enabled the capture of more variability in stem biomass from the 
sampled trees (Chave et al., 2014). Although the cross-validation statistics show 
that M9 and M12 are the best models, the PRSE statistics revealed that some pa-
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rameters of M8, M9, M12, M13, and M14 had PRSE > 25%, and parameters β2 
and β3 of M8 and M9 were not significantly different from zero. In line with this, 
Sileshi (2014) indicated that a coefficient estimate of a model is unreliable if 
PRSE is greater than 25%. Hence, these models cannot be reliably used for bio-
mass prediction purposes. Accordingly, we selected the combined variable mod-
el (M10) which comprised diameter (d), height (h), and wood density (ρ) for 
biomass estimation. This model explained over 96% of the variation in the stem 
biomass measurements. This is consistent with various studies e.g., (Chave et al., 
2014) which reported that a combined variable model provided better biomass 
prediction than the other models. 

The biomass estimated in this study (340.6 Mg∙ha−1) was less than the bio-
mass estimates from the South African Mistbelt forest (Mensah et al., 2016) and 
closed-canopy tropical forests in 12 countries in Africa (Lewis et al., 2013). 
However, it was comparatively higher than the estimates from the moist Afro-
montane forest in Ethiopia (Wood et al., 2019), the tropical rain forest in Costa 
Rica (Clark & Clark, 2000), the Montane forest in Congo (Imani et al., 2017), 
and Mata Atlantic forest in Brazil (Alves et al., 2010) (Table S3). Similarly, the 
carbon stock (170.3 Mg C∙ha−1) estimates in this study were higher than the es-
timates from the humid forest in Congo (Xu et al., 2017) and Montane forest in 
Tanzania (Willcock et al., 2014), but lower than the estimates from moist Afro-
montane forest in Ethiopia (Mewded & Lemessa, 2020), South African Mistbelt 
forest (Mensah et al., 2016), tropical rainforest in Gabon (Goïta et al., 2019), 
Brazilian Amazonia forest (Lima et al., 2012), and Montane rainforest (Munishi 
& Shear, 2004) in Tanzania. The observed variation might be related to the dif-
ference in the models used to estimate the biomass, the disturbance level, the 
species composition, and the differences in the number of larger diameter trees, 
which constituted a significant amount of biomass as evidenced by the findings 
in moist forests across the tropics (Slik et al., 2013). Differences in biomass esti-
mates for dry and moist tropical forests have been attributed to the use of dif-
ferent allometric equation forms (e.g., (Poorter et al., 2016)). The forest structure 
also showed a larger number of trees in the lower and middle diameter classes, 
which indicates that the forest was in a growth stage. Overall, the Chilimo forest 
had a substantial amount of estimated stem biomass and carbon stocks com-
pared with the estimates from other tropical forests in Africa, which reveals the 
importance of dry Afromontane forests for climate change mitigation through 
carbon sequestration. 

Compared with our newly developed model, the mixed-species equation de-
veloped by (Tetemke et al., 2019) severely underestimated the stem biomass 
of trees in the present study (Table S5). On the other hand, the generic pan- 
tropical models consistently overestimated the stem biomass of trees above d ≥ 
30 cm (Table S5 and Figure 5). Given the importance of large trees in the car-
bon budget, the biomass in large trees must be accurately estimated. However, 
the generic pan-tropical models were not able to predict biomass for the larger 
trees; this implies that the generic pan-tropical models are inferior to our mod-
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els. This is consistent with the previous studies that reported that the model 
tended to overestimate tree biomass compared with locally developed models 
(Djomo et al., 2010; Van Breugel et al., 2011; Ngomanda et al., 2014). The possi-
ble explanation could be the difference in wood density range, tree allometry 
(diameter and height range), tree species composition, site quality, and climatic 
condition, which affect the efficiency of the compared models. For example, the 
database used to develop the model in (Chave et al., 2014) showed that the tree 
species had a wood density ranging between 0.09 and 1.12 g∙cm3, a diameter be-
tween 5 and 122 cm, and a total height between 1.2 and 70.7 m, whereas in this 
study, the database comprised relatively lower wood density values ranging be-
tween 0.52 and 0.82 g∙cm3, a diameter between 6.2 and 85.0 cm, and total height 
between 5.6 and 27.4 m. These variations could be the possible source of the un-
certainty among the models used to accurately predict the stem biomass of trees. 
Despite this fact, the Chave equation (Chave et al., 2014) remains the commonly 
used model, submitted to the UNFCC and various local studies, for calculating 
the biomass and CO2 emission levels from Ethiopian forests (Girma et al., 2014; 
Girma et al., 2014; UN-REDD, 2017; Solomon et al., 2018; Gebeyehu et al., 2019; 
Siraj, 2019). In this study, we noted that the newly developed mixed-species 
model could accurately estimate the stem biomass compared to the frequently 
used pan-tropical and local models. Hence, we recommend the use of these 
models in the Chilimo dry Afromontane forest as well as other similar Afro-
montane forests elsewhere. However, caution should be taken to not use these 
models in a forest comprising different tree species, tree diameter size ranges, 
and climatic conditions than those in the dry Afromontane Forest considered in 
this study. 

This study presents a new approach to estimating the stem volume and bio-
mass from the Chilimo dry Afromontane forest; we consider this an important 
decision support tool for the management of forests in Ethiopia. This approach 
enables the government or forest owners to obtain accurate information on the 
stand-level standing stock of wood, stem wood biomass and make utilization 
plans. However, this study has some limitations that a subsequent study could 
improve. Due to the short data collection period (as a result of road construc-
tion), we could not collect the branch and foliage data and did not use the direct 
weighting method to estimate the biomass of tree components. Furthermore, 
wood density information did not include bark density, which could be a possi-
ble source of bias in biomass estimation. Hence, we recommend including this 
critical component of the tree and updating the equations in future efforts. 

5. Conclusion 

The lack of a biomass and volume equation is a major bottleneck hindering the 
national carbon stock estimation endeavors and management of natural forests 
in Ethiopia. The newly developed mixed-species equations can be used to accu-
rately quantify the standing volume of wood and biomass stock and enable forest 
managers to develop appropriate management strategies for dry Afromontane 
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forests. This study demonstrated that a combined variable model that includes 
diameter, height, and wood density was the best model for stem biomass and 
volume estimation. The frequently used pan-tropical models systematically over-
estimated stem biomass for larger trees and should not be used for biomass 
estimation in the present study area. This study also suggested that the Chilimo 
Afromontane forest has a substantial amount of biomass and carbon stocks 
compared with the estimates from other tropical forests in Africa. This high-
lights the importance of the Afromontane forest for climate change mitigation 
and the carbon market. Considering the limitations of this study, we recommend 
further research, as well as developing tapper and height-diameter equations for 
trees from Dry Afromontane forests. 
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Supplementary Materials 
Table S1. Model diagnostics: significance (P) of Shapiro-Wilk test (PSW), outliers (%), leverage points 
(%). 

Equations Code Mathematical form PSW 
Outliers  
(%) 

Leverage  
(%) 

Volume M1 ( ) ( ) ( )0 1ln ln lnv d= β + β + ε
 

0.8177 1.03 1.03 

 M2 ( ) ( ) ( )2
0 1ln ln lnv d h= β + β + ε

 
0.0184 2.58 1.03 

 M3 ( ) ( ) ( ) ( )2
0 1 2ln ln ln lnv d h= β + β + β + ε

 
0.0750 2.58 1.55 

 M4 ( ) 1
0v d β= β ∗ ∗ε

 
<0.0001 5.15  

 M5 ( ) 12
0v d h

β
= β ∗ ∗ε

 
<0.0001 2.58  

 M6 ( ) ( )1 22
0v d h

β β= β ∗ ∗ε
 

<0.0001 2.58  

Biomass M7 ( ) ( ) ( )0 1ln ln ln εb d= β + β +
 

0.6697 1.55 1.03 

 M8 ( ) ( ) ( ) ( )2
0 1 2ln ln ln ln εb d h= β + β + β ρ +

 
0.0917 4.12 18.04 

 M9 ( ) ( ) ( ) ( ) ( )0 1 2 3ln ln ln ln ln εb d h= β + β + β + β ρ +
 

0.0194 3.61 13.92 

 M10 ( ) ( ) ( )2
0 1ln ln ln εb d h= β + β ρ +

 
0.0690 2.58 1.03 

 M11 ( ) 1
0b d β= β ∗

 
<0.0001 4.64  

 M12 ( ) ( )1 22
0b d h

β β= β ∗ ρ
 

<0.0001 2.06  

 M13 ( ) 12
0b d h

β
= β ∗ ρ

 
<0.0001 2.06  

 M14 ( ) ( ) ( )1 2 3
0b d hβ β β= β ∗ ρ

 
<0.0001 5.15  

 Chave2005  NA 4.64  

 Chave2014  NA 3.61  

 Djomo2016  NA 1.55  

 Tetemke2018  NA 6.19  

 
Table S2. Skewness in the nonlinear parameter estimates. Values in bold are considerably 
skewed according to Hougaard’s measure of skewness (|g|). 

Models Parameter Estimate 
95% Confidence limits 

Skewness (|g|). 
Lower Upper 

Volume      

M4 β0 0.0006 0.0004 0.0008 0.460 

 
β1 2.0028 1.9186 2.0870 0.046 

M5 β0 0.0002 0.0001 0.0002 0.403 

 
β1 0.8459 0.8194 0.8723 0.040 
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Continued 

M6 β0 0.0001 0.0001 0.0002 0.476 

 
β1 0.8277 0.7897 0.8656 0.005 

 
β2 0.9334 0.7996 1.0673 0.020 

Biomass 
     

M11 β0 0.3718 0.2467 0.4970 0.457 

 
β1 1.9830 1.8992 2.0667 0.047 

M12 β0 0.1298 0.0880 0.1716 0.428 

 
β1 0.8453 0.8185 0.8722 0.033 

 
β2 0.6588 0.2948 1.0227 −0.008 

M13 β0 0.1403 0.1012 0.1795 0.381 

 
β1 0.8478 0.8213 0.8742 0.039 

M14 β0 0.1173 0.0743 0.1602 0.491 

 
β1 1.6583 1.5817 1.7349 0.003 

 
β2 0.9246 0.7884 1.0608 0.018 

 
β3 0.6828 0.3165 1.0492 −0.006 

 
Table S3. Comparison of the estimated stem volume (m3∙ha−1), biomass (Mg∙ha−1), and 
carbon stock (Mg∙ha−1) in the Chilimo forest with other tropical forests. 

Variables Site Mean References 

Volume 
 

Afromontane forest Ethiopia 28.9 - 92.4 Sisay et al., 2017 

Miombo woodlands in Tanzania 47.0 Luoga et al., 2002 

Closed tropical broadleaf forest 22.5 - 122.3 Brown et al., 1989 

Dense forests in India 469.4 Chhabra et al.,2002 

Moist tropical forest in Nigeria 220.0 Lowe 1997 

Biomass 
 

Rain forest in Costa Rica 186.0 Clark and Clark 2000 

Brazilian Atlantic forest 263.0 Alves et al., 2010 

Montane forest in Congo 290.0 Imani et al., 2017 

Closed-canopy forests in Africa 395.7 Lewis et al., 2013 

Central Amazonia forest 327.8 Castilho et al., 2006 

South African Mistbelt forest 358.1 Mensah et al., 2016 

Carbon 
 

Humid forest in Congo 139.9 Xu et al., 2017 

Montane forest in Tanzania 130.0 Wilcock et al., 2014 

Primary forest in Indonesia 175.0 Stas 2014 

South African Mistbelt forest 179.0 Mensah et al., 2016 

Tropical rainforest in Gabon 223.0 Goïta et al., 2019 

Brazilian Amazonia forest 253.0 Lima et al., 2012 

Moist Afromontane forest Ethiopia 384.4 Mewded and Lemessa 2019 

Montane rainforest in Tanzania 427.0 Munishi and Shear 2004 
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Table S4. Model comparison and selection based on Monte-Carlo cross-validation statis-
tics. 

Models No 
Bias 
(Kg) 

RMSE 
(%) 

MAPE 
(%) 

NSEF 
(%) 

AICc AICw CF 

Volume models 

Linear M1 0.006 39.046 23.929 92.183 −380.1 0.0 1.004 

M2 −0.008 27.883 18.988 95.985 −473.8 1.0 1.001 

M3 −0.007 28.285 19.125 95.862 −469.5 0.2 1.001 

Nonlinear M4 −0.005 38.104 29.721 92.609 −598.9 0.0 NA 

M5 −0.004 24.007 25.887 97.086 −627.6 1.0 NA 

M6 −0.004 24.045 25.751 97.058 −607.7 0.0 NA 

Biomass models 

Linear M7 6.058 36.556 23.753 92.985 1807.0 0.0 1.003 

M8 −2.153 26.243 18.389 96.310 1692.7 0.0 1.001 

M9 −2.185 26.344 18.654 96.285 1683.6 1.0 1.001 

M10 −2.831 27.110 18.895 96.050 1699.4 0.0 1.001 

Nonlinear M11 2.302 36.001 29.302 93.190 1421.9 0.0 NA 

M12 −1.361 23.820 22.357 96.998 1273.6 0.6 NA 

M13 −2.160 23.947 24.686 96.970 1280.5 0.4 NA 

M14 −1.859 24.144 22.471 96.894 1313.1 0.0 NA 

Note: figures in bold represent the best fit volume and biomass models. 
 

Table S5. Comparison of stem biomass prediction by our best model and previously pub-
lished generic pan-tropical biomass models using our dataset. 

Types Models 
Observed 

(kg) 
Predicted 

(Kg) 
Bias 
(%) 

rRMSE 
(%) 

MAPE 
(%) 

Our best model M10 294.87 299.01 −1.38 27.16 18.72 

Generic models Chave et al. (2005) 294.87 473.32 −37.70 70.39 73.77 

Chave et al. (2014) 294.87 517.21 −42.99 86.71 70.45 

Djomo et al. (2016) 294.87 315.32 −6.49 26.87 42.75 

Tetemke et al. (2018) 294.87 207.54 42.08 84.86 26.34 
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Figure S1. The observed (the full circle) against predicted (the solid blue line) stem volume graphs for the 
evaluated models. The dashed line represents the 1:1 line (i.e., a perfect fit between the observed and pre-
dicted). 
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Figure S2. The observed stem biomass (the full circles) and predicted values (solid blue line) using the eva-
luated biomass models. The dashed line represents the 1:1 line (i.e., a perfect fit between observed and pre-
dicted). 
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