

Severidade de Mancha-de-alternária em genótipos de girassol no Cerrado do **Distrito Federal**

Evaluation of Alternaria leaf spot severity on sunflower in the Cerrado region of the Distrito Federal

DOI: 10.34188/bjaerv4n3-058

Recebimento dos originais: 04/03/2021 Aceitação para publicação: 30/06/2021

Ellen Grippi Lira

Mestre em Agronomia pela UnB Instituição: BASF S/A

Endereço: Av. das Nações Unidas 14171, São Paulo, SP, CEP: 04794-000

E-mail: ellen.grippi@gmail.com

Renato Fernando Amabile

Doutor em Agronomia pela UnB Instituição: Embrapa Cerrados Endereço: BR 020, Km 18, Planaltina, DF, CEP: 73.310-970 E-mail: renato.amabile@embrapa.br

Alexei de Campos Dianese

Doutor em Agronomia pela UnB Instituição: Embrapa Cerrados Endereço: BR 020, Km 18, Planaltina, DF, CEP: 73.310-970 E-mail: alexei.dianese@embrapa.br

Marcelo Fagioli

Doutor em Agronomia pela UNESP-Jaboticabal Instituição: Universidade de Brasília Endereço: Campus Darcy Ribeiro - ICC Sul, Faculdade de Agronomia e Medicina Veterinária Asa Norte, Brasília, DF, CEP: 70.910-900 E-mail: mfagioli@unb.br

Pedro Ivo Aquino Leite Sala

Mestre em Agronomia pela UnB Instituição: Universidade de Brasília/Embrapa Café Endereço: Campus Universitário Darcy Ribeiro - ICC Centro - Faculdade de Agronomia e Medicina Veterinária, Asa Norte, Brasília, DF, CEP: 70.910-900 E-mail: pedroivo.sala@gmail.com

Ana Paula Leite Montalvão

M. Sc. Em Crop Protection pela Universität Göttingen Instituição: Thünen-institut for Forest Genetics Endereço: Sieker Landstraße 2, 22927 Großhansdorf, Alemanha E-mail: ana.montalvao@thuenen.de

Ricardo Meneses Sayd

Doutor em Agronomia pela UnB Instituição: Centro Universitário Icesp

Endereço: QS 05, Rua 300, Lote 01, Águas Claras, DF. CEP: 71.961-540 E-mail: ricardo_sayd@hotmail.com

Claudio Guilherme Portela de Carvalho

Doutor em Agronomia pela Universidade Federal de Viçosa Instituição: Embrapa Soja Endereço: Caixa Postal 231, CEP: 86.001-970 Londrina, PR E-mail: portela.carvalho@embrapa.br

RESUMO

Este trabalho teve como objetivo comparar a severidade da Mancha-de-alternária de genótipos de girassol em ambientes do Cerrado do Distrito Federal. Três experimentos foram avaliados, dois na Embrapa Cerrados (Planaltina, DF) e um localizado na Embrapa Cerrados, no Centro de Inovação em Genética Vegetal – CIGV, Fazenda Sucupira, (Riacho Fundo II, DF). Foram feitas análises ao longo do ciclo da cultura com um intervalo de 15 dias, sendo a primeira aos 35 dias após emergência. Cada planta foi analisada em três partes: terço inferior, terço médio e terço superior. Ao final de cada experimento, a área abaixo da curva de progresso da doença (AACPD) foi calculada para cada genótipo. De acordo com os resultados observados, o ambiente de sequeiro na Embrapa Cerrados, que deteve a maior média da severidade da doença, entre os ambientes avaliados. Dentre os genótipos avaliados, MG 360 mostrou menor severidade da doença no sequeiro e AGUARA 06 no irrigado da Embrapa Cerrados. O genótipo G 42 no CIGV, se destacou pela menor severidade do fungo. Houve influência significativa do ambiente nos resultados de severidade da doença, que está estreitamente relacionada com os fatores climáticos como temperatura do ar e umidade relativa do ar. A compreensão dessas condições favoráveis ao desenvolvimento do fungo é essencial quando se avalia a resistência em genótipos de girassol.

Palavras-chave: Helianthus annuus L., Alternaria helianthi, doença foliar, resistência

ABSTRACT

This study had the purpose of comparing the severity of Alternaria leaf spot on genotypes of sunflower in the Brazilian Cerrado. Three field trials were established, two at Embrapa Cerrados (Planaltina, DF) and one at Embrapa Cerrados, at Centro de Inovação em Genética Vegetal – CIGV, Sucupira farm, (Riacho Fundo II, DF). Evaluations were made during the crop cycle every 15 days, the first one happening 35 days after crop emergency. Each plant was analyzed in three parts: lower, middle and upper thirds. At the end of each trial the average area under the disease progress curve (AUDPC), for each third, was calculated for all genotypes. According to the observed results, the dryland environment at Embrapa Cerrados had the highest mean disease severity, among the studied environments. Between the evaluated genotypes, MG360 showed less severity in dryland and AGUARA 06 in the irrigated environment at Embrapa Cerrados. At Embrapa Produtos at CIGV the genotype that presented the best performance was G42. Environmental conditions deeply affected the trials, mainly temperature and relative humidity. Their influence on Alternaria leaf spot epidemics in the Cerrado region must be studied in more detail, to avoid misinterpreting data when evaluating sunflower genotypes for resistance to this important fungal disease.

Keywords: Helianthus annuus L., Alternaria helianthi, leaf disease, resistance.

1 INTRODUÇÃO

A cultura do girassol pode ser afetada por doenças, como a Mancha-de-alternária, causada pelo fungo Alternaria helianthi (Hansf.) Tubaki e Nishinara, que ocorre em todas as regiões onde o girassol é cultivado. Os primeiros sintomas podem ser visualizados nas folhas baixeiras, e conforme a doença avança, são frequentes lesões nos pecíolos, hastes e capítulos (Aquino et al., 1971; Moraes et al., 1983; Tanaka, 1981). Quando ocorre alta intensidade de ataque, é possível a ocorrência de necrose dos tecidos, provocando crestamento, desfolha e morte das plantas (Leite, 1997). A Mancha-de-alternária é o principal problema fitossanitário do girassol (Moraes et al., 1983), e por isso, a avaliação da resistência se faz necessária quando o objetivo é analisar genótipos da espécie. Outro fator importante para o manejo fitossanitário é a escolha de genótipos menos susceptíveis à Mancha-de-alternária. A resistência genética pode ser considerada como a maneira mais econômica de se conter os danos causados pela doença (Davet et al., 1991). Após introduzida no campo de produção, o controle da Mancha-de-alternária é difícil, e por isso faz-se necessário o uso de estratégias de manejo. A busca por materiais adaptados às condições de cultivo e a avaliação da resistência a doenças são fundamentais para o sucesso de programas de melhoramento de girassol. O objetivo deste trabalho foi comparar a severidade da Mancha-de-alternária de genótipos de girassol em ambientes do Cerrado do Distrito Federal.

2 MATERIAL E MÉTODOS

Os experimentos foram conduzidos em três ambientes no Cerrado do Distrito Federal. Dois ensaios no Campo Experimental da Embrapa Cerrados, Planaltina, DF, estabelecida a 15°35'30" de latitude S, 47°42'30" de longitude O e a altitude de 1.007 m, em LATOSSOLO VERMELHO distrófico; o terceiro, na área experimental da Embrapa Cerrados (CIGV), no Riacho Fundo II-DF, a 15°54'53" de latitude S e 48°02'14" de longitude O, em uma altitude de 1.254 m, também em um Latossolo. O primeiro ensaio da Embrapa Cerrados (CPAC 01) e o da área experimental da Embrapa Cerrados (CIGV - Fazenda Sucupira) foram semeados em fevereiro de 2014, nos dias 20 e 23, respectivamente. O segundo ensaio na Embrapa Cerrados (CPAC 02) foi iniciado no dia 25 de março de 2014. Os experimentos foram compostos por 16 genótipos com quatro repetições cada e em delineamento de blocos ao acaso. Cada parcela, referente a uma repetição do genótipo, foi composta por quatro linhas de dezesseis plantas cada. Para fins de análise, as linhas e plantas externas de cada parcela foram consideradas bordaduras. Portanto, foram analisadas dez plantas por parcela, sendo cinco de cada linha central. Foram feitas análises ao longo do ciclo da cultura com um intervalo de 15 dias, sendo a primeira aos 35 dias após emergência. Cada planta foi analisada em três partes: terço inferior, terço médio e terço superior. Foi utilizada uma escala diagramática

desenvolvida especificamente para a Mancha-de-alternária em girassol (Leite e Amorim, 2002). Os dados gerados deram origem a uma tabela e foi calculada a variável Área Abaixo da Curva de Progresso da Doença (AACPD) conforme descrito por Campbell e Madden (1990). Os dados obtidos foram submetidos à análise de variância através do programa Genes (Cruz, 1997). Usou-se o teste Scott-Knott com significância de 1% (Scott & Knott, 1974) para agrupar as médias.

3 RESULTADOS E DISCUSSÃO

A interação genótipo-ambiente foi significativa, possibilitando a comparação daseveridade da doença nos materiais entre os ambientes (Tabela 1). O ensaio CPAC 01 foi o que obteve as maiores médias de AAPCD, apontando maior severidade da doença para as três partes avaliadas, terço inferior (301,198), terço médio (167,123) e terço superior (25,617). O ensaio Fazenda Sucupira apresentou médias de 265,555, 44,0 e 2,4, para os terços inferior, médio e superior, respectivamente.

O ensaio CPAC 02, iniciado aproximadamente um mês depois, foi o que apresentou as menores médias nos terços inferior (190,713) e médio (21,7). O terço superior (3,2) ficou um pouco acima do encontrado no ensaio Fazenda Sucupira. A menor presença de doença neste ambiente pode estar relacionada com o clima menos favorável ao desenvolvimento da mesma durante a condução do ensaio, uma vez que houve menor quantidade de chuva e menor umidade média do ar, quando comparado com os outros ensaios.

Os resultados da AACPD evidenciam variação de severidade existente entre as partes da planta, sendo o terço inferior mais atacado quando comparado aos terços médio e inferior, coerente com o observado por Leite (1997), que aponta maior intensidade da doença no terço inferior da cultura. Com exceção do ensaio CPAC 02, houve diferença significativa entre os genótipos.

No CPAC 01, o genótipo MG 360 apresentou baixos valores de AACPD, sendo o de menor valor para o terço inferior (260,625), indicando menor incidência de doença quando comparado com a testemunha M734 (315,200), da qual foi diferente estatisticamente para este terço. Os genótipos CF 101, ADV 5504, G42, HELIO 250, SYN 3950HO, BRS 323, GNZ NEON, HELIO 251, AGUARÁ 06 e AGUARÁ 04 foram semelhantes estatisticamente a MG 360 para o terço inferior. Por outro lado, SYN 045 apresentou o maior valor numérico (372,750) para este terço, sendo semelhante estatisticamente à testemunha e aos genótipos HLA 2012, MG 305 e PARAISO 20.

No ensaio Fazenda Sucupira, o genótipo G42 obteve a menor severidade para o terço inferior (196,500), sendo diferente estatisticamente da testemunha M734 (285,000) e semelhante estatisticamente aos materiais CF 101, ADV 5504, HELIO 250, SYN 3950HO, BRS 323, HELIO

251, AGUARÁ 06 e AGUARÁ 04. O genótipo HLA 2012 obteve o maior valor de AACPD para a parte inferior (348,500), sendo estatisticamente semelhante à testemunha e aos genótipos MG 360, GNZ NEON, MG 305, PARAISO 20 e SYN 045.

No CPAC 02, apesar de não haver diferença significativa entre os genótipos, destacam-se os materiais AGUARÁ 06 (163,125; 9,4; 1,9) e SYN 3950HO (168,750; 7,5; 1,9), por terem apresentado baixos valores de AACPD para os terços inferior, médio e superior, respectivamente. O genótipo G42 também obteve baixo valor numérico para a parte inferior (178, 125).

Maldaner (2009) encontrou valores para AACPD em girassol de aproximadamente 1600 em 2008. Loose et al. (2012) observaram AACPD de 1201,91 para o ensaio semeado em janeiro na safra 2007/2008. Tais resultados demonstram a baixa severidade de Mancha-de-alternária nos três ambientes avaliados do presente estudo.

Temperaturas entre 25 a 30°C e alta umidade relativa são fatores que contribuem para o aumento da severidade da doença. No presente estudo, os valores de temperatura média ao longo dos ensaios foram 20,74°C, 20,24°C e 19,3°C, para CPAC 01, CPAC 02 e Fazenda Sucupira, respectivamente, indicando condições climáticas menos favoráveis ao desenvolvimento da Mancha-de-alternária.

O desempenho dos genótipos variou de acordo com o ambiente. SYN 045, por exemplo, diferiu estatisticamente nos três ambientes, obtendo maiores valores de AACPD no ensaio CPAC 01 e baixos valores no CPAC 02.

4 CONCLUSÕES

Os valores de AACPD encontrados foram baixos, indicando pouca doença. As condições ambientais não favoreceram a Mancha-de-alternária.

Houve interação genótipo-ambiente significativa. O ensaio CPAC 02 apresentou as menores médias de AACPD nos terços inferior e médio.

Os resultados da AACPD, em cada ambiente, evidenciam variação entre as partes da planta. O terço inferior apresentou maiores valores para AACPD quando comparado com os terços médio e inferior.

Os genótipos CF 101, ADV 5504, G42, HELIO 250, SYN 3950HO, BRS 323, HELIO 251, AGUARÁ 06 e AGUARÁ 04 expressaram menores valores de AACPD no terço inferior, diferindo estatisticamente da testemunha M734.

ISSN: 2595-573X

Tabela 1. Valores médios de área abaixo da curva de progresso da doença (AACPD) submetidos ao teste de Scott-Knott a 1%, no Distrito Federal, Brasil.

Genótipo	CPAC 01			Fazenda Sucupira			CPAC 02		
	AACPD	AACPD	AACPD	AACPD	AACPD	AACPD	AACPD	AACPD	AACPD
	inferior	médio	superior	inferior	médio	superior	inferior	médio	superior
CF 101	286,125 Ab	133,125 Ac	20,625 Ac	255,000 Ab	40,0 Bb	0,0 Aa	195,000 Ba	22,5 Ba	7,5 Aa
ADV 5504	286,325 Ab	165,950 Ac	48,750 Ab	207,275 Bb	10,0 Bb	0,0 Ba	191,250 Ba	28,1 Ba	5,6 Ba
G42	275,825 Ab	150,200 Ac	46,875 Ab	196,500 Bb	37,5 Bb	10,0 Ba	178,125 Ba	18,8 Ba	3,8 Ba
M734 (T)	315,200 Aa	176,450 Ac	26,250 Ac	285,000 Aa	37,5 Bb	0,0 Ba	192,200 Ba	30,0 Ba	3,8 Ba
HELIO 250	303,750 Ab	168,750 Ac	13,125 Ac	244,000 Bb	51,0 Bb	7,5 Aa	208,125 Ba	20,6 Ba	0,0 Aa
SYN 3950HO	294,375 Ab	166,875 Ac	18,750 Ac	216,000 Bb	63,8 Ba	0,0 Aa	168,750 Ba	7,5 Ca	1,9 Aa
BRS 323	286,875 Ab	191,250 Ab	43,125 Ab	220,275 Bb	40,5 Bb	12,5 Ba	206,250 Ba	52,5 Ba	13,1 Ba
MG 360	260,625 Ab	146,250 Ac	16,875 Ac	287,775 Aa	50,0 Bb	0,0 Aa	191,250 Ba	17,1 Ba	3,8 Aa
GNZ NEON	275,625 Ab	142,500 Ac	3,750 Ac	325,000 Aa	34,0 Bb	2,5 Aa	204,375 Ba	20,6 Ba	3,8 Aa
HLA 2012	326,250 Aa	187,500 Ab	35,625 Ab	348,500 Aa	98,5 Ba	2,5 Ba	198,750 Ba	16,9 Ca	1,9 Ba
MG 305	321,000 Aa	158,625 Ac	15,375 Ac	330,500 Aa	66,0 Ba	0,0 Aa	174,375 Ba	15,0 Ca	1,9 Aa
HELIO 251	305,825 Ab	174,375 Ac	18,750 Ac	240,775 Bb	27,8 Bb	0,0 Aa	198,750 Ba	26,3 Ba	1,9 Aa
AGUARÁ 06	296,625 Ab	144,750 Ac	5,625 Ac	211,500 Bb	10,5 Bb	0,0 Aa	163,125 Ba	9,4 Ba	1,9 Aa
AGUARÁ 04	275,625 Ab	123,750 Ac	9,375 Ac	257,000 Ab	32,0 Bb	0,0 Aa	197,625 Ba	24,4 Ba	0,0 Aa
PARAISO 20	336,375 Aa	193,125 Ab	22,500 Ac	311,275 Aa	72,0 Ba	3,5 Ba	198,750 Ba	18,8 Ca	0,0 Ba
SYN 045	372,750 Aa	250,500 Aa	64,500 Aa	312,500 Ba	32,5 Bb	0,0 Ba	184,700 Ca	18,8 Ba	0,0 Ba
Mínimo	260,625	123,750	3,750	196,500	10,0	0,0	163,125	7,5	0,0
Média	301,198	167,123	25,617	265,555	44,0	2,4	190,713	21,7	3,2
Máximo	372,750	250,500	64,500	348,500	98,5	12,5	208,125	52,5	13,1
Desvio Padrão	28,1895	30,2292	17,3474	49,4326	22,7227	4,0382	13,4138	10,1942	3,4040
Variância	794,6493	913,8028	300,9322	2443,5837	516,3192	16,3073	179,9309	103,9222	11,5869
QM	3178,59716	3655,21116	1203,72891	9774,33474	2065,27696	65,22917	719,72367	415,68891	46,34766
Teste F	2,7416**	3,3107**	3,4675**	7,1045**	3,0695**	4,4633**	1,5675 ^{Ns}	2,7365**	1,8583 ^{Ns}
h^2	63,52	69,79	71,16	85,92	67,42	77,60	36,20	63,46	46,19
a									
•									

Letras maiúsculas comparam o mesmo genótipo nos diferentes ambientes. Letras minúsculas comparam os genótipos dentro do mesmo ambiente. Letras iguais indicam que não há diferença estatística entre os resultados, enquanto letras diferentes indicam diferença estatística (Teste Scott-Knott a 1%).

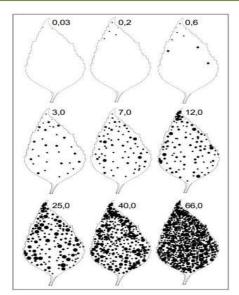


Figura 1. Escala diagramática usada para avaliar a Mancha-de-alternária em girassol. Valores em porcentagem da área foliar com sintomas (lesões necróticas e halo clorótico).

REFERÊNCIAS

ADÁMOLI, J.; MACEDO, J.; AZÊVEDO, L. G.; NETTO, J. M. Caracterização da região dos Cerrados. In: GOEDERT, W.J. (Ed.). Solos do Cerrado: tecnologias e estratégias de manejo. Planaltina, DF: Embrapa Cerrados; São Paulo: Nobel, 1987. p. 33-98.

AMABILE, R. F.; VASCONCELLOS, C. M.; GOMES, A. C. Severidade da mancha-de-alternária em cultivares de girassol na região do Cerrado do Distrito Federal. Pesquisa Agropecuária **Brasileira**, v. 37, p. 251-257, 2002.

AQUINO, M. L. N.; BEZERRA, J. L.; LIRA, M. A. Ocorrência do crestamento do girassol (Helianthus annuus L.) em Pernambuco. **Revista de Agricultura**, v. 46, n. 4, p.151-156, 1971.

CAMPBELL, C. L.; MADDEN, L. V. Introduction to plant disease epidemiology. New York. J. Wiley & Sons. 1990.

CRUZ, C.D. Programa Genes: aplicativo computacional em genética e estatística. Versão Windows – 2007. Viçosa: editora UFV, 1997. v.1. 442p.

DAVET, P.; PÉRÈS, A.; REGNAULT, Y.; TOURVIEILLE, D.; PENAUD, A. Les maladies du tournesol. Paris: CETIOM, 1991. 72p.

HELDWEIN, A. B; CONTERATO, I. F.; TRENTIN, G.; NIED, A. H. Princípio para implementar alertas agrometeorológicos e fitossanitários. In: CARLESSO, R; PETRY, M. T.; ROSA, G. M. da; HELDWEIN, A. B. Usos e benefício da coleta automática de dados meteorológicos na agricultura. 1.ed. Santa Maria: Editora UFSM, 2007. cap.5, p.115-134.

LEITE, R. M. V. B. C.; AMORIM, L. Elaboração e validação de escala diagramática para mancha de Alternaria em girassol. Summa Phytopathologica, v. 28, n. 1, p.14-19, 2002. LEITE, R. M. V. B. C.; BRIGHENTI, A. M.; CASTRO, C. de. (Ed.). Girassol no Brasil. Londrina: Embrapa Soja, 2005. 613 p. LEITE, R. M. V. B. C. Doenças do girassol. Londrina: EMBRAPA-CNPSo, 1997. 68 p. (EMBRAPA-CNPSo. Circular Técnica, 19).

MORAES, S. A.; UNGARO, M. R. G.; MENDES, B. M. J. Alternaria helianthi agente causal de doença em girassol. Campinas: Fundação Cargill, 1983. 20 p. TANAKA, M.A. Doenças do girassol. Informe Agropecuário, Belo Horizonte, v. 7, n. 82, p. 84-86, 1981.

SCOTT, A.J.; KNOTT, M. Accouter analysis methods for grouping means in the analysis of variants. Biometrics, 30: p.507-512, 1974.