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Near-real time deforestation detection in the Brazilian Amazon with Sentinel-1 
and neural networks
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ABSTRACT
Optical-based near-real time deforestation alert systems in the Brazilian Amazon are ineffective 
in the rainy season. This study identify clear-cut deforested areas through Neural Network (NN) 
algorithm based on C-band, VV- and VH-polarized, Sentinel-1 images. Statistical parameters of 
backscatter coefficients (mean, standard deviation, and the difference between maximum and 
minimum values – MMD) were computed from 30 Sentinel-1 images, from 2019, used as input 
parameters of the NN classifier. The samples were manually selected, including forested and 
deforested areas. After deforestation, mean backscatter signals decreased on the average of 
2 dB for VV and 2.3 dB for VH from May to September–October. A Multi-Layer Perceptron (MLP) 
network was used for detecting near-real time forest disturbances larger than 2 ha. Case 
studies were performed for both polarizations considered the following input sets to the 
MLP: mean; mean and standard deviation; mean and MMD; and mean, standard deviation, 
and MMD. For the 2019 dataset, the latter showed the best performance of the NN algorithm 
with accuracy and F1 score of 99%. Automatic extraction using 2018 Sentinel-1 images reached 
accuracy and F1 score of 89% with the MapBiomas reference data and accuracy of 81% and F1 
score of 79% with the PRODES reference data.
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Introduction

The Brazilian Amazon covers an area of approximately 
5.2 million km2, about 60% of the Brazilian territory, 
encompassing the following states: Acre (AC), Amapá 
(AP), Amazonas (AM), Mato Grosso (MT), Pará (PA), 
Rondônia (RO), Roraima (RR), Tocantins (TO), and part 
of Maranhão (MA; Figure 1). Satellite-based monitoring 
of such a large territory is a complex task because of its 
continental size and long rainy seasons. Forest distur
bance in the Brazilian Amazon by human occupation is 
mostly concentrated in a large region named deforesta
tion arch. The arch has about 1.7 million km2 (33% of the 
Brazilian Amazon), extends from northeast of Maranhão 
State to southeast of Acre State, and concentrates most of 
the monitoring efforts conducted by the Brazilian envir
onmental organizations (Cochrane, 2003; Davidson et al., 
2012; Farias et al., 2018; D. Nepstad et al., 2001; Souza 
et al., 2020; Yanai et al., 2017).

Clear-cut deforestation larger than 200 hectares was 
commonly observed in the region between 2000 and 2018 
(Davis et al., 2020). In the last five years (2016–2020), the 
Brazilian Amazon has lost about 43,300 km2 of forest 
cover. Deforestation, which is frequently associated with 
fire occurrences and illegal selective logging (Silva Júnior 
et al., 2018; Van Marle et al., 2017), exceeded 10,000 km2 

in 2019 and 10,800 km2 in 2020. The Brazilian Amazon 
has also been degraded by intensive selective logging 

activities, causing a significant loss of forest diversity 
(Bezerra et al., 2021; Matricardi et al., 2020). Silva et al. 
(2021) recently addressed the dynamics of occupation 
and greenhouse gas emissions in this region. Pará is the 
state presenting the highest levels of deforestation since 
2006, mostly driven by the rural settlement, beef produc
tion, crop plantation, and large reservoirs of hydropower 
plants (D. C. Nepstad et al., 1999; Farias et al., 2018; 
Kastens et al., 2017; Yanai et al., 2020).

The National Institute for Space Research (INPE) is 
the Brazilian institution responsible for monitoring 
annual deforestation in the Brazilian Amazon through 
the Project of the Deforestation Monitoring by Satellite 
(PRODES). The program relies on optical sensors 
onboard the Landsat 8, Sentinel-2, and China–Brazil 
Earth Resources Satellite (CBERS-4 and CBERS-4A) 
satellites. In this project, deforestation is defined as the 
conversion of primary forest into clear-cut areas (Diniz 
et al., 2015; Terrabrasilis – Geographic Data Platform, n. 
d.). Reports and deforestation data about the Brazilian 
Amazon can also be obtained from the Brazilian Annual 
Land Use and Land Cover Mapping Project (MapBiomas 
initiative). It is a non-governmental organization that 
generates annual land use and land cover (LULC) time 
series of the entire country through the Landsat satellite 
data processing and analysis in the Google Earth Engine 
platform (Davis et al., 2020; Mapbiomas Brasil, n.d.).
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During the rainy season, when the forest monitor
ing based on optical satellites is impaired, the 
Management and Operational Center for the 
Amazon Protection System (Censipam), from the 
Ministry of Defense, is the organization responsible 
for processing the X-band, synthetic aperture radar 
(SAR) images over critical areas. Regrettably, the 
reports issued by the institution are used basically for 
environmental law enforcement procedures. Figure 2 
shows the deforestation process and weather condi
tions throughout the year in the Brazilian Amazon.

Currently, in terms of Brazilian satellites, the 
Brazilian Amazon is imaged by the joint Brazil– 
China, CBERS-4A optical satellite along with the 
Amazonia-1 satellite. The latter carries a wide-view 
optical imager with three visible (VIS) bands and one 
near-infrared (NIR) band with a swath of 850 km and 
60 m of spatial resolution. The Ministry of Defense 
and INPE are currently conducting the zero-phase 
analysis of the national SAR mission. The integration 
of optical and SAR imageries can improve forest mon
itoring in tropical regions. Reiche et al. (2015) fused 
Landsat normalized difference vegetation index 
(NDVI) and L-band ALOS PALSAR backscatter time 

series in the Viti Levu Island, Fiji. They found a strong 
correlation between the backscatter multi-temporal 
HV/HH ratio and NDVI, while the accuracy using 
only NDVI decreased significantly.

Monitoring the Brazilian rainforest through remote 
sensing claims for some level of automation because of 
its large territorial extent. Neural networks (NNs) are 
one of the most advanced technological frontiers to 
increase the automation level in satellite image proces
sing. A NN is a massively parallel distributed proces
sor made up of simple processing units using 
cumulative empirical knowledge (Haykin, 2009). It 
has been successfully applied in different cases. Del 
Frate and Wang (2001) analysed the C- and L-band 
backscatter coefficients for retrieving sunflower bio
mass using NN algorithm to perform the inversion 
modelling. NN has been also applied to map the evo
lution of human settlements and urban land using 
C-band SAR images (Del Frate et al., 2008), to char
acterize the seismic source of an earthquake and its 
geometric parameters (Stramondo et al., 2011), to 
classify different crops by multi-polarized and multi- 
temporal backscattering coefficients (Del Frate et al., 
2003), to detect land cover changes in urban areas 

Figure 1. Location of the Brazilian Legal Amazon and the deforestation arch in Brazil. State identification: AC = Acre; 
AM = Amazonas; AP = Amapá; MA = Maranhão; MT = Mato Grosso; PA = Pará; RO = Rondônia; RR = Roraima; and TO = Tocantins.
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using X-band SAR images (Pratola et al., 2013), and to 
detect vegetation burnt areas to monitor regrowth of 
maquis vegetation with X-band data (Laurin et al., 
2018).

Del Frate and Solimini (2004) proposed a NN algo
rithm to estimate soil moisture, leaf area index (LAI), 
and biomass in wheat fields. The algorithm was tested 
with experimental data collected at X-, C-, and 
S-bands. The model was based on the radiative trans
fer theory and a combination of scattering contribu
tions. These authors obtained good results of moisture 
retrieval over bare soil and moderate results under 
vegetation cover. Even though the saturation effects 
reduced the absolute accuracy, the algorithm could 
reproduce the biomass trend with a reasonable agree
ment. Laurin et al. (2013) used the NN classifier to 
map areas of tropical forests in West Africa. In this 
study, the authors applied Landsat, ALOS AVNIR-2, 
and ALOS PALSAR data. The classification results 
were evaluated using optical data alone, SAR data 
alone, Landsat and PALSAR, AVNIR-2 and 
PALSAR, and a combination of three sensors. The 
integration of the three sensors reached the best 
results.

Few works have been conducted using machine 
learning algorithms or SAR images to detect defores
tation in the Amazon rainforest. Bem et al. (2020) 
proposed a method based on convolutional neural 

networks (CNNs) applied to Landsat optical images 
from the Brazilian Amazon. They investigated differ
ent CNN architectures to predict annual changes in 
vegetation cover, comparing the results with two other 
machine learning algorithms, the Random Forest and 
the Multi-Layer Perceptron (MLP). They obtained 
good results employing CNNs, with the F1 score of 
94–95%. However, CNNs are not widely accessible 
since they require a large number of samples and 
specific hardware for training, unlike other machine 
learning algorithms.

Doblas et al. (2020) suggested a procedure based on 
Sentinel-1 data, maximum likelihood classification 
(MLC), and adaptive thresholding (AT) for deforesta
tion detection. They used SAR images acquired over 4 
years (from November 2016 to December 2019) and 
studied the time series of the backscatter coefficients to 
identify deforested areas in the Brazilian Amazon. 
They obtained 94% of accuracy with MLC and 96% 
with AT. However, a comprehensive performance 
analysis comparing training and validation data was 
not addressed in that procedure. In our approach, the 
aim is to assess the classification capability of the NN 
algorithm to detect deforested areas based on different 
spatial statistical characteristics of the backscatter 
coefficient trend. In addition, machine learning algo
rithms have been proved more appropriate than tradi
tional statistical algorithms for the classification of 

Figure 2. Deforestation process and weather conditions commonly found in the Brazilian Amazon over the year. The numbers above 
the images correspond to the monthly average precipitation (mm) for the southwest of Pará State from the period 1999–2020.
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remote sensing data (Benediktsson et al., 1990). This 
work, therefore, presents a method to discriminate 
deforested areas over the Brazilian Amazon based on 
NN and Sentinel-1 SAR images. To our best knowl
edge, the scientific community has not explored this 
approach to detect near real-time deforestation over 
the Brazilian Amazon. This paper is organized as 
follows: Section 2 provides details of the data set and 
the chosen NN. Section 3 presents the main results 
obtained, while the results are discussed in Section 4. 
The concluding remarks are presented in Section 5.

Material and methods

Study area

The study area encompasses part of the municipalities of 
Altamira, Itaituba, and Novo Progresso, southwest of 
Pará State, a region with the highest deforestation rates 
in this state (Figure 3). This region is considered a hotspot 
in terms of human occupation and is one of the main 
frontiers of deforestation in the deforestation arch.

Sentinel-1 data set

For this research, we selected Sentinel-1A, Single Look 
Complex (SLC) images acquired in the Interferometric 
Wide (IW) swath mode from the European Copernicus 
program with a free and open data distribution policy 

(Open Access Hub, n.d.; Potin et al., 2019). The Sentinel- 
1A operates at a C-band (5.3 cm wavelength) and a swath 
width of 250 km (Torres et al., 2012). We selected one 
image every 12 days, dual-polarization (VV and VH), 
descendent mode, from the years 2019 to 2018, i.e. a total 
of 30 images per year (Table 1). The incidence angle 
ranged from about 29° to 46° and the resolution was 
about 5 m in range and 20 m in azimuth (ESA, 2021).

The SAR images were pre-processed by means of 
Sentinel Application Platform (SNAP), an open- 
source software developed by the European Space 
Agency (ESA; SNAP Download, n.d.). The pre- 
processing operations included orbit file correction, 
thermal noise removal, radiometric calibration 
(Sigma0), de-burst, and speckle filtering by the 
Gamma-Map filter. For terrain correction, we used 
external data of 30-m spatial resolution, obtained 
from AW3D digital elevation model (DEM) (“ALOS 
Global Digital Surface Model ‘ALOS World 3D – 
30 m’ (AW3D30)” n.d.). As a result, we obtained 
images with an approximate spatial resolution of 
14.05 m (WGS84, UTM) converted into backscatter
ing coefficients (σ°, units in dB).

Forested and deforested sampling

Table 2 shows the selected Sentinel-2 overpasses from 
May to October of 2019 that were used to visually 
select areas without deforestation (FF) and areas with 

Figure 3. Location of the study area in the Pará State, along the BR-163 highway.
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deforestation (FD). We collected samples over homo
geneous areas (at least 90%) in terms of primary forest 
and clear-cut deforestation, located in flat topography. 
The presence of forest was guaranteed by evaluating 
Sentinel-2 images from 2018 to 2020 (25 August 2018 
image and 20 June 2020). The 98 FF samples presented 
an average size of 95 pixels, while the 199 FD samples 
presented an average size of 66 pixels (Figure 4).

For each FF and FD sample, the mean, standard 
deviation, and maximum-minimum difference 
(MMD), that is the difference between the maximum 
and minimum value of the backscatter coefficient, 

were calculated for both VH and VV polarizations. 
The metrics were computed over the polygons for 
each acquisition in the year 2019. Figure 5 shows an 
example of each statistical parameter for FF and FD 
areas in the VH and VV polarizations. For every 
acquisition, shown on the horizontal axis, the related 
statistical value is reported on the y-axis. In this way, 
the variation of the statistical parameter throughout 
the year can be obtained and used to discriminate the 
forested area from the deforested area.

Multi-layer perceptron (MLP)

An artificial NN may be viewed as an adaptive model of 
nonlinear parallel processing units massively intercon
nected. The NNs are capable of acquiring knowledge 
from the surrounding environment through a process 
of learning which modifies the interconnection weights 
between the units. Therefore, NNs can learn from the 
training examples by constructing input-output map
pings. This learning ability allows NNs to generalize, i.e. 
to produce good approximations of outputs from inputs 
not found during the learning phase (Haykin, 2009). The 
processing unit is the elementary block of the NNs, which 
is mainly characterized by its activation function. The 
latter is essential in NNs because it adds the non- 
linearity that makes them capable of learning complex 
patterns (Sharma et al., 2020).

Table 1. Sentinel-1A interferometric wide (IW), single look complex (Level 1) overpasses from 2019 to 2018 
considered in this study.

Overspass 
2019

Scene Identification 
2019

Overspass 
2018

Scene Identification 
2018

Jan-03 S1A_IW_SLC_1SDV_20190103T092340 Jan-08 S1A_IW_SLC_1SDV_20180108T092333
Jan-15 S1A_IW_SLC_1SDV_20190115T092340 Jan-20 S1A_IW_SLC_1SDV_20180120T092333
Feb-08 S1A_IW_SLC_1SDV_20190208T092339 Feb-01 S1A_IW_SLC_1SDV_20180201T092333
Feb-20 S1A_IW_SLC_1SDV_20190220T092339 Feb-13 S1A_IW_SLC_1SDV_20180213T092332
Mar-04 S1A_IW_SLC_1SDV_20190304T092339 Feb-25 S1A_IW_SLC_1SDV_20180225T092332
Mar −16 S1A_IW_SLC_1SDV_20190316T092339 Mar-09 S1A_IW_SLC_1SDV_20180309T092332
Mar −28 S1A_IW_SLC_1SDV_20190328T092339 Mar-21 S1A_IW_SLC_1SDV_20180321T092332
Apr-09 S1A_IW_SLC_1SDV_20190409T092339 Apr-02 S1A_IW_SLC_1SDV_20180402T092333
Apr-21 S1A_IW_SLC_1SDV_20190421T092340 Apr-14 S1A_IW_SLC_1SDV_20180414T092333
May-03 S1A_IW_SLC_1SDV_20190503T092340 Apr-26 S1A_IW_SLC_1SDV_20180426T092334
May-15 S1A_IW_SLC_1SDV_20190515T092341 May-08 S1A_IW_SLC_1SDV_20180508T092334
May-27 S1A_IW_SLC_1SDV_20190527T092341 May-20 S1A_IW_SLC_1SDV_20180520T092335
Jun-08 S1A_IW_SLC_1SDV_20190608T092342 Jun-01 S1A_IW_SLC_1SDV_20180601T092336
Jun-20 S1A_IW_SLC_1SDV_20190620T092343 Jun-13 S1A_IW_SLC_1SDV_20180613T092337
Jul-02 S1A_IW_SLC_1SDV_20190702T092344 Jun-25 S1A_IW_SLC_1SDV_20180625T092337
Jul-14 S1A_IW_SLC_1SDV_20190714T092344 Jul-07 S1A_IW_SLC_1SDV_20180707T092338
Jul-26 S1A_IW_SLC_1SDV_20190726T092345 Jul-19 S1A_IW_SLC_1SDV_20180719T092339
Aug-07 S1A_IW_SLC_1SDV_20190807T092346 Jul-31 S1A_IW_SLC_1SDV_20180731T092339
Aug-19 S1A_IW_SLC_1SDV_20190819T092347 Aug-12 S1A_IW_SLC_1SDV_20180812T092340
Aug-31 S1A_IW_SLC_1SDV_20190831T092347 Aug-24 S1A_IW_SLC_1SDV_20180824T092341
Sep-12 S1A_IW_SLC_1SDV_20190912T092348 Sep-05 S1A_IW_SLC_1SDV_20180905T092341
Sep-24 S1A_IW_SLC_1SDV_20190924T092348 Sep-17 S1A_IW_SLC_1SDV_20180917T092342
Oct-06 S1A_IW_SLC_1SDV_20191006T092349 Sep-29 S1A_IW_SLC_1SDV_20180929T092342
Oct-18 S1A_IW_SLC_1SDV_20191018T092348 Oct-11 S1A_IW_SLC_1SDV_20181011T092342
Oct-30 S1A_IW_SLC_1SDV_20191030T092349 Oct-23 S1A_IW_SLC_1SDV_20181023T092342
Nov-11 S1A_IW_SLC_1SDV_20191111T092349 Nov-04 S1A_IW_SLC_1SDV_20181104T092342
Nov-23 S1A_IW_SLC_1SDV_20191123T092348 Nov-16 S1A_IW_SLC_1SDV_20181116T092342
Dec-05 S1A_IW_SLC_1SDV_20191205T092348 Nov-28 S1A_IW_SLC_1SDV_20181128T092341
Dec-17 S1A_IW_SLC_1SDV_20191217T092347 Dec-10 S1A_IW_SLC_1SDV_20181210T092341
Dec-29 S1A_IW_SLC_1SDV_20191229T092347 Dec-22 S1A_IW_SLC_1SDV_20181222T092341

Table 2. Forest–Deforested and Forest–Forest samples (FD) 
manually collected based on Sentinel-2 images acquired in 
2019.

Time interval
Number of samples 

FD
Number of samples 

FF

May 7–June 16 58
Jun 16–Jun 21 1
Jun 21–Jun 26 8
Jun 26–Jul 16 35
Jul 16–Jul 21 15
Jul 21–Jul 31 21
Jul 31–Aug l0 16
Aug 10–Aug 20 10
Aug 20–Aug 30 14
Aug 30–Sep 9 8
Sep 9–Sep 19 13
Sep 19–Oct 9 1
Total 199 99
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NNs can be distinguished by their architectures or 
structures. In this study, we considered the MLP. MLP 
is a feedforward NN, i.e. the input is projected uni- 
directionally to the output, which is distinguished by 
the presence of one or more hidden layers between the 
input and output layers. MLPs are applied in classifi
cation and regression problems in many fields, includ
ing remote sensing (Ramchoun et al., 2016). Since we 
implemented a binary classifier, a sigmoid activation 
function was used for the final layer. It outputs a value 
between 0 and 1 that can be treated as a probability 
that the given input belongs to a particular class 
(Sharma et al., 2020).

The number of hidden layers and units depends on 
the specific problem and cannot be determined a priori 
(Ramchoun et al., 2016). In this study, we applied two 
hidden layers of units between the input vector with 
the measured features and the output vector with the 
classification response (Del Frate & Solimini, 2004). 
The initial number of units was estimated following 
the study conducted by Del Frate and collaborators and 
was defined for each specific case. The MLP topology 
consists of four layers (Figure 6). As discussed in detail 
in Section 2.5, four case studies with different input 

configurations were analysed. Therefore, we designed 
four MLP topologies with the number of input and 
hidden units varying depending on the case study.

Data set preparation

The statistical features extracted from the FD and FF 
sample areas were inputs to the NN, trained to auto
matically detect the probability that an area was defor
ested. Different case studies were considered to form 
the input vectors. First, the statistical parameters were 
involved individually, and then a combination of them 
was considered. Specifically, four different sets of 
inputs were chosen:

(1) mean σ° values of both VV and VH 
polarizations;

(2) mean σ° values and corresponding standard 
deviation of both VV and VH polarizations;

(3) mean σ° values and corresponding MMD 
values of both VV and VH polarizations; and

(4) mean σ° values and corresponding standard 
deviation and MMD of both VV and VH 
polarizations.

Figure 4. Example of Forested–Forested (FF) and Forested–Deforested (FD) samples manually collected in different overpasses of 
Sentinel-2 satellite, overlaid on the RGB color composite of bands 4, 3, and 2 of Sentinel-2 satellite image obtained in 1 July 2019.
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Standard deviation and MMD were not considered 
individually as they did not exhibit good perfor
mances. Similarly, preliminary results obtained with 
single polarization configurations suggested disre
garding such an option. Figure 7 shows the processing 
procedure, which is the same for the four case studies.

As a first step in the data set construction, the num
ber of samples related to the FF condition was equalized 
to the FD ones by increasing the former through a data 
augmentation process. More specifically, synthetic data 
(noisy data) was generated from the original data 
(seeds) by adding slightly modified copies of them. 

Figure 5. Mean, standard deviation, and MMD (maximum-minimum difference) example of the backscatter coefficient in VH and 
VV polarizations.
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Random noise vectors of the same size as the seeds 
vectors were created according to a Gaussian distribu
tion with specific mean and variance. These two para
meters were chosen due to the required similarity 
between the noisy vector and the original one. For the 
first case study, where only the mean σ° values are 
considered, an example of a noise vector is shown in 
Figure 8(a). It consists of 30 elements, as the number of 
features in case study (1) in the VH polarization only. 
The noise values range approximately from −0.3 to 0.3. 

The sum of the noise vector and the original seed vector 
is shown in Figure 8(b) for the average value of the 
backscatter. The original vector is shown in orange, 
while the noisy one in blue.

To have a data set of sufficient size to train the NN, 
the whole number of input samples (both FD and FF 
samples) was increased in a similar way. The data set 
generation results for the case study (1) (average value 
of the backscatter coefficient) are shown in Table 3. In 
this case, the data set was enlarged five-fold to obtain 

Figure 6. Multi-Layer Perceptron topology, n, p, and q represent the total number of units in the input and hidden layers that 
change accordingly in the considered case study.

Figure 7. Block diagram showing the processing procedure.

Figure 8. Random noise values generated (a) and the “seed” (shown in Orange) and noisy (shown in blue) samples for VH 
polarization (b).
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a total number of samples equal to 1194 + 1194 = 2388. 
Since the statistical features differ significantly, each 
sample was normalized between 0 and 1 before being 
input to the NN.

Each sample in the data set is described by features 
related to the backscatter coefficient in the VH and VV 
polarizations. The number of features for each sample 
depends on the case study: for the case study (1), the 
features are 60 (30 VH + 30 VV features); for the case 
studies (2) and (3), they are 120 (60 VH + 60 VV 
features); and for the case study (4), they are 180 (90 
VH + 90 VV features). Table 4 provides a summary of 
this split. Thus, the input of the NN is a vector with the 
number of entries that is equal to the number of 
features. Since the features differ significantly, each 
sample was normalized between 0 and 1.

Training phase (2019 data set)

Generally, in machine learning models, the data set is 
divided into three distinct parts: training, validation, and 
test data sets split into the proportion of 75%, 15%, and 
10%, respectively. These proportions are a typical choice 
in machine learning data separation (Haykin, 2009). The 
training and validation sets are used during the training 
process, while the test set is used to evaluate the perfor
mance achieved. Indeed, the test set is used separately 
from the previous ones and is not involved in the learn
ing procedure. In this paper, these proportions were 
considered for all case studies. The sample division for 
the first case study is reported in Table 5.

During the supervised learning process, the connec
tion weights are optimized to minimize the error, 
namely the difference between the desired response 

and the actual response, according to a loss function. 
This error is evaluated both on the training and valida
tion sets, which consists of examples not belonging to 
the training one. To avoid overfitting problems, i.e. to 
make the NN able to generalize over new patterns, the 
training of the network is stopped when the error on 
the validation data set reaches its minimum, according 
to the early stopping algorithm (Prechelt, 1998).

The number of units in the hidden layer was opti
mized for each input configuration, in terms of classi
fication accuracy and generalization capability. Several 
attempts were made to select the proper number of 
units in the hidden layers which finally led to the 
topologies summarized in Table 6.

Evaluation of the 2018 data set

The NN capability achieved during the training phase 
is applied to novel input data. The trained model is 
used for the automatic recognition of areas deforested 
during the year 2018. The properties of the data set 
used in this phase are similar to those of the training 
data set: it was composed of 30 pre-processed 
Sentinel-1 images acquired over the same area with 
the same spatial resolution, which shows the σ° values 
for the VH and VV polarizations.

Each image of the time series was automatically 
divided into sub-images with a size of 10 × 10 pixels, 
resulting in 223,725 patches for each acquisition. 
Considering the pixel resolution of the S1 images of 
14.05 m, 10 pixels × 10 pixels makes an area of 
approximately 2 ha. Table 7 shows an overview of 
the data set dimension. The statistical parameters 
were calculated for each patch for both polarizations, 
as described in Section 2.5, and the same four case 
studies were considered. Therefore, the input of the 
trained NN is a vector with a number of entries 
depending on the examined case study.

Table 3. Training data set description after augmentation 
(case study 1: mean σ° values).

Parameters
Forested– 

Deforested (FD)
Forested–Forested 

(FF)

Number of acquisitions 
per year

30 30

Polarizations VH and VV VH and VV
Number of areas 

(for each acquisition)
199 98 x 3 = 294 (199 

selected)
Augmented number of 

areas
199 x 5 = 995 199 x 5 = 995

Number of samples 199 + 995 = 1194 199 + 995 = 1194

Table 4. Description and number of the case study features. 
MMD = maximum-minimum difference.

Case 
study Features

Total number 
of features

1 30 mean VH + 30 mean VV 60
2 30 mean VH + 30 SD VH + 30 mean VV + 30 

standard deviation VV
120

3 30 mean VH + 30 MMD VH + 30 mean VV + 
30 MMD VV

120

4 30 mean VH + 30 standard deviation VH + 30 
MMD VH + 30 mean VV + 30 standard 
deviation VV + 30 MMD VV

180

Table 5. Train, validation, and test set distribution for the case 
study (1).

Sampling sets Forested–Deforested Forested–Forested Total

Train set 895 895 1790
Validation set 179 179 358
Test set 120 120 240
Total 1194 1194 2388

Table 6. MLP topology for each case study.

Case 
study

Number of 
units in the 
input layer

Number of 
units in the 
first hidden 

layer

Number of units 
in the second 
hidden layer

Number of 
units in the 
output layer

1 60 20 5 1
2 120 30 5 1
3 120 30 5 1
4 180 40 10 1
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Results evaluation

The sigmoid activation function in the NN output layer 
returns a class probability in the interval 0; 1½ �. 
A predicted value equal to or close to 0 means that the 
model identifies an area as forested (FF); conversely, 
a prediction equal to or close to 1 indicates a deforested 
area (FD). To evaluate the results, the confusion matrix 
was computed, and accuracy, precision, recall, and F1 
score were derived. They are defined as (Equations 1–4): 

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
(1) 

Precision ¼
TP

TP þ FP
(2) 

Recall ¼
TP

TP þ FN
(3) 

F1 ¼ 2 �
Precision� Recall
Precsionþ Recall

(4) 

Where:

TP = True positives, i.e. the number of deforested 
areas classified as deforested.

TN = True negatives, i.e. the number of 
forested areas classified as forested.

FP = False positives, i.e. the number of 
forested areas classified as deforested.

FN = False negatives, i.e. the number of defor
ested areas classified as forested.

Results

Figure 9 shows an example of the multitemporal back
scattering coefficients from an area that faced clear-cut 
deforestation between 7 May 2019 (a) and 
16 June 2019 (c) for both VH (b) and VV (d) polariza
tions. The backscatter signal of deforestation presents 
a short increase followed by a sharply decreased in 
both polarizations until approximately 3 months 
(roughly, 31 August 2019). Then, the signals tended 
to increase after September.

From all FD samples collected in 2019, an average 
decrease of the mean backscatter coefficients of 
approximately 2 dB for VV polarization and 2.3 dB 
for VH polarization can be observed after deforesta
tion. This decrease in the backscatter signal remains 

evident for the next 3–4 months approximately. After 
this period, we observed an irregular increase in both 
polarizations.

2019 data set

Table 8 reports the results achieved for the four case 
studies for the data sets obtained in 2019. The mean, 
standard deviation, and MMD input set showed accu
racy and F1 score of 99%. The other case studies also 
achieved promising results: the accuracy obtained 
using mean and MMD slightly decreased to 98%. 
Lastly, mean and standard deviation, as well as mean, 
only showed an accuracy of 97%. False positives and 
false negatives were also very low. They were evaluated 
through the F1 metric, which is the harmonic mean of 
precision and recall. This means that the algorithm 
avoids, to a great extent, false alarms and, in most 
cases, does not miss the deforested areas.

2018 data set

To assess the NN performance, the 2018 results 
were validated using two ground truth images pro
vided by the MapBiomas and PRODES projects. 
MapBiomas produces annual LULC maps by apply
ing Random Forest classification overall Landsat 
scenes acquired in a specific year. The LULC 
maps are pixel-based, with a minimum mapping 
area of 1 ha. PRODES provides the annual rates 
of clear-cut deforestation with a minimum map
ping area of 6.25 ha. PRODES makes use of mod
erate spatial resolution from Landsat-8, CBERS-4, 
and Sentinel-2 with 30 m, 20 m, and 10 m of 
spatial resolutions, respectively.

The data from MapBiomas and PRODES consid
ered only deforested areas from 2018 found in the 
same region of the Sentinel-1 data set. The ground 
truth images were clipped into patches with the size of 
10 pixels × 10 pixels, following the image division used 
for the SAR data set obtained in 2018. Each patch in 
the ground truth image is geographically related to the 
patch in the Sentinel-1 imagery in the data set. Out of 
the total, the ground truth patches reporting areas 
deforested in 2018 represent approximately 0.3% in 
MapBiomas while in PRODES they represent 0.6%.

The predictions related to 2018 deforested patches 
were collected, and the same number of predictions 
related to forested patches is selected randomly from 
the total to create a well-balanced data set. Table 9 
shows the results achieved for the 2018 images for the 
four case studies.

Compared with the results obtained in 2019, all 
evaluation parameters decreased for the data sets 
obtained in 2018, especially for the recall, due to the 
relatively high number of false negatives. The recall 
decreased for the PRODES data. For both reference 

Table 7. Data set description of selected Sentinel-1 images 
from 2018.

Parameter Specification

Number of acquisitions per year 30
Number of patches (for each acquisition) 223,725
Polarizations VH and VV
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data, the best-case scenario corresponded to the case 
study that considered mean, standard deviation, and 
MMD as input. In this case, the model achieved accu
racy and F1 score of 89%, with a low number of false 
positives and false negatives, validating with the 
MapBiomas ground truth image and accuracy and F1 
score of 81% and 79%, respectively, with the PRODES 
ground truth. The second best case was obtained for 
the mean backscatter coefficient as input parameter. 
The model performance declined when mean and 
standard deviation and mean and MMD were 
considered.

Discussion

In this study, we proposed a method based on NNs 
that detects deforested areas by analysing the 
annual trend of specific statistical parameters 
related to the backscatter coefficients obtained 
from Sentinel-1 images. Different statistical para
meters, i.e. different case studies including mean, 
standard deviation, and MMD of the backscatter 
coefficient in VH and VV polarizations were con
sidered. This method analysed 2 years of data sets: 
2019 and 2018. Areas deforested in 2019 were 
manually selected, labelled, and used to train and 
test the algorithm, while the trained NN automati
cally identified areas deforested in 2018.

Figures 10, 11, 12, and 13 represent samples 
extracted from the 2019 data set. Figures 10 and 11 
report two FF areas, while Figures 12 and 13 report FD 
areas. On the left, the figures illustrate the RGB colour 
composites (a, c) obtained from Sentinel-2 2019 
images. The right shows the related mean backscatter 
trend in both VH (b) and VV (d) polarizations.

Figure 9. Left: Example of a deforested area in the study area shown by the Sentinel-2, RGB color composites of bands 4, 3, and 2 
acquired on 7 May 2019, and 16 June 2019. Right: Sentinel-1 mean backscatter coefficients along the year 2019 in the VH and VV 
polarizations. The red line highlights the backscatter position coincident with the first data of the optical image before 

deforestation.

Table 8. Statistical results for the data sets obtained in 2019. 
MMD = maximum-minimum difference.

Statistical parameters Accuracy Precision Recall F1

Mean 0.97 0.98 0.97 0.97
Mean + standard deviation 0.97 0.99 0.94 0.97
Mean + MMD 0.98 0.96 0.99 0.98
Mean + standard deviation + MMD 0.99 0.99 0.98 0.99
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The VV and VH signals from the Forested– 
Forested samples (depicted in Figures 10 and 11) 
show regularity of the signal for both polarizations 
with the mean backscatter signal values from 
−14.2 dB for VH and −7.7 dB for VV polarizations. 
When deforestation occurs, the VV and VH back
scatter signals are perturbed. After deforestation, it 
was observed a short increase of the backscatter 
signal before a more pronounced decrease. From 
all samples collected, we observed an average 
decrease of 2.3 dB for VH and 2 dB for VV polar
izations. The decrease was evident and lasted from 
about 3 to 4 months. Some authors have observed 
the increase and decrease of the backscatter signal 
after deforestation (Bouvet et al., 2018; Doblas et al., 
2020; Hoekman et al., 2020; Joshi et al., 2015; 
Kellndorfer, 2019; Reiche et al., 2018a, 2018b).

Reiche et al. (2018a) found a decrease of 2.0 dB in 
VH after deforestation in the province of Riau, 
Indonesia, through Sentinel-1 C-band SAR data time- 
series. Reiche et al. (2018b) observed a decrease of 
2.5 dB, using VV time-series of Sentinel-1, from defor
estation studies in the province of Santa Cruz, Bolivia.

Bouvet et al. (2018) stated that the C-band SAR 
backscatter signal over cleared or burned areas pre
sents a lower backscatter signal of ~2.5 dB in the 
Amazon rainforest in Peru. Decrease backscattering 
was also observed for the majority of our deforested 
areas collected in 2019.

Hoekman et al. (2020) reported that, in general, 
undisturbed forests have a relatively high and stable 
backscatter level; therefore, a significant decrease in 
backscatter level would indicate deforestation. The 
backscatter of clear-cut areas, in both polarizations, is 

Figure 10. Sentinel-2 RGB colour composite (a, c) acquired on 21 July 2019 of a Forested–Forested sample (highlighted in red), and 
backscatter mean trend in VH (b) and VV (d) polarizations. The red line highlights the backscatter position coincident with the data 
of the optical image.

Table 9. Statistical results for the ground truth data sets obtained in 2018. SD = standard deviation. MMD = maximum-minimum 
difference.

Parameter

MapBiomas PRODES

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Mean 0.85 0.88 0.81 0.85 0.79 0.87 0.67 0.76
Mean + SD 0.88 0.96 0.79 0.87 0.78 0.95 0.58 0.72
Mean + MMD 0.85 0.87 0.82 0.85 0.76 0.84 0.64 0.73
Mean + SD + MMD 0.89 0.90 0.89 0.89 0.81 0.88 0.73 0.79
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usually 2.0 dB lower than the original forest cover. 
However, remaining debris and undergrowth, terrain 
slopes, soil roughness, and soil moisture may intensify 
the decrease. The rainforest site in the Indonesian pro
vince of Central Kalimantan and in the Pará State, 
Brazil, Hoekman et al. (2020) observed that VH and 
VV signals go up and down, and deforestation was 
characterized at the first moment the signal goes down.

Joshi et al. (2015) revealed an L-band backscatter 
decrease of 1.1 dB in VH after clearing full forest cover 
events in the region of Madre de Dios in Peru.

Doblas et al. (2020), in a study in the Amazon 
rainforest, determined the mean backscattering values 
of the forest as −12.4 and −6.25 dB for VH and VV 
polarizations, respectively, while the mean backscat
tering values of the deforested series are consistently 
lower, reaching −13.1 and −7.6 dB for VH and VV 
polarizations.

For the 2019 test data set, the NN model achieved 
high performance in all case studies. This was due to the 
manual selection and labelling of the test areas employ
ing the RGB composition of Sentinel-2 images. For the 
2018 data set, the performance decreased, as shown in 
Figure 14 that reports the trend of the F1 metric for the 
four case studies from 2019 to 2018 images.

To investigate the 2018 results, three deforested 
areas among the largest ones in the ground truth 
images were analysed. Figures 15, 16, and 17 show 
the three areas. Each RGB color composition shows 
the areas captured by the Sentinel-2 satellite from 
April to July of 2018. These figures highlight the dif
ferences in land cover changes due to the clear-cutting 
process. At the bottom, the figures represent the 
ground truth images and the classification made by 
the MLP for the MapBiomas (b), (c), and PRODES (d), 
(e) ground truths. In the ground truth images (b) and 
(d), the areas deforested in 2018 are shown in white, 
areas forested are shown in black, and areas deforested 
before 2018 are in grey. The classification images (c) 
and (e) show the patches as they were classified over
lapped to the ground truth image.

The F1 score differences between the PRODES 
and MapBiomas ground truth images may be 
related to the resolution employed by the two pro
jects. The coarser PRODES resolution does not 
capture small deforested areas that are considered 
in the MapBiomas ground truth. Indeed, PRODES 
does not capture small forested areas inside 
a deforested polygon. This can explain the differ
ence in Recall, due to the number of false negatives 

Figure 11. Sentinel-2 RGB colour composite (a, c) acquired on 21 July 2019 of a Forested–Forested sample (highlighted in red), and 
backscatter mean trend in VH (b) and VV (d) polarizations. The red line highlights the backscatter position coincident with the data 
of the optical image.
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between the two ground truth images. A large 
number of false negatives are localized in the 
small areas detected by the MapBiomas. 
Moreover, the misclassification may be caused by 
the deforestation method. After clear-cutting, the 
trees are left on the ground for drying before 
being burned. Since the amount of biomass 
remains the same, the result is somehow similar 
in backscatter values compared with intact forest 
areas. Bouvet et al. (2018), Kellndorfer (2019), and 
Hoekman et al. (2020) observed these trends.

Bouvet et al. (2018) reported that large branches 
remaining in the ground can cause a double-bounce 
scattering mechanism and mask the decrease of the 
backscatter signal. The authors also stated that, after 
rainfall events, the backscatter signals can exhibit the 
same values as intact forests.

Kellndorfer (2019) stated that if deforestation results 
in rough soil conditions (e.g. slash) backscatter can be 
significantly enhanced until logs are removed. The 
authors declared yet that, after deforestation, there is 
a dominant change from volumetric scattering to sur
face scattering, with an expected decrease in the cross- 
polarized (VH, HV) signal.

Hoekman et al. (2020) reported that deforestation 
in Brazil often is the slash-and-burn type of small 
scale, and in most instances, the deforestation is pre
ceded by severe degradation.

Figure 18 shows examples of test sites from the 
Amazon forest, with slashed trees after 3 months of 
drying (A). As it can be seen, the site conserves all 
the previously standing biomass but with dried 
leaves and trunks. The green leaves are from liana 
vines that grew along with the slashed biomass 
(Soares Neto et al., 2009). Figure 18 also shows 
how a clear-cut site appears after the cleaning fire 
(B). Small branches and leaves are combusted to 
completion, while large trunks are only partially 
consumed (Christian et al., 2007). Long ash trails 
indicate trunks, mostly palm trees that were com
pletely consumed through smouldering. However, 
misclassification may be associated with the defor
estation method.

In this study, we implemented a new methodolo
gical flow based on Sentinel-1 data and MLP classi
fier capable of detecting deforestation automatically 
in the Amazon rainforest. The accuracy was in the 
range of 81% to 89%, depending on the considered 

Figure 12. Sentinel-2 RGB colour composite acquired on 21 June 2019 (a) and 26 June 2019 (c) of a Forested–Deforested sample 
(highlighted in blue), and backscatter mean trend in VH (b) and VV (d) polarizations. The red line highlights the backscatter 
position coincident with the first data of the optical image before deforestation.
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reference image. In hand-picked areas used for 
training the NN, the accuracy reached 99%, compar
able to those achieved by Bem et al. (2020), whose 
accuracy reached 94%. Bem et al. (2020) combined 
optical images and NN for detecting deforestation. 
The method, however, could only be applied in the 

dry season of the Amazon rainforest, which lasts for 
about 6 months. Methods based on radar data can 
be used throughout the year.

Doblas et al. (2020), which research is based on 
radar data, reached maximum accuracy of 96% in 
detecting deforestation. Our results are 2% higher 

Figure 13. Sentinel-2 RGB colour composite acquired on 21 July 2019 (a) and 31 July 2019 (c) of a Forested–Deforested sample 
(highlighted in blue), and backscatter mean trend in VH (b) and VV (d) polarizations. The red line highlights the backscatter 
position coincident with the first data of the optical image before deforestation.

Figure 14. F1 variation for the 2019 test set and 2018 data set for both ground truth images.
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than the data set of 2019 and 7% lower for the 2018 
images, which were obtained automatically by the 
algorithm.

The MLP does not require high computer processing 
capability compared with other NN algorithms, such as 
the CNNs (Bouguettaya et al., 2019). The algorithm 

Figure 15. First example of an area with deforestation (highlighted in red), shown by the Sentinel-2 RGB color composites 
acquired in April, May, June, and July 2018 (a). MaBiomas ground truth (b), classification output with MapBiomas ground truth (c), 
PRODES ground truth (d), and classification output with PRODES ground truth (e). FP = False positives (number of forested areas 
classified as deforested), TN = True negatives (number of forested areas classified as forested), FN = False negatives (number of 
deforested areas classified as forested), and TP =True positives (number of deforested areas classified as deforested).
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used in this work was performed on a personal compu
ter with the following configuration: NVIDIATM 

GeForceTM GTX 1650 Max Q GPU with 4GB RAM. 
Once the network is trained, the time required to make 

predictions is quite short. During the test phase with the 
data from 2018, the time necessary to open the images 
and complete the whole processing was around 
1 minute (Table 10).

Figure 16. Second example of an area with deforestation (highlighted in red), shown by the Sentinel-2 RGB color composites 
acquired in April, May, June, and July 2018 (a). MapBiomas ground truth (b), classification output with MapBiomas ground truth 
(c), PRODES ground truth (d), and classification output with PRODES ground truth (e). FP = False positives (number of forested 
areas classified as deforested), TN = True negatives (number of forested areas classified as forested), FN = False negatives (number 
of deforested areas classified as forested), and TP =True positives (number of deforested areas classified as deforested).
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Further research should involve strategies to 
detect deforested areas smaller than 2 ha and use 
the algorithm as an alert system essential for defor
estations related to illegal mining activities in the 

Brazilian Amazon. In addition, the algorithm could 
be refined to detect recently deforested areas 
(slashed areas) and to disregard areas under vege
tation regrowth. In this latter case, vegetation 

Figure 17. Third example of an area with deforestation (highlighted in red), shown by the Sentinel-2 RGB color composite 
acquired on April, May, June, and July 2018 (a). MapBiomas ground truth (b), classification output with MapBiomas ground truth 
(c), PRODES ground truth (d), and classification output with PRODES ground truth (e). FP = False positives (number of forested 
areas classified as deforested), TN = True negatives (number of forested areas classified as forested), FN = False negatives (number 
of deforested areas classified as forested), and TP =True positives (number of deforested areas classified as deforested).
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indices proposed in literature such as the 
Normalized Difference Vegetation Index (NDVI), 
Enhanced Vegetation Index (EVI), or Normalized 
Difference Water Index (NDWI) can be used to 
identify the plant growth status and correlate it 
with forest regrowth (Silva et al., 2019). The 
method proposed in this study could also be inte
grated with textural analysis, which exploits corre
lation among neighbouring pixels, such as those 
based on the computation of the Gray-Level Co- 
Occurrence Matrix (GLCM; Del Frate et al., 2008) 
or geostatistical measures of spatial variability, as 
suggested by Zawadzki et al. (2005).

Conclusions

In this work, we investigate deforestation in the 
Amazon rainforest using Sentinel-1 data, and three 
statistical parameters related to the backscatter coeffi
cient were analysed (mean, standard deviation, and 
MMD (maximum-minimum difference)). It was 
observed a backscatter decrease in the average signal 
of C-band SAR images, approximately 2 dB for VV 
polarization and 2.3 dB for VH polarization, immedi
ately after deforestation. The decrease is evident for 
approximately 3–4 months after the deforestation.

The MLP (Multi-Layer Perceptron) was used to 
detect near real-time forest disturbances larger than 
2 hectares. The algorithm analysed SAR images from 
2019 for training and 2018 to identify deforest areas 
automatically. A set of data from 2019 were used to test 
the performance of the NN (Neural networks) algo
rithm. Considering the mean, standard deviation, and 
MMD of the backscatter coefficient as input parameters, 
the NN was able to classify forested and deforested areas 

with accuracy and F1 score of 99% for the 2019 data set. 
For the 2018 data set, the results showed accuracy and 
F1 score of 89% with MapBiomas ground truth and 
accuracy and F1 score of 81% and 79%, respectively, 
with the PRODES ground truth.

The proposed method may be suitable for monitor
ing forest events in the Amazon at low cost and short 
processing times and for assisting Brazilian environ
mental law enforcement agencies in combating illegal 
deforestation.
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