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Abstract
Pellets have become an important renewable energy source. Aiming to contribute for diversifying the Brazilian energy matrix, 
the goals of this work were to evaluate the quality of the pellets of lignocellulosic residues (Eucalyptus and corn) produced 
with the addition of different percentages of Kraft lignin. For the production of pellets, mixtures of wood with bark of a 
Eucalyptus urophylla and Eucalyptus grandis, and corn residue were used as raw material. The proportions of corn residue 
in the mixture were 0, 20, 25, and 30% (w/w). Except for the control (0% lignin), 2 and 5% (w/w) Kraft lignin were added 
to a dry mass of raw material in the 4 different mixtures. Pellets were produced in a laboratory press pelletizer with hori‑
zontal circular array. The following properties of the pellets were evaluated: proximate analysis, high heating value (HHV), 
elementary analysis, energy density, bulk density, diameter and length, hardness, mechanical durability, and fine content. 
The pellets were classified according to European marketing standards. The addition of Kraft lignin to eucalyptus and corn 
residue pellets contributed to improving the physical and mechanical pellet properties, as regards the bulk density, mechani‑
cal durability, and fine content, allowing the transportation of a greater amount of mass and energy, besides maintaining the 
integrity of the biofuels during handling and use. The mixing of eucalyptus with corn residue is an effective way to optimize 
properties of biomass solid fuel. The treatment with higher corn addition, in relation mechanical properties, showed a better 
performance in accordance with the European standards. The mechanical properties were above to 97.5%, besides that has 
no impact from the addition of Kraft lignin. The addition of up to 20% of corn residue has the potential to improve physical 
and mechanical pellet quality, with or without Kraft lignin addition. Thus, similar amounts to that of the treatment with the 
proportion of 80% eucalyptus and 20% corn residue can be a viable alternative to the production of pellets.
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Introduction

In the search for new energy sources to compete with the 
fuels currently available in the market, lignocellulosic resi‑
dues have become one of the most promising options as 
alternative forms of energy. Lignocellulosic residues can be 
reused as raw material in a different manner; for instance, 
it can be used for heat or electricity generation [1–3] or for 
materials and chemicals, according the principle 7 of green 
chemistry—use of renewable feedstock [4–6]. In this con‑
text, agricultural residues and forest residues are an example 
of alternative source and contain a considerable reservoir of 
lignocellulosic wastes.

Agricultural residues such as rice husk, straw, and 
corn fibers are alternative source of lignocellulosic [7, 8]. 
The corn fibers are constituted mainly by three structural 
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components or fractions—lignin, cellulose, and hemicellu‑
lose—and each component has specific properties destined 
for different uses in biorefineries [9–11]. An integrated corn‑
based biorefinery can comprise bioproducts as value‑added 
chemicals and fuel ethanol with a lower capital investment. 
Furthermore, hemicellulose and lignin permit expand the 
bioproduct possibilities to monomers, polymers, and chemi‑
cals of high value‑added [12–16].

Forest residues, such as wood residue from harvest and 
processing, can be directly used as fuels. The definitions of 
the FAO cover data on the resource of wood processing resi‑
dues by differentiating in two assortments: (1) wood chips 
and particles and (2) wood residues [17]. Wood industrial 
residue includes those materials derived from a manufactur‑
ing process, those derived from a logging process, and those 
that are reused or recycled from a harvest and manufacturing 
process, those derived from a logging process, and those that 
are reused or recycled [17–19].

Wood is the most‑used raw material for energy produc‑
tion. Brazil has great forest potential, totaling 9.6 million 
hectares in 2020 [20], of which 7.5 million are dedicated 
to Eucalyptus plantations, although just 14% is destined for 
charcoal‑fired steelworks [21, 22]. Wood residues are com‑
monly used for basic fuel purposes in manufacturing facili‑
ties (to produce energy through the burning of this waste) 
but have also been used as sources of raw material bioen‑
ergy processes, the development of wood pellets or smaller 
wooden articles, and for pulp and paper processes. The use 
of Eucalyptus for energy purposes is mainly due to low ash 
generation and less corrosion of the combustion equipment, 
when compared with agricultural biomass [23–25].

However, when it comes to waste, the pretreatment of 
lignocellulosic materials is required, which is performed by 
the densification of the material, by using temperature and 
pressure, resulting in a material with granulometric homo‑
geneity, higher density, and resistance to the generation of 
fines. This procedure is known as pelletization [22, 23, 26]. 
The pellet production process comprises the drying and 
grinding of the raw material, its pelleting, followed by cool‑
ing and sieving. During pelleting, the raw material is pressed 
by rollers through cylindrical compression channels and is 
converted into an agglomerated material due to the thermal 
softening of the lignin that promotes the agglutination of the 
particles [27, 28]. The increase in temperature, according 
to [27–29], makes lignin “plasticized” and acts as a natural 
binder of the particles after compaction of particles. The 
quality of the pellets can be improved by using binding addi‑
tives in raw material, as Kraft lignin [30–32].

Kraft lignin can be extracted and used as other alterna‑
tives with more value‑added, one example is the possibility 
of use as an additive for pellets. The Kraft lignin is obtained 
from Lignoboost process by black liquor generated by pulp 
mills, where they produce surplus energy that is obtained 

by burning the black liquor [33]. Lignin is a macromolecule 
that makes part of the chemical constitution of wood, and 
acts on the adhesion of the particles to form the pellets. The 
properties of Kraft lignin are specific to the extraction pro‑
cess and positively or negatively affect pellet properties [30, 
31].

In this context, pellets can be an important alternative to 
transform biomass into higher value‑added product used for 
energy purposes. Pellets are a new type of compressed fuel 
that enables the use of more modern firing equipment and 
facilitates long‑distance biomass transportation.

It is very important to diversify the Brazilian energy 
matrix with the introduction of renewable energy sources 
and potentiate the use of forest and agricultural residues to 
reduce costs. Therefore, the objective of this work was eval‑
uated the use of lignin and corn residue to improve the phys‑
ical and chemical properties of eucalyptus pellets. The qual‑
ity of produced with the addition of different percentages of 
Kraft lignin is a novel approach for energy generation.

Materials and Methods

Materials and Properties of in natura Particles

Wood biomass, corn residue, and Kraft lignin were used 
to produce pellets. Mixtures of Eucalyptus urophylla [34], 
Eucalyptus grandis [35] chips of a 6‑year‑old with the per‑
centage of bark were approximately 10%, from sawmills 
located in state of Minas Gerais in Brazil, and corn residues 
were obtained from processing industry located in Brazil. 
Kraft lignin was prepared by the LignoBoost [33] process 
and was provided by a pilot pulp and paper mill located in 
São Paulo, Brazil.

Biomass residues were ground using a hammer mill 
and sieved to ensure particle size uniformity, according to 
TAPPI T257 cm‑85 [36]. Subsequently, samples were dried 
at 60 ± 2 °C in an air circulation oven to 12 ± 2% humidity. 
The moisture content (dry basis) of biomass samples was 
determined using a halogen moisture analyzer. The residues 
(Eucalyptus and corn) and Kraft lignin were characterized 
according to the methods described in Table 1.

The bulk density was calculated by the ratio between the 
mass obtained and the volume of the biomass (100  cm3). 
For analysis structural chemical composition, the holocel‑
lulose was obtained by the difference between the sum of 
(extractives, Klason lignin, and ash content) per one hundred 
percent.

The proximate analysis includes ash, volatile matter, 
and fixed carbon content. They are determined by means 
gravimetric tests, both direct and indirect, that allow their 
calculation. The high heating value (HHV) is defined as 
heat released when burning a gram of fuel in a calorimeter 
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(closed container). The equipment was used, an adiabatic 
calorimetric bomb, brand IKA® model 300.

Elementary analysis is defined as the determination of 
carbon, hydrogen, nitrogen, and sulfur and provides a con‑
venient method for reporting the major organic elemental 
composition of coal. The equipment used was Vario Micro 
Cube CHNS, Elementar®. The sulfur content was also 
determined on the elemental analyzer. The oxygen value 
was determined by the sum of carbon, nitrogen, hydrogen, 
sulfur, and ash content decreased by 100, according to DIN 
EN 15,296 [37].

The estimate of the useful calorific power was carried 
out according to annex E of the DIN EN 14,918 standard 
[37]. Energy density was calculated by multiplying the use‑
ful calorific value by the bulk density of the material, as 
suggested by [40].

The results obtained were submitted to the Lilliefors test 
for normality [41] and the Cochran test for homogeneity 
of variance [42]. Characterization data of the residues and 
Kraft lignin were analyzed statistically by analysis of vari‑
ance to evaluate differences between treatments. When sig‑
nificant differences were found between results, Tukey’s t 
test was applied at the 95% significance level.

Pellet Production

Pelletizing experiments were produced from sawdust of the 
raw materials residues (Eucalyptus and Corn) and the Kraft 
lignin. Ideally, a woody feedstock should have a moisture 
content of 8–15% (w/w) [43] before entering the pellet mill. 
Pellets were produced in a laboratory press pelletizer with 
horizontal circular array (Amandus Kahl, model 14–175), 
with capacity for 50 kg  h−1 production. The compression 
channels of the array had 6.0 mm internal diameter and 
20.0 mm length.

About 1.5 kg of pellets was produced per batch, being 
three batches per treatment. To feed the pelletizer, a sys‑
tem consisting of an electric motor, a 38‑speed controller, 
and an endless screw was used. The pelletizing temperature 

ranged from 95 to 100 °C, and the rollers rotation speed was 
1500 rpm.

From this, pellets were produced with 4 different propor‑
tions of mixture of the two biomasses, eucalyptus and corn 
residue, and 3 proportions of the Kraft lignin added, being 
12 treatments with 3 replications, totaling 36 pellet batches. 
Table 2 shows the experimental plan.

Classification of Pellets According to Quality 
Standards

The mixture of eucalyptus and corn residue pellets was clas‑
sified as non‑woody pellets, whose quality specifications are 
in accordance with DIN EN 14,961–6 [37] (Table 3). This 
standard refers to the quality of non‑woody pellets for non‑
industrial use, and was used for classification of pellets in 
class A or B.

Evaluation of Pellet Properties

Pellets were reduced to smaller fractions, using the Willey 
mill, according to TAPPI standard T257 cm‑85 [36], and 
later, the particles were selected in a set of sieves of 40 and 
60 mesh for proximate analysis (fixed carbon content and 
volatile content), ash content, elementary analysis (C, H, 
O), and HHV.

Ash content analysis was determined according to the 
procedure established in the ASTM—D1762‑84 standard 
[39] and proximate analysis according to ABNT NBR 8112 
[38]. The HHV and elementary analysis were obtained 
according to the DIN EN 14,918 standard [37], using an 
adiabatic calorimeter pump IKA® model 300.

Moisture content of the pellets, after being stored for 
seven days, was determined according to the methodology 
described in the DIN EN 14,774–1 standard [37], in a labo‑
ratory oven at 105 ± 2 °C.

Table 1  Characterization of residues, Kraft lignin, and their respec‑
tive methodologies

Properties (unit) Procedure

Bulk density (kg  m−3) DIN EN 15,103 [37]
Extractives soluble in alcohol/ toluene (%) TAPPI T264 cn‑97 [36]
Acid‑insoluble lignin (%) TAPPI T222 cm‑11 [36]
Acid‑soluble lignin (%) TAPPI UM 250 [36]
Proximate analysis (%) ABNT NBR 8112 [38]
Higher heating value (MJ  kg−1) ASTM D‑2015–66 [39]
Elementary analysis (%) DIN EN 15,104 [37]

Table 2  Experimental planning

Treatments Corn residue 
(%)

Eucalyptus (%) Kraft 
lignin 
(%)

T1
T2
T3

0 100 0
2
5

T4
T5
T6

20 80 0
2
5

T7
T8
T9

25 75 0
2
5

T10
T11
T12

30 70 0
2
5
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Mechanical durability and fine content (particles smaller 
than 3.15 mm) were determined by using the Ligno‑Tester, 
Holmen® according to the DIN EN 15,210–1 standard [37] 
and the equipment’s instructions. Pellet samples were blown 
by means of an air jet that simulates the natural destruction 
of pellets during transportation and handling in an inverted 
quadrangular pyramidal chamber. To determine the fine 
content, airflow had a pressure of 30 mbar for 30 s, and 
a sample of 0.300 kg of pellets was used. Subsequently, 
untreated samples were subjected to another controlled air‑
flow (70 mbar) for 60 s to determine the mechanical durabil‑
ity, using 0.100 kg of pellets.

Bulk density of pellets was determined according to the 
DIN EN 15,103 standard [37].

Hardness (kg) was determined by the diametral compres‑
sion test of the pellet in an Amandus Kahl manual durom‑
eter, with a scale of 0 to 100 kg. One pellet at a time was 
inserted in the durometer, and increasing load was applied 
until sample breakage. Afterwards, the maximum load (kg) 
the pellet withstands before breaking was read. The hardness 
of 30 pellets per batch was evaluated.

Diameter (mm) and length (mm) of the pellets were 
obtained according to the DIN EN 16,127 standard [37], 
measured in a digital caliper.

Data Analysis

The experiment was carried out in a completely randomized 
design with 12 treatments and three replications (pellet 
batches) in StatSoft, Inc. version 10.0 [44]. The results 
obtained were submitted to the Lilliefors test for normality 
[41] and the Cochran test for homogeneity of variance [42]. 
Proximate analysis (fixed carbon content and volatile con‑
tent), ash content, elementary analysis (C, H, O), and HHV 

were subjected to analysis of variance (ANOVA), to verify 
the differences between the treatments. When significant dif‑
ferences were observed, the Scott test was applied at 95% 
significance.

Results and Discussion

Biomass Properties

Water has a crucial role in the pelletizing process and, along 
with lignin content, the moisture content of the feed is one 
of the most important parameters determining pellet durabil‑
ity [26, 45]. The moisture content for the corn residue and 
eucalyptus particles was on average 8.82% (wb) and 14.0% 
(wb), respectively. Thus, the corn residue moisture content 
is in accordance to that suggested by other authors for pellet 
production, which varies between 8 and 15% (wb) [23, 43].

Table 4 shows the mean values of the physical and chemi‑
cal properties of the residues and the Kraft lignin. The HHV 
of wood (18.9 MJ  kg−1) and corn (19.2 MJ  kg−1), were sig‑
nificantly lower than that Kraft lignin (26.3 MJ  kg−1). It 
is noted that Kraft lignin, because of its agglutinating and 
energy properties, has a great energetic potential to be used 
as an additive in pellets [30, 46]. In addition, Kraft lignin 
has potential application as a binder, emulsifier, dispersant, 
favor agent, fertilizer, and copolymer adhesive [47–51]. The 
improvements concern properties such as higher heating val‑
ues and lower ash contents, as well as lower slagging tenden‑
cies, and lower emissions of fine particles during combus‑
tion compared to wood (stem) pellets.

Pellet quality is largely a function of the type of feedstock 
and process parameters. Some feedstock parameters have 
a greater effect on pellet durability than other. The lignin 

Table 3  Specifications for non‑
woody pellets

Source: Adapted from DIN EN 14,961–6 [37]

Properties (unit) Origin

A B

Herbaceous biomass; fruit bio‑
mass; biomass mixture

Herbaceous biomass; fruit 
biomass; biomass mixture

Diameter (mm) 6 ± 1 6 ± 1
Length (mm) 3.15 ≤ length ≤ 40 3.15 ≤ length ≤ 40
Moisture content (%)  ≤ 12  ≤ 15
Ash content (%)  ≤ 5  ≤ 10
Mechanical durability (%)  ≥ 97.5  ≥ 96.0
Fines (%)  ≤ 2  ≤ 3
Net heating value (NHV) (MJ  Kg−1)  ≥ 14.1  ≥ 13.2
Bulk density (kg  m−3)  ≥ 600  ≥ 600
Nitrogen (%)  ≤ 1.5  ≤ 2.0
Sulfur (%)  ≤ 0.20  ≤ 0.20
Chlorine (%)  < 0.20  < 0.30
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content is possibly the most important parameter, followed 
by moisture content, as these two factors directly interact 
to affect the temperature at which lignin softens. There are 
some conflicting results found in the effect of extractives 
on pellet durability: some studies suggest they lubricate the 
passage of material through the mill, whereas a few other 
studies suggest they have a role in binding [28, 45].

Lignin, extractive, and holocellulose content for the bio‑
mass showed different contents in between the feedstocks. 
The effect of extractive content may be dependent on the 
particle size distribution and the lignin content. Changes in 
moisture content may also have positive or negative effects 
on durability, though it appears that there is some interaction 
with the extractive content [28, 43].

Pellet Properties

Table 5 shows the elementary analysis, proximate analysis, 
energy density, HHV, and hardness of pellets.

Biomass is composed of elements C, H, O, N, S, and 
Cl, where the former three are the major, representing up 
to 97–99% (w/w) of the biomass organic mass. Elemen‑
tary analysis gives the weight percent of the elements. In 
Table 4, the elementary analysis (C, H, and O%) of the three 
main elements indicates the addition of the Kraft lignin 
affected the treatments for pellet production. Kraft lignin 
is an organic compound extracting by pulping black liquor, 
producing a material with high energy density and low ash 
content. Already the fixed carbon content increased with 

the addition of 5% (w/w) of Kraft lignin and the volatile 
content decreased. It should be noted that fuel materials with 
high fixed carbon content present slower burning, implying 
a longer residence time inside the burners compared to other 
that have lower fixed carbon content [28, 52].

Biomass has not been widely utilized due to its relatively 
low energy density when compared with fossil fuels. This 
low energy density results in inhibitive transportation costs 
and inconvenient storage and handling. In Table 5, it can be 
observed that with the increase of the corn residue addition, 
there was a decrease in energy density, which may be related 
to the lower lignin content of corn residue (12.0% w/w) in 
relation to eucalyptus (35.8% w/w).

In relation to the hardness (Table 5), a high value was 
observed without corn residue. According to [24, 28], the 
compressive strength of the pellets is related to the adhesion 
forces between particles. Wood of the genus Eucalyptus has 
greater lignin ratio syringyl/guaiacyl (S/G); it consequently 
has more points of contact between the particles of the pel‑
lets, leading to greater adhesion and therefore greater the 
hardness [53].

HHV of the pellets (Table 5) was observed higher value 
with 0% of corn residue. For all treatments, it was simi‑
lar, with no effect the addition of Kraft lignin, except the 
treatment with 25% (w/w) of corn residue that presented 
an addition of HHV with the addition of 5% (w/w) of Kraft 
lignin. According to [45, 46], higher lignin contents con‑
tribute to the increase in the higher calorific value of the 
fuel, since lignin’s HHV of 26.3 MJ  kg−1 is higher than the 

Table 4  Mean values of 
the physical and chemical 
properties of the particles of 
lignocellulosic residues and 
Kraft lignin

*Means followed by the same letter in parentheses for wood residues (within the same row), and for Kraft 
lignin (within the same row), do not differ from each other by the Tukey test at 5% probability. Standard 
deviations are overwritten

Characterization Residues Kraft Lignin

Eucalyptus Corn

Bulk density (kg  m−3) 137 (b)12.78 ‑ 492 (a)14.07*
HHV (MJ  kg−1) 18.9 (b)0.32 19.2 (b)0.43 26.3 (a)0.25

Lower heating value
(MJ  kg−1)

17.5 (b)0.56 18.0 (b)0.45 25.1 (a)0.67

Energy density  (104 MJ  m–3) 1.5 (b)0.4 1.9 (a)0.3 ‑
Elementary analysis (%) C = 49.2; N = 0.2; 

H = 5.9; O = 44.3; 
S = 0.1

C = 50.1; N = 1.3; 
H = 5.1; O = 41.2; 
S = 1.4

C = 66.2; N = 0.2; 
H = 5.6; O = 23.4; 
S = 2.4

Volatile content (%)
Ash (%)
Fixed carbon content (%)

89.13 (a)0.52

0.3 (c)0.2

10.60 (b)0.40

84.33 (a)0.48

0.8 (c)0.1

14.86 (b)0.56

1.1 (c)0.3

Extractives soluble in alcohol/
toluene (%)

5.2 (a)0.3 5.8 (a)0.3 ‑

Acid‑soluble lignin (%) 2.6 (d)0,4 8.0 (c)0,3 12.7 (c)0.4

Acid‑insoluble lignin (%) 33.2 (b)0.2 4.0 (d)0.1 85.4 (a)0.2

Klason lignin (%) 35.8 (b)0.2 12.0 (c)0.3 98.1 (a)0.3

Holocellulose (%) 59.0 (b) 64.8 (a) 0.2 (c)
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other primary components of the wood. Higher HHV means 
a smaller mass and hence smaller volume of pellets will be 
needed to provide the desired energy. Therefore, the HHV 
of Kraft lignin was not high enough to contribute to the 
increase of HHV of the pellets, for most treatments, since 
the maximum percentage of lignin added was of 5% (w/w).

Properties of the Pellets in Accordance with DIN EN 
14,961–1

The common standard (DIN EN‑14961) will form the plat‑
form for a certification system with the European Stand‑
ard Committee, identifying the specifications for different 
categories of pellets [37]. Generally, the highest grades 
have the strictest standards and offer the best combustion 
properties. The specifications for heating pellets are stricter 
than for industrial pellets, requiring lower contents of ash, 
fines, nitrogen, sulfur, and chlorine (Table 3). The DIN EN 
14,961–1 [37] standard also introduces some sustainability 
criteria to regulate the environmental impacts of sourcing 
and trading of non‑woody pellets. Figures 1 and 2 show the 
properties of pellets that meet European quality standards.

Densification of biomass could result in a significant 
increase in the bulk density of biomass. Bulk density 
is defined as the mass per unit volume of biomass. Fig‑
ure 1A shows the results of bulk density of all the evalu‑
ated treatments. The observed higher bulk density was 
with 0% (w/w) of corn residue. Therefore, greater the mass 
that can be transported or stored in a fixed volume con‑
tainer, thus minimizing transport and storage costs. Reduc‑
tion of the bulk density is observed as the proportion of 
the corn residue increases. Conversely, in the addition of 
Kraft lignin, there is a significant difference, but, as the 

difference is present at 0% (w/w) of added Kraft lignin. 
It can be explained that the Kraft lignin composition has 
higher content and non‑structural compounds [30, 31]. 
Pellets with 30% (w/w) addition of corn residue did not 
meet the DIN EN 14,961–1 [37], which should be greater 
than 600 kg  m−3.

Biomass, by its nature, is hygroscopic. Stable pellets can 
be formed with a range of moistures between 8 and 12% 
(wb) depending on the biomass in question. For the mois‑
ture content of the pellets (Fig. 1B) tended to increase due 
to the higher proportions of corn residues in the mixture 
and addition of lignin varied according to the different treat‑
ments. The higher moisture content increases the extent 
to which the pellets “relax” after formation. The biomass 
expansion behavior after compression and extrusion through 
the pellet matrix, which can decrease durability and reduce 
the temperature at which lignin plasticizes (Tg), increases 
the bond between particles [25–27]. An increase in tem‑
perature increases diffusion but also increases contraction, 
which decreases diffusion. As the first phenomenon is more 
substantial, the resulting effect of the increase in tempera‑
ture is an accentuated humidity [27]. All treatments met the 
requirements of DIN EN 14,961–6 [37], which indicates a 
maximum moisture value of 12% (wb) for Type A pellets.

For fine content, no statistical difference was observed 
between the evaluated treatments, which evidences that the 
addition of both corn residues and Kraft lignin did not influ‑
ence this property of the pellets (Fig. 1C). Regardless of 
the treatment, percentage of fines was below the maximum 
allowed by the European standard, which stipulates values 
lower than 2%. Therefore, they were all treatments all are 
according to the DIN EN 14,961–1 [37], because they are 
below the 2% limit.

Table 5  Elementary analysis, proximate analysis, energy density, HHV, and hardness of pellets

*Means followed by the same letter in parentheses for wood residues (within the same row), and for Kraft lignin (within the same row), do not 
differ from each other by the Scott test at 5% probability. Standard deviations are overwritten

Corn 
residue 
(%)

Kraft 
lignin 
(%)

C (%) H (%) O (%) Fixed carbon 
content (%)

Volatile content (%) Energy density
(104 MJ  m−3)

Hardness 
(Kg  cm−2)

HHV (MJ  kg−1)

0 0 50.4 (a) 6.1 (a) 42.8 (c) 14.9 (b) 0.4 84.8 (a)0.5 5.4 (b) 65.2 (a) 20.0 (a)0.3

0 2 50.8 (a) 6.0 (a) 42.6 (c) 13.9 (b) 0.5 85.3 (a)0.6 5.5 (a) 65.8 (a) 20.1 (a)0.4

0 5 49.8 (b) 5.9 (a) 43.7 (a) 16.9 (a) 0.4 82.8 (b)0.5 5.5 (a) 58.0 (b) 20.1 (a)0.3

20 0 49.6 (c) 6.2 (a) 43.2 (b) 15.1 (b) 0.2 84.7 (a) 0.3 4.9 (c) 49.4 (c) 19.3 (c)0.4

20 2 50.4 (a) 6.2 (a) 42.2 (d) 14.5 (b) 0.4 85.2 (a) 0.3 4.5 (d) 50.2 (c) 19.8 (b)0.4

20 5 49.6 (c) 6.1 (a) 43.3 (b) 16.9 (a) 0.3 82.7 (b) 0.2 4.4 (e) 56.0 (b) 19.4 (c)0.2

25 0 49.5 (c) 6.1 (a) 43.2 (b) 15.3 (b) 0.4 84.4 (a) 0.4 4.0 (g) 47.5 (c) 19.4 (c)0.3

25 2 50.1(b) 6.2 (a) 42.6 (c) 14.0 (b) 0.2 85.8 (a) 0.2 4.4 (e) 51.8 (c) 19.6 (c)0.3

25 5 50.5 (a) 6.1 (a) 42.1 (d) 17.3 (a) 0.4 82.3 (b) 0.5 4.3 (f) 54.4 (c) 19.8 (b)0.4

30 0 49.6 (c) 6.1 (a) 43.1 (b) 13.9 (b) 0.5 85.7 (a) 0.6 3.7 (h) 40.4 (d) 19.3 (c)0.2

30 2 50.3 (a) 5.4 (b) 43.1 (b) 14.6 (b) 0.4 85.0 (a) 0.4 4.0 (g) 48.0 (c) 19.5 (c)0.4

30 5 50.0 (b) 6.1 (a) 42.4 (d) 16.1 (a) 0.4 83.5 (b) 0.2 3.6 (i) 47.4 (c) 19.5 (c)0.2



BioEnergy Research 

1 3

Mechanical durability is the most important physical 
quality of a pellet [11, 54], which simulates the resistance of 
the pellets to mechanical impacts during storage and trans‑
portation, must be greater than or equal to 97.5%, according 
to the DIN EN 14,961–2 standard [37]. In Fig. 1D, with 0% 
(w/w) of corn residue, only the pellets produced with 2% 
(w/w) lignin were in accordance with the DIN EN 14,961–1 
[37]. By adding 20% (w/w) of corn residue, pellets with 
2% (w/w) of lignin were in accordance with the DIN EN 
14,961–1 [37] how as type A pellets, and with the propor‑
tion of 5% (w/w) of lignin were in accordance with the DIN 
EN 14,961–1 [37] how as type B pellets; however, 0% (w/w) 
of lignin for this proportion did not meet the standard. In 
the addition of 25% (w/w) of corn residues, 5% (w/w) of 
lignin had the best results for the production of pellets. Pel‑
lets produced with 0% (w/w) lignin were in accordance with 
the DIN EN 14,961–1 [37] how as type B pellets, and those 
produced with 2% (w/w) lignin did not meet the standard. 
The behavior of the pellets in the proportion of 20% and 25% 
of corn residues, in relation to mechanical durability, showed 
that for a 20%, the addition of 2% of lignin was sufficient, 

while for the 25%, an addition of 5% of Kraft lignin was 
necessary to obtain a mechanical durability above 98%.

The percentage of 30% (w/w) of corn residue pellets 
produced with 0% (w/w) and 2% (w/w) of lignin was in 
accordance with the standard how as type A pellets, and 
those produced with 5% (w/w) lignin were in accordance the 
standard how as type B pellets. The treatment with higher 
corn addition showed a better performance and there is no 
impact of the lignin addition.

Figure 2 shows the results of the ash contents, nitrogen 
content, and size of the pellets. Ash content as can be seen in 
Fig. 2A varied greatly among treatments and was classified 
as pellets type A, in accordance with DIN EN 14,961–1 [37], 
because they are below the 5% limit. Higher ash content is 
undesirable for pellets, since they are inversely proportional 
to HHV, besides being the combustion residue and depend‑
ing on the constitution chemistry of the ashes; it is possible 
to form incrustations in the combustion equipment [40, 54].

In theory, a nitrogen content of agricultural residues 
is higher than those of woody biomass due to the large 
amounts of N fertilizer applied during crop growth [28, 55]. 

Fig. 1  Properties of pellets for 
the treatments: A bulk density 
(kg  m−3); B moisture content 
(%); C fine content (%); D 
mechanical durability (%). Bars 
followed by the same small 
letter do not differ among them‑
selves at 5% probability (Scott, 
p > 0.05)
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In Fig. 2B, the higher nitrogen content is the pellets with the 
addition 30% (w/w) of corn residue and 5% (w/w) of lignin. 
This is also shown in the EN classes that all treatments of 
pellets are classified as type A, in accordance with DIN 
EN 14,961–1 [37], because they are below the 1.5% limit. 
Higher nitrogen content can lead to elevated NOx emissions 
which, along with  SO2, has great environmental relevance 
in terms of acid rain [28].

The strong, uniformed‑size of biomass pellets with high 
bulk density makes them easier handle, transport, and store. 
The values of diameter (5–7 mm) and length (3.15–40 mm) 
are in accordance with the requirements of the DIN EN 
14,961–2 standard [37], as observed in Fig. 2D, for all 
the treatments. According to [28, 56], the dimensions and 
shape of the pellets should be homogeneous for the best 
functioning of small‑scale furnaces and automatic heating 
equipment.

Conclusions

Besides the technical and operational advantages of pel‑
lets, when compared with other fuel sources, the associa‑
tion with residual biomass during the production process 
makes the product with potential to compete in the pellet 

market. Regarding the mechanical properties, the treat‑
ment with higher corn addition showed a better perfor‑
mance in accordance with the European standards, because 
they are above the 97.5% limit. Beyond that, it has no 
impact from the addition of Kraft lignin.

The mixing of eucalyptus with corn residue is an effec‑
tive way to optimize properties of biomass solid fuel. The 
addition of up to 20% of corn residue has the potential to 
improve pellet quality, with or without Kraft lignin addi‑
tion. Thus, similar amounts to that of the treatment with 
the proportion of 80% eucalyptus and 20% corn residue 
can be a viable alternative to the production of pellets.

The addition of Kraft lignin in the pellets of a mixture 
of lignocellulosic residues (Eucalyptus and corn) contrib‑
uted to improving the physical and mechanical pellet prop‑
erties, as regards the bulk density, mechanical durability, 
and fine content, allowing the transportation of a greater 
amount of mass and energy, besides maintaining the integ‑
rity of the biofuels during handling and use.
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Fig. 2  Properties of pellets for 
the treatments: A ash content 
(%); B nitrogen content (%); C 
diameter (mm); D mean length 
of the pellets (mm). Bars fol‑
lowed by the same small letter 
do not differ among them‑
selves at 5% probability (Scott, 
p > 0.05)
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