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1  |  INTRODUC TION

Agriculture is one of the most important activities for the economic, 
social and technological development of society. However, plant dis-
eases affect efforts to increase crop production and productivity, 
endangering economies and food security (Nelson, 2019). Diseases 
caused by bacteria are an important and widespread constraint, 
occurring in almost all crops, including vegetables, pulses, cereals, 

ornamentals, fruit and forages (Sundin et al., 2016). Bacterial dis-
eases are difficult to identify and to control, and few pesticides are 
available for their effective management (Borkar & Yumlembam, 
2017).

Plant disease management employs several strategies involving 
chemical and biological control of pathogens; it may also involve 
the use of resistant or tolerant genotypes manipulated by both 
conventional and molecular breeding. Although several strategies 
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Abstract
Diseases caused by bacteria are an important and widespread constraint, occurring 
in almost all crops, including vegetables, pulses, cereals, ornamentals, fruit and for-
ages. Although several strategies have been developed to obtain disease resistance 
in plants using genetic engineering, few studies have effectively demonstrated the 
control of bacterial diseases. It has previously been reported that a gene encoding 
a sphingomyelinase (ThSMase), identified in Trichoderma harzianum, is up-regulated 
during biocontrol against phytopathogens, and this may have biotechnological ap-
plications. SMases are involved in multiple cellular functions, including the immune 
response against pathogens. We hypothesized that the expression of this gene from 
fungi in transgenic tobacco could generate resistance to plant pathogens. ThSMase 
was cloned under control of the double CaMV 35S promoter plus a leader sequence 
from alfalfa mosaic virus (AMV), and stably introduced and expressed in tobacco. 
Reverse transcription-quantitative PCR analysis revealed that the ThSMase gene was 
expressed at similar levels in all transgenic lines tested. Our results showed no sta-
tistically significant difference in susceptibility after challenging transgenic and non-
transgenic lines with the fungus Sclerotinia sclerotiorum. However, transgenic tobacco 
plants revealed a significant resistance to the bacterium Pseudomonas syringae pv. 
tabaci, and a tolerance to Xylella fastidiosa. Our results demonstrated the strong po-
tential of ThSMase in biotechnological processes such as molecular breeding of the 
plants.
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using genetic engineering have been developed to obtain plant dis-
ease resistance (Collinge & Sarrocco, 2021), only a few studies have 
demonstrated the effective control of bacterial diseases (Sundin 
et al., 2016). Most disease-resistant transgenic crops commercially 
available so far are resistant to viruses (ISAAA, 2021).

Trichoderma species have the capacity to antagonize pathogenic 
fungi by the production of antibiotics and/or hydrolytic enzymes, 
competition for nutrients and mycoparasitism (Druzhinina et al., 
2011; Vinale et al., 2008). In addition, they have beneficial effects 
on plants due to the fact that they can colonize roots and trigger 
systemic resistance against bacterial and fungal pathogens (Alfiky 
& Weisskopf, 2021; Hermosa et al., 2012). These abilities may rep-
resent effective strategies to be used in agriculture for reducing 
plant diseases, increasing crop yield and reducing economic losses.

Due to their potential as a biotechnological tool, Trichoderma 
genes have been expressed in plants, aiming to introduce tolerance 
to both biotic and abiotic stresses (Dana et al., 2006; Kaur et al., 
2021; Kumar et al., 2009; Montero-Barrientos et al., 2010; Shah 
et al., 2009; Silva et al., 2019). Until recently, the insertion of genes 
encoding Trichoderma cell wall-degrading enzymes was the main 
strategy used to evaluate the possibility of improving plant resis-
tance (Nicolás et al., 2014; Silva et al., 2019). However, we studied 
genes expressed in Trichoderma harzianum, during biological control 
of fungi, and identified various genes with potential biotechnological 
value; these genes encoded proteins that function as transporters, 
or in hydrolytic activity, adherence, appressorium development and 
pathogenesis (Vieira et al., 2013). Among the up-regulated genes, 
the gene encoding an acid sphingomyelinase was identified.

Sphingomyelinase (SMase), also known as sphingomyelin phos-
phodiesterase, belongs to the metallophosphatase superfamily; it 
cleaves sphingolipids, a class of structural membrane lipids involved 
in multiple cellular functions, such as regulating protein intake, cell 
proliferation and differentiation (Hannun & Obeid, 2008; Marchesini 
& Hannun, 2004). In addition, it can act as a biochemical marker, ini-
tiating programmed cell death in plants (Chen et al., 2006). SMases 
are found in animals and microorganisms, and are catalogued ac-
cording to their activity and optimal pH: acidic SMase, secretory 
SMase, neutral, Mg+2-dependent SMase and alkaline SMase (Goni 
& Alonso, 2002; Goni et al., 2012). In mammals, SMases are found in 
cells and body fluids, functioning as a secondary messenger inducing 
an apoptotic response (Gorelik et al., 2016; Perrotta et al., 2015), 
and in the immune response against pathogens (Yu et al., 2009). It 
was discovered that some SMase-like enzymes are inactive against 
sphingomyelin, and instead can hydrolyse nucleoside diphosphates 
(NDP) and triphosphates (NTP), which may play a role in purinergic 
signalling (Airola et al., 2017). Thus, sequence homology with mam-
malian SMase might not be sufficient to predict substrate specificity, 
optimum pH or metal dependence (Airola et al., 2017). In bacteria, 
sphingomyelinases are secreted and function as toxins, acting in the 
breakdown of the host cell membrane (Matsuo et al., 1996).

On the basis of this information, it was decided to investigate 
the effect on plant pathogens of expressing the SMase-coding gene 

from T. harzianum (ThSMase) in tobacco plants (Nicotiana tabacum). 
We hypothesized that the expression of this gene could generate 
resistance to plant pathogens.

2  |  MATERIAL S AND METHODS

2.1  |  Plasmid construct and plant transformation

The ThSMase gene from T. harzianum was synthesized by Epoch 
Life Science Inc. (GS52674-6; Sugar Land, TX, USA), using the 
Arabidopsis thaliana codon usage (GenBank accession for the 
ThSMase: EHK26001). The ThSMase coding region was cloned under 
the control of the 35S RNA promoter from cauliflower mosaic virus 
(35S CaMV) plus the alfalfa mosaic virus (AMV) enhancer, inserted 
between the NcoI/SacI sites from the pCGCHI vector (Nunes et al., 
2009). The ThSMase expression cassette was transferred to pCam-
bia3300 using EcoRI and HindIII, generating the vector pSphingo 
(Figure 1a), which was used to transfect Agrobacterium tumefaciens 
EHA105. Tobacco plants (cv. Xanthi) were then transformed with 
the Agrobacterium using the leaf disk method, according to Horsch 
et al. (1985). The pSphingo vector contained the bar gene from 
Streptomyces hygroscopicus that encodes for the phosphinothricin 
N-acetyltransferase (PAT) enzyme, which confers tolerance to glu-
fosinate ammonium (GA), and the presence of this protein was used 
to select genetically modified plants.

2.2  |  Screening of transgenic events and 
progeny analyses

Plants were initially screened for expression of the bar gene. The 
presence of PAT was analysed using the GMO Trait Check LL Kit 
(Strategic Diagnostic Inc.). Leaf tissues (100  mg) were macer-
ated in 300  µl of phosphate-buffered saline (PBS) for 15  s. Then, 
an immunostrip was inserted into the microtube and read after 
10  min of incubation when positive results may be visible. The 
presence of the ThSMase transgene was verified by PCR (accord-
ing to Lacorte et al., 2010), using the primer pair Sphingo973F 
(5′-TGGACAAGATGGGTTGGAGC-3′), and Sphingo1344R 
(5′-GCCATAACAGCATGAGAAGCA-3′) to amplify a 371  bp region 
within the ThSMase coding sequence. PCR conditions were 95°C 
(5 min) denaturation; 35 cycles of 95°C for 1 min, 55°C for 1 min and 
72°C for 2 min; and a final elongation cycle of 7 min at 72°C.

Seeds of the first generation (T1) of self-pollinated plants were 
germinated and maintained at 25  ±  2°C, with 70%–90% relative 
humidity, under greenhouse conditions without additional illu-
mination. Plants were analysed for the presence of the ThSMase 
transgene by PCR, as described. Pearson's chi-squared (χ2) with 
Yates's correction was used to determine whether the observed 
segregation ratio was consistent with a Mendelian ratio of 3:1, at 
95% level of confidence.
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2.3  |  Reverse transcription-quantitative 
PCR analysis

The transcription level of the ThSMase transgene was deter-
mined by reverse transcription-quantitative PCR (RT-qPCR). Total 
RNA was extracted from young leaves using TRIzol (Invitrogen), 
and cDNA synthesized using 2  µg total RNA, according to the 
protocol described by reverse transcriptase Superscript VILO 
(Promega). RNA samples (2 µg) were treated with 2 U DNase I for 
10  min at 37°C to eliminate any genomic DNA. After DNase I di-
gestion, the samples were heated to 90°C for 5  min. Quantitative 
real-time PCRs were performed on a StepOnePlus Real-Time PCR 
cycler (Applied Biosystems) using a Platinum SYBR Green qPCR 
Super Mix-UDG w/ROX Kit (Invitrogen). To analyse the transcrip-
tion levels of ThSMase in different transgenic lines, the primers 
SphingoRTF (5′-CAGCATGAGAAGCATCTTGC-3′) and SphingoRTR 
(5′-TTGGACACATGCCTATTGGA-3′) were designed using the 

software Primer3 Plus. Reactions followed the parameters described 
by Morgante et al. (2011). The relative transcription levels in differ-
ent RNA samples were normalized with internal standard genes EF1α, 
using the primer pair EF1aRTF (5′-TGAGATGCACCACGAAGCTC-3′)/
EF1aRTR (5′-CCAACATTGTCACCAGGAAGTG-3′) and 60S ribo-
somal protein L23a, using the primer pair L25RTF (5′-CCCCTCA  
CCACAGAGTCTGC-3′)/L25RTR (5′-AAGGGTGTTGTTGTCCTCAAT
CTT-3′) obtained from Schmidt and Delaney (2010). Quantitative as-
says were performed in triplicate with three biological samples. The 
online real-time PCR Miner tool (Zhao & Fernald, 2005) was used 
to estimate the average cycle threshold (Cq) values and the qGENE 
software (Joehanes & Nelson, 2008) to evaluate the relative level of 
ThSMase expression.

2.4  |  Inoculation of transgenic plants 
with pathogens

Transgenic plants were tested for resistance to Sclerotinia sclerotio-
rum, as described by Cunha et al. (2010). Briefly, a mycelial agar plug 
2 mm in diameter was cut from the growing margins of a 2-day-old S. 
sclerotiorum culture and applied to the adaxial surface of a detached 
fully expanded leaf. Two leaves were inoculated per plant for five 
plants of each line. Symptoms were observed after 24 and 48 h and 
lesion area recorded. Leaves were kept in a plant growth chamber at 
25 ± 2°C, 90%–100% relative humidity in the dark.

Transgenic lines were challenged with Pseudomonas syringae 
pv. tabaci (IBSBF 766) following the protocol described by Li et al. 
(2000). Briefly, bacterial suspension grown in medium 523 (Kado 
& Heskett, 1970) for 48 h at 28°C was centrifuged, resuspended 
in distilled water and adjusted to standard 7 of the McFarland 
scale (c.2.1 × 109 bacteria/ml) (McFarland, 1907). The suspension 
was infiltrated into the abaxial surface of detached leaves using 
a syringe without a needle. Two leaves were infiltrated per plant 

F I G U R E  1  (a) Diagram of the vector pSphingo used to 
overexpress the ThSMase gene from Trichoderma harzianum in 
transgenic tobacco plants. The ThSMase gene was cloned under 
the control of the 35S RNA promoter from cauliflower mosaic virus 
(35S CaMV) plus the alfalfa mosaic virus (AMV) enhancer. The 
ThSMase expression cassette was cloned into the pCambia3300 
vector, which contains the bar gene that confers tolerance to 
glufosinate ammonium, used for selection of transformed plants. 
Arrows indicate the position of primers used for PCR analyses. 
(b) Immunochromatographic analyses of transgenic tobacco plants 
for the expression of the bar gene (presence of phosphinothricin 
N-acetyltransferase [PAT] protein). (c) PCR analysis for detection 
of the ThSMase gene in transformed lines. (d) Results of reverse 
transcription-quantitative PCR for measuring the relative 
expression of the ThSMase gene in leaves of transgenic and 
nontransgenic (control) tobacco lines. Data represent means of 
three biological and three technical replications, where the control 
is considered as zero. The asterisk indicates a statistically significant 
difference in ThSMase expression of the transgenic lines compared 
to the control (p < 0.05, n = 9). There was no significant difference 
among transgenic lines. Bars are shown ± SE. NT: nontransgenic 
line
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from five plants of each line. Leaves were kept in chamber at 
25 ± 2°C, 90%–100% relative humidity in the dark. Leaves were 
photographed every 7 days and the images were used to measure 
the infected area using ImageJ software (imagej.nih.gov/ij/). P. sy-
ringae was reisolated from lesions according to Stefanova et al. 
(2009). Briefly, the edge of leaf lesions was cut and macerated in 
PBS. The extract was striated in a plate containing semiselective 
medium (MSP-M; Mohan & Schaad, 1987), allowing the distinc-
tion between colonies of Pseudomonas species in a population of 
saprophytes. Chlorophyll loss in the lesion area was measured 
using a chlorophyll content meter model CCM-200 Plus GPS 
(Opti-Sciences, Inc.), reading a circular area of 9.5  mm diameter. 
The chlorophyll concentration index was obtained and compared 
to the control (inoculated with water) to calculate the chlorophyll 
loss.

Transgenic and nontransgenic plants were inoculated with 
Xylella fastidiosa subsp. pauca (strains 9a5c and Itápolis) according 
to Lopes et al. (2000). Briefly, X. fastidiosa was grown in PWG me-
dium (Hill & Purcell, 1995) and suspended in PBS at a concentration 
with OD600nm of 0.4 for pinprick inoculation. qPCR was performed 
30 days after inoculation, according to Francis et al. (2006), to de-
tect X. fastidiosa with a high degree of sensitivity and specificity. 
The primers used amplified a 221 bp unique region common to X. 
fastidiosa subsp. pauca strains. A plasmid (pJET-221) containing the 
same 221 bp qPCR product was sequenced and used to generate 
a standard curve for determining concentrations of X. fastidiosa in 
samples. The Cq 35.0 cut-off was used to determine whether a plant 
was positive for infection with X. fastidiosa, and titre determination 
(Francis et al., 2006).

All experiments were repeated twice with five replications.

2.5  |  Statistics

The experiments were carried out in a completely randomized de-
sign. The results were analysed by analysis of variance (ANOVA) 
at p < 0.05 followed by Dunnett's test to compare between treat-
ments. Correlation analyses (relative expression of the ThSMase 
gene versus lesion area caused by P. syringae or S. sclerotiorum) were 
calculated using Pearson's correlation coefficient at 95% confidence 
interval. All statistical analyses were implemented in Graphpad 
Prism v. 6.0 software.

3  |  RESULTS

The leaf disk method was used to transform the tobacco (N. tabacum) 
plants using A. tumefaciens expressing an acidic sphingomyelinase-
coding gene from T. harzianum (ThSMase). Seven transgenic lines 
were selected for the assays by the presence of the PAT enzyme 
(Figure 1b), and also the presence of the ThSMase transgene in PCR 
analyses (named as Sph2, Sph6, Sph7, Sph8, Sph10, Sph11 and 
Sph12; Figure 1c). All the plants were acclimatized and allowed to 

set seeds after 3 months. It was observed that all transgenic lines 
presented normal phenotypes (plant height and architecture, num-
ber of leaves, number of branches and number of flowers and fruits) 
when compared with nontransgenic plants. RT-qPCR analysis was 
carried out as an attempt to determine the cause–effect relationship 
between expression of the ThSMase transgene and the observed 
phenotype (disease resistance). The results showed that ThSMase 
was transcribed in leaves of all transgenic lines at levels that were 
statistically significantly higher than the nontransgenic control, but 
similar among transgenic lines (Figure 1d). Segregation analyses of 
the T1 generation revealed that both ThSMase and bar transgenes 
co-segregated in a Mendelian fashion of 3:1 in all lines (Table 1) that 
were analysed further.

Leaves from transgenic and nontransgenic plants were inocu-
lated with P. syringae pv. tabaci. The disease progress was monitored 
for a period of 14 days after inoculation (dai), and lesion area and 
chlorophyll loss were recorded. At 7 dai, significant differences in 
susceptibility were observed in transgenic lines compared to non-
transgenic lines (Figure 2a). Nontransgenic leaves became widely af-
fected by loss of chlorophyll. As disease progressed, it was observed 
that by 14 days the lesion area ranged from 28.5 to 43.6 mm2 in the 
transgenic lines, while in the nontransgenic plants it was 358.6 mm2 
(Figure 2b). A statistically significant correlation was observed be-
tween the relative expression of the ThSMase gene and the lesion 
area caused by P. syringae at 7 dai (Pearson correlation r = −0.796, 
p = 0.018) and 14 dai (Pearson correlation r = −0.783, p = 0.021). P. 
syringae was reisolated from leaves; bright colonies were observed, 
with edges of light-yellow colour, which became orange after 72 h, 
changing the MSP-M medium from green to yellow. This confirmed 
the presence of P. syringae in the lesion areas. In addition, chlorophyll 
losses in the lesion areas were measured and, in the transgenic lines, 
ranged from 13% to 32%, while in the nontransgenic line it was 64% 
(Figure 2c).

Transgenic lines were challenged with X. fastidiosa, and when 
the plants were analysed by qPCR, the nontransgenic genotypes re-
vealed that 100% of the plants were infected with the strain 9a5c, 
and 96.7% with the strain Itápolis (Figure 3). In contrast, the per-
centage of infected transgenic lines ranged from 25% to 83% with 
strain 9a5c and from 31% to 57% with strain Itápolis (Figure 3). Lines 

TA B L E  1  Segregation analysis of the ThSMase transgene in the 
T1 generation of self-fertilized transgenic plants

Line

ThSMase transgene Ratio of 3:1

Positive Negative χ2 p

Sph2 13 2 1.48 0.29

Sph6 12 3 0.42 0.65

Sph7 9 6 1.48 0.18

Sph8 13 2 1.48 0.29

Sph10 13 2 1.48 0.29

Sph11 13 2 1.48 0.29

Sph12 10 5 0.42 0.46
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Sph2 and Sph12 did not show any statistically significant differences 
in infection by strain 9a5c compared to the control (Figure 3). No X. 
fastidiosa was detected in noninoculated plants.

Detached leaves of tobacco were inoculated with 2-mm-diameter 
agar plugs from the growing margins of 2-day-old S. sclerotiorum cul-
tures, and lesion length was recorded 48 and 72 h after inoculation. 
Results showed that after 72 h the lesion area ranged from 423 to 
844 mm2 (average of 654  mm2) in the transgenic lines, while in the 
nontransgenic plants it ranged from 405 to 1530 mm2 (average of 
922  mm2; Figure 4). However, no statistically significant differences 
were observed among the transgenic and nontransgenic lines. No 
statistically significant correlation was observed between the rela-
tive expression of the ThSMase gene and the lesion area caused by 
S. sclerotiorum at 24 h (Pearson correlation r = 0.333, p = 0.938) or 
at 48 h (Pearson correlation r = −0.211, p = 0.615) after inoculation.

Segregating plants without the transgene, but that had under-
gone the transformation process, were also challenged with P. sy-
ringae pv. tabaci, X. fastidiosa and S. sclerotiorum, and gave similar 
results to the control (non-GM) plants (data not shown).

4  |  DISCUSSION

Bacterial diseases in plants are difficult to control and are among 
the most critical biotic stress factors affecting plant development, 
crop yield and quality (Sundin et al., 2016). Management usually 

requires the combination of several complementary measures. 
Emphasis is on preventing the spread of the bacteria rather than on 
curing the plant (Ampatzidis et al., 2017). Integrated management 
measures for bacterial plant pathogens include cultural practices, 
chemical treatments, use of antagonistic or biological control prod-
ucts and implementation of strict quarantine (Sundin et al., 2016). 
However, the most effective low-cost strategy that could easily be 
adopted by farmers is the use of resistant genotypes (Lopes et al., 
2012). Consequently, disease resistance has received high priority 
in many breeding programmes. Although traditional breeding plays 
an essential role, using the genetic resources of the centres of origin 
and diversity, molecular breeding could also be useful in generating 
broader and durable bacterial resistance.

Several biotechnological strategies have been used to produce 
transgenic plants resistant to both bacterial and fungal diseases 
(Dong & Ronald, 2019). Nevertheless, there are fewer cases of ge-
netically engineered plants for bacterial resistance and most of the 
examples approved for commercial release are against viral (27 in-
stances) and fungal (two instances) diseases (Dong & Ronald, 2019; 
ISAAA, 2021; Rooney et al., 2020).

SMases and SMase-like proteins have been found in arach-
nids, bacteria (Corynebacteria and Arcanobacterium) and fungi 
(Aspergillus and Coccidioides) (Cordes & Binford, 2006; Dias-
Lopes et al., 2013). We have demonstrated the importance of the 
ThSMase gene in T. harzianum, which had previously been shown 
to be expressed during biocontrol of the plant pathogen Fusarium 

F I G U R E  2  Resistant response of transgenic tobacco leaves expressing the ThSMase gene, inoculated with Pseudomonas syringae pv. 
tabaci. (a) Symptoms were observed 7 and 14 days after inoculation (dai). (b) Disease progress curve showing leaf lesion area with days after 
inoculation (dai). Asterisks indicate a significant difference between the lesion area of transgenic lines and the control. (c) Percentage loss 
of chlorophyll 14 dai in transgenic lines and the nontransgenic control. The asterisk indicates a significant difference in loss of chlorophyll 
between the transgenic lines and the control, but there was no difference among transgenic lines. *p < 0.05, n = 10. Bars are shown ± 
SE
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solani (Vieira et al., 2013). In the light of our results, SMases from 
Trichoderma may open new perspectives for improving plant re-
sistance to biotic stresses without altering other characteristics 
of the plants.

When transgenic tobacco plants expressing ThSMase were chal-
lenged with the pathogenic fungus S. sclerotiorum, we observed no 
statistically significant difference between the transgenic lines and 
the control. However, bacterial bioassays have shown that trans-
genic plants presented a significant resistance to P. syringae and 
tolerance to X. fastidiosa, both gram-negative phytopathogens. The 
results from the bioassay conducted with X. fastidiosa were partic-
ularly reliable as the method used could detect the pathogen with 
a high degree of sensitivity and specificity, at levels as low as 5–10 
cells of the pathogen per reaction.

P. syringae can infect a wide range of crops, such as sugar beet, 
tomato, wheat, soybean and barley. X. fastidiosa is capable of induc-
ing very serious symptoms in the host plant, such as leaf scorch in al-
monds, variegated chlorosis in citrus (CVC), leaf scorch in coffee, leaf 
discolouration and scorching in vines (Pierce's disease) and quick de-
cline syndrome in olives (Lindow, 2019). This pathogen is known for 
its extreme infection capacity, being vectored by many insect spe-
cies that feed from the xylem of plants; their polyphagy is reflected 
in the spread of the bacterium to a large number of host species. 
Tobacco has been used in previous studies as an experimental host 
in the study of plant–X. fastidiosa interactions (Lopes et al., 2000), 
where it has been possible to discriminate between citrus and coffee 

Xylella isolates by their symptoms (Lopes et al., 2020); thus, tobacco 
was ideal for our transgenic expression studies.

At present, mechanisms to explain how SMases could act on the 
antimicrobial/antagonistic interactions with fungi are still not clear. 
SMases are described as generating ceramide and phosphorylcho-
line from sphingomyelin, modifying the structure and morphology 
of the target membranes, leading to cell membrane destabilization 
(Goni & Alonso, 2002; Jenkins et al., 2009). In addition, bacterial 
SMases hydrolyse sphingomyelin as well as glycerophospholipids, 
generating several metabolites that play crucial roles in distinct 
physiological processes, including membrane dynamics, cellular sig-
nalling, migration, growth and death (Flores-Díaz et al., 2016; Li et al., 
2019). However, the role of sphingomyelinase activity in inducing re-
sistance to bacterial pathogens is still unknown and further studies 
must be carried out to establish the antibacterial action of SMases in 
plants. Nevertheless, sphingomyelin is a lipid that is known to sup-
port the growth of Spiroplasma mirum in culture medium, a fastidious 
bacterium as in the case of X. fastidiosa (Chang, 1993).

In conclusion, we have demonstrated that the expression of a 
sphingomyelinase gene from T. harzianum induced strong resistance/
tolerance to both P. syringae and X. fastidiosa in the model plant to-
bacco, which is susceptible to these bacteria. The genetically mod-
ified lines generated in this work might be studied further in order 
to shed light on the mode of action of the ThSMase in triggering 

F I G U R E  3  Response of the tobacco transgenic lines expressing 
the ThSMase gene, 30 days after inoculation with Xylella fastidiosa 
subsp. pauca (strains 9a5c and Itápolis). The number of infected 
plants was determined by quantitative PCR using a Cq 35.0 cut-off 
to indicate whether a plant was positive. NT = nontransgenic 
lines. NI =noninoculated. I = inoculated. The asterisks indicate a 
significant difference in the number of plants infected compared to 
the inoculated control (NT-I), p < 0.05, n = 6. Bars are shown ± SE

F I G U R E  4  Response of transgenic tobacco leaves expressing 
the ThSMase gene and the nontransgenic control, inoculated with 
Sclerotinia sclerotiorum. Symptoms were observed 48 and 72 h after 
inoculation (a) and the progress of the disease was determined by 
lesion area (b). No statistical differences were observed between 
48 and 72 h (p < 0.05, n = 10). Bars are shown ± SE
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bacterial resistance. Experiments aiming to clarify aspects of protein 
subcellular localization and transport, secretory activity, mecha-
nisms of signalling pathways related to immune responses, neutral-
ization of bacterial harmful molecules, up- and down-regulation of 
genes involved in pathogen defence, and inhibition of elicitors of 
programmed cell death, will help to establish the function and mech-
anisms of action of SMases in plants.

The strategy presented here could be extended to achieve re-
sistance against other bacterial diseases in distinct crops. This 
technology is a foundation for the production of bacterial-resistant 
varieties, resulting in a reduced environmental impact of plant dis-
ease management.
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