DESEMPENHO DE CULTIVARES DE TRIGO NA REGIÃO DO CERRADO MINEIRO.

Júlia Rodrigues Macedo ^{1(*)}, Aurinelza Batista Teixeira Conde ², Vanoli Fronza ³, Fábio Aurélio Dias Martins ² e Antônio Rosário Neto ¹

¹ Universidade Federal de Lavras. Campus Universitário, Caixa Postal 3037, CEP 37200-000 (*)Autor para correspondência: juliarodriguesmacedo@gmail.com

² EPAMIG, Lavras, MG

³ Embrapa Trigo, Passo Fundo, RS.

A produção de grãos como, soja, milho, feijão e mais recentemente, trigo, na região do Cerrado mineiro já é uma realidade. Embora o estado de Minas Gerais faça parte do VCU 4 - região do Cerrado, existe uma diversidade de clima e de bioma muito grande entre as mesorregiões que compõem o estado, sendo o Campo das Vertentes considerado como área de transição entre Cerrado e Mata Atlântica. A compreensão desses fatores é de extrema importância, porque interfere na estabilidade e adaptabilidade de diferentes espécies agricultáveis, assim como, na escolha dos melhores genótipos, uma vez que a interação genótipo x ambiente é determinante na expressão do potencial produtivo e qualidade do grão (BORÉM; MIRANDA, 2009; PELUZIO et al., 2012).

A região do Campo das Vertentes é caracterizada por ter o inverno frio e seco. Porém, a janela de cultivo do trigo para essa região passa por diferentes condições, sendo o início (março), quente e úmido, com elevada precipitação pluviométrica, o que impacta no manejo de doenças fúngicas, como a brusone, e o final da janela (maio), com clima ameno/frio e seco, que também impacta no potencial produtivo, pois ocorre falta de chuva.

Após a introdução do trigo no Campo das Vertentes, em Minas Gerais, o mesmo vem apresentando muito sucesso entre os agricultores, principalmente porque permite rotacionar as culturas e assim, aproveitar dos benefícios desse sistema de produção como pela adoção do plantio direto, que melhora as condições de solo e aumenta a resiliência das culturas sob diferentes condições de cultivo. Além disso, o cultivo com trigo evita deixar a área em pousio e aumentar o banco de sementes de plantas daninhas, ainda, representa diversificação de renda na propriedade rural (CANZIANI; GUIMARÃES, 2009).

Apensar dos inúmeros benefícios que o cultivo de trigo traz para o sistema de produção de grãos, faz-se necessário ampliar/diversificar as pesquisas com este

cereal, buscando aumentar as opções de cultivares que sejam adaptáveis e estáveis para a região. Diante disso, objetivou-se avaliar o desempenho de 40 cultivares de trigo, plantadas na região do Campo das Vertentes, estado de Minas Gerais.

O experimento foi conduzido na safra de outono/inverno de 2019, na fazenda 3W Agronegócio, a 969 m de altitude no município de Itutinga (-21.418922, -44.664638), no estado de Minas Gerais. A área vem sendo manejada há 10 anos sob sistema de plantio direto (SPD) e possui solo de fertilidade construída. O clima é do tipo Cwa (classificação de Köppen), com inverno frio e seco e verão quente e úmido. As médias anuais de precipitação e temperatura são de 1257mm e 19,7°C, respectivamente. O local de estudo apresenta baixa pluviosidade no inverno, sendo a restrição hídrica um desafio ao cultivo de trigo. O experimento foi instalado no dia 26/04/2019 e colhidos no dia 28/08/2019.

O solo foi classificado como "Latossolo Vermelho Amarelo Distrófico típico" de acordo com o Sistema Brasileiro de Classificação de Solos (Santos et al., 2018), com textura argilosa (52%). As propriedades químicas do solo após o experimento estão descritas na Tabela 1. De acordo com Sousa et al. (2016) os níveis médios de nutrientes foram próximos aos considerados adequados para manter altas produtividades da cultura.

O experimento foi conduzido em esquema DBC (Delineamento em Blocos Casualizados), com 40 tratamentos (cultivares) e 4 repetições. As parcelas foram montadas com 5 linhas, espaçadas a 0,20 m, com 5m de comprimento. O manejo de pragas, doenças, plantas daninhas e de adubação foram os mesmos adotados pela fazenda.

Para estimar o rendimento das cultivares de trigo, foi colhido 3 linhas de 4 m de comprimento em cada parcela e extrapolou-se para a área em sacos/hectare (60 kg).

Os dados foram submetidos à análise de variância pelo teste F (p<0,05). Quando houve diferenças significativas, as médias foram comparadas pelo teste Tukey (P<0,05), pelo software SISVAR.

A resposta dos genótipos em relação à produtividade foi significativa, Tabela 2. Os maiores rendimentos de trigo foram observados em 21 de 40 genótipos testados, sendo as cultivares CD 116, MGS Brilhante e TBIO Sossego, as que apresentaram maiores médias em relação às demais.

As cultivares de trigo mais difundidas e plantadas na região do Campo da Vertentes – MG são BRS 264 e TBIO Sintonia e, ao comparar estes genótipos com as três cultivares mais produtivas no experimento, é possível perceber um acréscimo de 69% e 29%, respectivamente. Isso mostra o potencial existente para produzir trigo na região assim como, o aumento da diversidade de cultivares que podem ser exploradas comercialmente, fazendo com que o produtor tenha mais segurança e escolha os melhores genótipos de acordo com a necessidade.

Estudos como esse são de extrema importância e devem ser contínuos, visto que grande parte dos materiais de trigo são selecionados para outras regiões, mas podem ser utilizados, quando embasados cientificamente, em outros locais (CONDE et al., 2010).

REFERÊNCIAS BIBLIOGRÁFICAS

BORÉM, A.; MIRANDA, G. V. **Melhoramento de plantas**. 5ed. Viçosa: Editora UFV, 2009. 529p.

CANZIANI, J. R.; GUIMARÃES, V. D. A. **O trigo no Brasil e no mundo: cadeia de produção, transformação e comercialização**. In: CUNHA, G. R. da (Eds.). Oficina sobre trigo no Brasil: bases para a construção de uma nova triticultura brasileira. Passo Fundo:Embrapa Trigo, p. 29-72.

CONDE, A. B. T.; COELHO, M. A. O.; YAMANAKA, C. H.; CORTE, H. R. Adaptabilidade e estabilidade de linhagens de trigo sob cultivo de sequeiro em minas gerais. **Pesquisa Agropecuária Tropical**, v. 40, p. 45-52, 2010

PELUZIO, J. M., GEROMINNI, G. de D.; da SILVA, J. P. A.; AFFÉRRI, F. S., VENDRUSCOLO, J. B. G. Estratificação e dissimilaridade ambiental para avaliação de cultivares de soja no estado de Tocantins. **Bioscience Journal**, p. 332-337, v. 28, n. 3, 2012

SANTOS, H. G. dos, JACOMINE, P. K. T., ANJOS, L. H. C. dos, OLIVEIRA, V. Á. de, LUMBRERAS, J. F., COELHO, M. R.; CUNHA, T. J. F. (2018). **Sistema brasileiro de classificação de solos**. In Embrapa Solos (5th ed.). Brasília, DF.

Sousa, D. M. G., Nunes, R. S., Rein, T. A.; SANTOS JÚNIOR, J. D. G. (2016). **Manejo da adubação fosfatada para culturas anuais no cerrado**. Planaltina: Embrapa Cerrados.

Tabela 1. Fertilidade do solo da Fazenda 3W Agronegócio:

Profundidade	рН	P-Mehlich1	P resina	K	Ca	Mg	Al	H+Al	SB	СТС	٧	МО
cm	(H2O)	mg/dm³			cmolc/dm³						%	
0-10	6,4	9,4	44,7	0,17	4,3	1,5	0,09	2,2	6,0	8,2	72,7	4,2
10-20	6,3	8,9	39,7	0,16	4,1	1,4	0,07	2,3	5,7	7,9	70,7	4,0
20-40	6,0	4,9	10,3	0,12	2,7	0,9	0,00	2,6	3,7	6,3	58,9	4,0
Mt Baixo	Baixo	Média	Bom	Alta	Mt Alta							

Tabela 2. Desempenho produtivo de cultivares de trigo na região do Campo das Vertentes - MG.

Cultivar	Produtividade (kg/ha)
TBIO Mestre	20 c
ORS Madre Pérola	24 c
ORS 1401	51 b
BRS 264	58 b
IAC 389 - Atacama	60 b
IAC 385 - Mojave	61 b
BRS 404	61 b
ORS Citrino	65 b
TBIO Audaz	65 b
IAC 388 - Arpoador	66 b
BRS Sanhaço	68 b
BRS Tangará	68 b
ORS 1403	69 b
BRS 229	70 b
CD 150	70 b
BR 18 - Terena	71 b
BRS Angico	71 b
BRS 331	71 b
IPR 144	76 a
TBIO Sintonia	76 a
CD 1595	76 a
BRS Reponte	77 a
BRS Gralha Azul	78 a
BRS Graúna	79 a
IPR Panaty	83 a
TBIO Sonic	85 a
CD 1104	86 a
BRS Gaivota	86 a
BRS Pardela	86 a
CD 1440	86 a
CD 1303	89 a
IPR Catuara	91 a
Jadeíte	93 a
BRS Guamirim	93 a
IPR Potiporã	96 a
Ametista	97 a
TBIO Sossego	98 a
MGS Brilhante	98 a
CD 116	98 a

^{*}Médias seguidas da mesma letra não diferem entre si pelo teste Tukey a 5% de significância

Tabela 1. Estimativa de custos relacionados com o controle de afídeos em trigo nas safras de 2015 e 2014, com base em diferentes práticas. Passo Fundo, RS.

SAFRA 2015											
	rendimento (kg/ha)	CUSTOS**				CUSTO TOTAL		TRAT. TESTEMUNHA			
Tratamentos*		TS (R\$/ha)	INS (R\$/ha)	OP (R\$/ha)	Número aplicações	(R\$/ha)	(sc/ha)	dif (sc/ha)	dif (R\$/ha)	ganho (R\$/ha)	ganho (sc/ha)
TT	2.626,72	1,62	18,87	35,91	12	658,98	20,59	11,75	375,93	-283,06	-8,85
TS	2.073,67	1,62		35,91	1	37,53	1,17	2,53	80,97	43,44	1,36
INSPA	2.178,29		18,87	35,91	2	109,56	3,42	4,27	136,77	27,20	0,85
TS+INSPA	2.292,22	1,62	18,87	35,91	2	111,18	3,47	6,17	197,53	86,35	2,70

	SAFRA 2014											
Tratamentos*		CUSTOS**				CUSTO TOTAL		TRAT. TESTEMUNHA				
	rendimento (kg/ha)	TS (R\$/ha)	INS (R\$/ha)	OP (R\$/ha)	Número aplicações	(R\$/ha)	(sc/ha)	dif (sc/ha)	dif (R\$/ha)	ganho (R\$/ha)	ganho (sc/ha)	
TT	3.413,58	1,62	18,87	35,91	12	658,98	20,59	8,64	276,48	-382,50	-11,95	
TS	3.043,21	1,62		35,91	1	37,53	1,17	2,47	79,04	41,51	1,30	
INSPA	3.111,11		18,87	35,91	2	109,56	3,42	3,60	115,20	5,64	0,18	
TSLINSDA	3 179 01	1.62	18 87	35.01	2	111 18	3 47	4 73	151 36	40.18	1.26	

^{*}TT: tratamento total (TS + inseticida parte aérea); TS: tratamento de sementes; INSPA: inseticida de parte aérea ao atingir nível de ação;
TS+INSPA: tratamento de sementes + inseticida de parte aérea ao atingir nível de ação;

TS+INSPA: tratamento de sementes + inseticida de parte aérea ao atingir nível de ação.

**TS – custo tratamento de sementes; INS – custo inseticida pulverização; OP – custos operacionais (pulverizações; mão de obra, maquinário); dif – diferença entre o tratamento controle e os demais tratamentos;

^{- (}rendimento médio controle: safra 2015 = 1.921,86 kg/ha / safra 2014 = 2.895,06 kg/ha);

⁻ sc 60 kg = R\$ 32,00.