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ABSTRACT:

Brazil has established itself as one of the world leaders in food production. Different types of remote sensing mapping techniques
have been undertaken to support rural planning in the country. However, due to the complex dynamics of Brazilian agriculture,
especially in the Cerrado biome (tropical savanna), there is a need for more feasible crop discrimination and monitoring initiatives,
which require a consistent time series of remote sensing data at medium meter and potentially  up to 3 day Landsat 8 and Sentinel-2
satellite time series,  minimizing the cloud cover limitations for rainfed agricultural  monitoring.  This paper aims to explore the
potential of the Harmonized Landsat 8 Sentinel-2 (HLS) data cube to map agricultural landscapes in the Brazilian Cerrado. The HLS
multispectral bands from 27 scenes with less than 10% cloud cover, from October 2020 to September 2021, encompassing one entire
crop growing season, were processed by the Random Forest algorithm to produce a map with four land use/cover classes (annual
crops, sugarcane, renovated sugarcane fields, cultivated pastures, and native Cerrado). We performed accuracy assessment through
10-fold cross-validation and confusion matrix analyses. The results showed a high level of overall accuracy and Kappa coefficient,
both with 99%, as well as high user's and producer's accuracies of at least 99%. The HLS dataset has been continuously improved,
showing very promising results for rainfed agricultural mapping and monitoring.

1. INTRODUCTION

Global  consumption  of  food,  water,  and  energy  has  grown
exponentially in recent years. This increasing demand is placing
pressure on natural resources of countries with high potential
for  agricultural  production,  which  is  the  case  of  Brazil.  The
country  has  good  technical  and  agronomic  conditions  to
produce  grain,  meat,  and  biofuel  with  high  quality  and
sustainability.  We  expect  that  the  grain  production  will  rise
from the  current  251  million  tons  in  2019/2020  (65  million
hectares) to approximately 318 million tons in 2029/2030 (76
million hectares), a 27% increase (Bolfe et al., 2020).

Nowadays,  the Brazilian tropical  savanna (Cerrado biome) is
the  most  important  agricultural  frontier  in  the  country.  This
biome occupies approximately 23% of the Brazilian territory,
covering an area of approximately 2 million km2 in the central
part  of  the  country  (Pereira  et  al.,  2020).  It  is  partially
distributed  in  the  states  of  Bahia,  Goiás,  Maranhão,  Mato
Grosso,  Mato  Grosso  do  Sul,  Minas  Gerais,  Paraná,  Piauí,
Rondônia, São Paulo, Tocantins, and the Federal District.

Because of its complex and increasingly dynamic agricultural
production,  remote  sensing  analysis  is  fundamental  for
mapping,  modelling,  and  monitoring  the  processes  of
agricultural  expansion,  retraction,  conversion,  intensification,
and diversification (Sano et al., 2019). Indeed, different land use
and  land  cover  (LULC)  mapping  initiatives  in  the  Brazilian
Cerrado have supported rural planning in this biome (Arantes et
al.,  2016;  Noojipady  et  al.,  2017;  Sano  et  al.,  2019).  These

initiatives  are  mostly  based  on  the  analysis  of  the  Landsat
satellite  data.  However,  the  image  acquisition  mode  of  the
Landsat, which is based on 16−day repeat pass is often limited
for  accurate  LULC  mapping  and  monitoring  over  rainfed
agricultural lands (Prudente et al., 2020).

The constellation of two Sentinel-2 satellites, launched in 2015
and  2017,  operates,  in  some  extent,  with  similar  spectral
characteristics of the Landsat 8. However, Sentinel-2 provides
better spatial resolution (10 m) in the visible (400−720 nm) and
near-infrared  (720−1100  nm)  bands  and  higher  temporal
resolution (10 days or 5 days if the two satellites are combined).
The open-access policy of Landsat and Sentinel-2 multispectral
data allows the synergistic use of the Harmonized Landsat 8 and
Sentinel-2 (HLS) data sets (Claverie et al., 2018). This creates
unprecedented opportunities for timely and accurate observation
of the dynamics of the Earth’s surface. The multisensor analysis
of  satellite  data  expands  the  possibility  of  obtaining  more
accurate  discrimination  of  different  LULC  types  over
agricultural lands (Bègué et al., 2018).

The high persistence of clouds in tropical regions (Prudente et
al.,  2020),  the  high  level  of  spectral  mixing  mainly  in  the
coarse-resolution sensors, and the difficulty of obtaining field
data because of the poor road network and conditions are the
main  sources  of  classification  errors.  Researchers  have
developed  and  tested  different  classification  strategies  and
routines  to  minimize  the  effects  of  these  sources  of  errors.
Among  these  strategies,  we  find,  in  literature,  the  use  of
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different vegetation indices  (Kuchler et  al.,  2020),  phenology
metrics (Werner et al., 2019), and machine learning algorithms
such  as  the  Random  Forest  (RF),  Support  Vector  Machine
(SVM),  neural  networks,  and  decision  trees,  which  have
presented  promising  results  (Chen et  al.,  2018;  Picoli  et  al.,
2018). These and other strategies have resulted in increasingly
detailed and accurate mappings and can be easily applied to the
HLS data. However, detailed agricultural monitoring over large
areas by combining high temporal and spatial resolution data is
still  a  challenge.  The  multisensor  approach  involving  data
harmonization has great potential to overcome this issue (Bègué
et al., 2018; Hao et al., 2019; Bolton et al., 2020).

The use of multisensor digital image classification techniques to
improve the accuracy of agricultural mapping and monitoring in
different  countries  is  increasing.  Some  studies  have
demonstrated the potential of the harmonized series for different
applications,  including crop type mapping (Hao et  al.,  2019;
Dong et al., 2020; Gao et al., 2020), crop phenology (Nguyen et
al.,  2020),  irrigated  areas  (Bolognesi  et  al.,  2020),
intensification  of  pasture  lands  (Griffths  et  al.,  2020),  and
vegetation characterization (Bolton et al., 2020).

In Brazil, time series of remote sensing images also have been
used to study the LULC dynamics (Picoli et al., 2018; Bendini
et  al.,  2019)  with  many  investigations  combining  different
image analysis methods to improve the agricultural  mapping,
modelling, and monitoring (Werner et al., 2019; Kuchler et al.,
2020). To date, few efforts have used the harmonized Landsat 8
and  Sentinel-2  (HLS)  multispectral  images  in  the  Cerrado
biome. Since 2020, NASA is making HLS data available for the
Cerrado region,  especially after 2021,  with the release of the
V2.0 collection (NASA, 2021). This paper aims to explore the
potential  of  HLS  time  series  to  map  LULC  in  a  watershed
located  in  the  Brazilian  Cerrado  with  high  agricultural
production, mostly rainfed grains and sugarcane.

2. MATERIAL AND METHODS

2.1 Study area

The study area corresponds to the Santa Barbara watershed that
occupies an area of 1539 km² in the southern part of the Goiás
State (Figure 1).  It  encompasses part  of the municipalities of
Goiatuba, Bom Jesus de Goiás, Joviânia, and Vicentinópolis, an
important  agricultural  production  region  in  the  Brazilian
Cerrado. The altitude varies between 452 m and 824 m, with an
average of 637 m. The topography is dominantly flat (typical
slope: 0−4%) (Fioreze et al., 2010). The climate is tropical, with
hot and humid summers, and dry winters − Aw in the Köppen's
climate classification system (Alvares et al., 2014). The average
annual  precipitation  is  1520  mm,  concentrated  between
December and March (Fioreze et al., 2010).

Reddish,  deep,  and  well-developed  Oxisols  (Latossolo
Vermelho in the Brazilian System of Soil Classification) is the
dominant type of soil in this watershed. The flat relief favours
the introduction of irrigated agriculture, mostly by the center-
pivot irrigation system (Fioreze and Oliveira, 2010). Although
the  region  is  marked  by  sugarcane  production,  we  also  find
large-scale  cultivation  of  annual  crops,  mainly  soybean  and
maize. Crops such as soybeans, maize, and sorghum represent
between 65% and 75% of the total agricultural production of the
municipalities  that  cover  partially  the  study  area.  Sugarcane
corresponds to 27% of the harvested area in the municipality of
Goiatuba, and 23% in the municipality of Bom Jesus de Goiás
(IBGE, 2021).

Figure 1. Santa Barbara watershed (study area) in the Goiás
State, Brazil. The true-color composition (Red-Blue-Green) (C)
is part of the Harmonized Landsat 8 Sentinel-2 collection from

21 April 2021. Base maps were obtained from the Brazilian
Institute of Geography and Statistics (IBGE) and Goiás State

Geoinformation System (SIEG).

2.2 Harmonized Landsat 8 Sentinel-2 (HLS) characteristics

The HLS data made available by NASA with a regular grid of
109.8  km ×  109.8  km tiles are  converted  into  the  Universal
Transverse Mercator (UTM) projection system, datum WGS84,
spatial resolution of 30 m, and radiometric resolution of 16 bits.
The Land Surface Reflectance Code (LaSRC) algorithm is used
for  atmospheric  correction.  HLS  products  provide  per-pixel
masks of cloud, cloud shadow, snow, and water. For spatial co-
registration, the Automated Registration and Orthorectification
Package  (AROP)  is  used,  with  resampling  of  the  Sentinel-2
bands,  from  10  m,  20  m,  and  60  m  to  30  m.  The  HLS30
(Harmonized Landsat 8 Sentinel-2 data with 30−meter spatial
resolution) uses the Band Pass Adjustment procedure, a band-
by-band process in which the Landsat spectral bands are used as
a reference to perform linear adjustment of equivalent Sentinel
bands. Except for the near-infrared (B8) band and for the three
red-edge (B5, B6, and B7) bands, all other Sentinel bands have
equivalent  Landsat  bands.  The  bidirectional  reflectance
distribution  function  (BRDF)  is  normalized  to  minimize  the
differences between the sensor and solar viewing angles using
the c-factor technique and global coefficients (Claverie et  al.,
2018).

In  September  2021,  NASA  released  the  new  HLS30  data
collection,  version  2.0,  following  the  version  1.5  (NASA,
2021). By the time this study was conducted, HLS collection
2.0  was  under  active  development,  with  new  data  for  the
Brazilian  Cerrado  being  released  regularly,  especially  from
January 2021.

2.3 Image acquisition and processing

In  this  study,  we  used  the  following  harmonized  products:
Sentinel-2  Multispectral  Instrument  (MSI)  surface reflectance
30 m (called S30) and the Landsat 8 Operational Land Imager
(OLI)  surface  reflectance  and  top-of-atmosphere  (TOA)
brightness 30 m over the Sentinel-2 tilling system (called L30),
from collections 1.5 and 2.0. 

The HLS product description can be accessed at the following
website:  https://hls.gsfc.nasa.gov/products-description/.  We
downloaded  all  data  from  the  Earth  Data  portal
(https://search.earthdata.nasa.gov/). With the launch of  version
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2.0, the availability of images for the Cerrado region increased
significantly,  with  the  temporal  resolution  reaching  up  to  3
days. In our data set, we considered a threshold of 10% of cloud
cover  over  the study area and absence of  cirrus  as  the main
requirements for selecting the images. The Cerrado agricultural
calendar for the first crop goes mostly from October to March,
comprising  the  rainy  season.  However,  due  to  the  longer
sugarcane cycle (semi perennial crop), with harvest starting in
August, the images were taken for a period of one year, between
October 2020 and September 2021.

2.4 Datasets

We masked clouds and water bodies using the F-mask product,
while urban areas, main roads, and center-pivots were masked
manually. The HLS30 (S30 + L30) dataset was composed of the
following multispectral bands: blue (490 nm), green (560 nm),
red (665 nm), near-infrared (NIR, 840 nm), and two shortwave
infrared channels  (SWIR, 1610 and 2190 nm). We stacked all
bands into a single file and clipped to the area of interest.

2.5 LULC classes and sampling data

In this study, we considered the following representative LULC
classes from the study area, which were selected based on the
agricultural production data (IBGE, 2021) and the time series of
multispectral  images:  cultivated  pastures,  native  vegetation,
sugarcane, and annual crops. The HLS time series showed the
presence of two well-defined spectral patterns of the sugarcane,
one corresponding to the regular, productive sugarcane, and the
other  corresponding  to  renovated  fields.  After  successive
harvests, sugarcane presents a gradual loss in the yield, so that
the area needs to be renewed before new sowing (Rudorff et al.,
2010).  The  most  common  leguminous  species  used  for
renovation  are  the  Crotalaria  juncea,  soybean,  sorghum and
millet.

The sampling regions were delimited with the support of QGIS
3.8 software and based on the analysis of one color composite
HLS image per month, considering the following parameters of
photo-interpretation: geometry, color, texture, and context. We
also  analyzed  the  Normalized  Difference  Vegetation  Index
(NDVI) profiles derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) data to double check the selected
LULC  class.  These  profiles  are  produced  by  the  Brazilian
Agricultural  Research  Corporation  (Embrapa)  and  can  be
accessed  through  the  Vegetation  Temporal  Analysis  System
(SATVeg) web tool (Embrapa,  2021).  Using the R statistical
package, version 4.1.2, the polygons were converted into points,
from which the band attributes were extracted at the pixel level.
Table  1  describes  the  number  of  sampled  pixels  and  the
corresponding  total  sampled  area.  Examples  of  NDVI
(2020−2021)  temporal  profiles  for  each  class  are  shown  in
Figure 2.

2.6 Classification and validation

The classification with the RF algorithm was performed using
the R statistical  package,  version 4.1.2 and the randomForest
package (Liaw and Wierner, 2002). The RF is an algorithm to
classify images using an ensemble of decision trees. It is based
on the Gini index in which the independence of the trees is a
key factor for obtaining better performance. The RF is widely
used in crop mapping and yield estimation because of its high
efficiency to deal with large sampling databases (Fang et al.,
2020). 

The sample dataset was randomly split into two subsets, one for
training, with 70% of the data, and another for validation, with
30%. In order to perform RF classification, the number of trees
(nTree), and the number of variables in each node (mTry) need
to be adjusted. After evaluating the error variation in relation to
the number of trees, the nTree was adjusted to 500 while the
mTry was adjusted through 10-fold cross-validation and defined
as 8. 

The  caret  package  (Kuhn,  2008)  was  used  to  calculate  the
confusion matrix between the observed and predicted values in
the  validation  subset,  from  which  the  overall  accuracy  and
Kappa coefficient values were obtained, in addition to the user's
and  producer's  accuracies  (UA  and  PA,  respectively).
According  to  Landis  and  Koch  (1977),  Kappa  coefficient
provides the level of agreement between the observed and the
predicted  classes.  It  can  be  classified  as  poor  (≤0.00),  slight
(0.00−0.20), fair (0.21−0.40), moderate (0.41−0.60), substantial
(0.61−0.80),  and  almost  perfect  (0.81−1.00).  The  UA metric
indicates the probability of a classified pixel actually represents
the correct category on the ground, and the PA is a measure of
omission  error,  indicating  how  well  a  certain  area  can  be
classified (Congalton, 1991). To assess the model's robustness,
we  run  a  10-fold  cross-validation  with  the  dataset  split
randomly into training (70%) and test (30%) subsets.

Class Sampled pixels Sampled area (km²)
Sugarcane 2276 2.0 

Annual crops 2113 1.97
Cultivated pasture 2145 1.91

Cerrado 2393 1.96
Renovated * 2246 1.96

Total 11173 9.8
Table 1. Number of sampled pixels and corresponding sampled

area, per class. *Renovated surgarcane fields.

Figure 2. Representative temporal profile of the MODIS NDVI
for each LULC class of the Santa Barbara watershed, Goiás
State, over the 2020−2021 season. X-axis corresponds to the

Julian days.

3. RESULTS

3.1 Number of available cloud-free HLS30 images

During the 2020−2021 season, we selected 27 nearly cloud-free
HLS30  overpasses  (Table  2),  which  is  a  remarkable
achievement. For comparison purposes, we carried out a search
in the Earth Explorer platform to verify the number of Landsat
Operational  Land  Imager  (OLI)  overpasses  available  in  the
study area for  the same time period considered in  this  study
(October  2020  to  September  2021),  using  a  cloud-cover
threshold  of  10%.  Only  9  out  of  24  scenes  were  available.
However, despite the high number of nearly cloud-free HLS30
images, none of them was obtained in December, January, or
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February, which correspond to the local rainy season. In a study
developed  by  Parente  et  al.  (2017),  80%  of  the  Brazilian
territory presented less than 12 cloud-free OLI images in 2015,
which undermines any analysis involving monitoring of annual
crop plantation and production.

The  balance  between the  spatial  and  temporal  resolutions  of
time  series  is  one  of  the  biggest  challenges  in  agricultural
monitoring  based  on  satellite  data.  While  MODIS  sensor
provides a high-frequency revisiting rate (1−2 days) and coarse
resolution data  (250 m),  Landsat  8  OLI (and,  more recently,
Landsat 9) provides images with 30 m spatial  resolution,  but
with coarser temporal resolution (16-day), which can result in
gaps, especially in the rainy season (Prudente et al., 2020; Silva
Júnior et al., 2020).

Data Tile Date Bands

HLS
T22KEF
T22KFE
T22KFF 

2020-10-04
2020-10-14
2020-11-28
2021-03-28
2021-04-21
2021-04-22
2021-05-02
2021-05-27
2021-06-16
2021-06-21
2021-06-24
2021-06-26
2021-07-01
2021-07-06
2021-07-10
2021-07-16
2021-07-21
2021-07-26
2021-07-31
2021-08-11
2021-08-15
2021-08-20
2021-08-25
2021-08-27
2021-09-04
2021-09-19
2021-09-24

S30 (2, 3, 4,
8A, 11 and

12);
L30 (2, 3, 4,
5, 6 and 7)

Table 2.  Detailed information about the Harmonized Landsat 8
Sentinel-2 (HLS) data used in this study.  

The Multispectral  Instrument (MSI),  onboard the Sentinel-2A
and Sentinel-2B satellites, indeed provide improved spatial (10
and  20  m),  temporal  (5  days),  and  spectral  (13  bands)
resolutions  in  relation  to  the  Landsat  OLI.  Nevertheless,  its
computational demand is relatively high, making its application
in large-scale monitoring more time-consuming. In this sense,
the ready-to-use HLS30 freely available data can balance the
high processing time demanding issue of Sentinel-2 datasets and
the  relatively  low  temporal  resolution  of  Landsat  datasets.
Another advantage of the HLS30 is the possibility of having a
higher number of nearly cloud-free images in comparison with
the datasets involving only Sentinel-2 and Landsat 8 images.

3.2 Classification results and accuracy assessment

Figure 3 shows the result of the RF classification for the study
area while Table 3 shows the total area mapped by each LULC
class. It can be noted the predominance of agricultural activity
in  the  study  area.  Approximately  89% of  the watershed  are
destined  for  the  production of  grains, sugarcane,  irrigated

agriculture,  and  cultivated  pastures.  The  native  Cerrado
occupies  12% of  the watershed,  distributed mainly along the
watercourses as riparian forests. A set of 62 center-pivots were
visually identified, occupying an area of 4397 ha.

There is a predominance of double cropping system rather than
the single cropping system, as showed by the two well-defined
peaks of NDVI values during the rainy season. In the case of the
renovated sugarcane fields, there is only one growing peak in
the rainy season, since the sugarcane will be planted for the next
productive  cycle  (Figure  2).  Although  we  expected
misclassification between sugarcane and cultivated pasture, as
they  are  both  grasses,  we  found  a  quite  different  spectral
responses  throughout  the  year.  Cultivated  pastures  are  much
more sensitive to the strong climate seasonality of the Cerrado
than sugarcane plantations.

Figure 3. Final map produced through the Random Forest
classification with the Harmonized Landsat 8 Sentinel-2

multispectral dataset, showing the target classes and masked
areas.

Classes Area (km²) Area (%)
Sugarcane 317.74 20.76

Annual crops 694.03 45.35
Cultivated pasture 290.77 19.00

Cerrado 163.43 10.67
Renovated* 64.58 4.22

Table 3.  Total area mapped with Harmonized Landsat 8
Sentinel-2 (HLS30) images and Random Forest classifier, per

class.  *Renovated sugarcane fields.

The RF model achieved an overall accuracy and a Kappa index
of 0.99. The 10-fold cross-validation assured the performance
by  showing  the  same  coefficient  for  both  metrics  (0.99),
indicating  an  almost  perfect  level  of  agreement  between
estimated  and  predicted  data.  Table  4  shows  the  confusion
matrix along with the UA and PA for each class. The results
show that the HLS time series was very efficient in capturing
the differences of  the spectral  response variations among the
LULCs, producing only three occurrences of misclassifications
in more than 3000 pixels in the validation subset. 
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Although  comparing  the  results  from  other  studies  is  not
straightforward,  as  it  involves  different  scales,  areas,  and
products, the results obtained by our study are very promising.
Bendini et al. (2019) analyzed the Landsat 7 and Landsat 8 time
series  converted  into  a  vegetation  index  from  different
agricultural  lands  of  the  Brazilian  Cerrado  by  a  temporal
interpolation  technique  and  RF  classifier.  They  achieved  an
accuracy  higher  than  0.88  involving  more  than  10  LULC
classes.  Oldoni  et  al.  (2019),  using  metrics  derived  from
Landsat  8  multispectral  bands  and  RF  classifier,  obtained  a
Kappa index of 0.72 and an overall  accuracy of  76%.  These
authors analyzed seven LULC classes in the Paraná State. Souza
Júnior et al. (2020) mapped three decades of LULC classes for
the entire Brazilian territory using a hierarchical classification
of the Landsat image collection available in the Google Earth
Engine platform. The accuracy of the RF-based classification
ranged from 75% to 95%, depending on the biome. At the first
level  of  the  hierarchical  classification,  the  authors  observed
accuracy of 81% for the Cerrado biome.

Class Sug. Ann. Past. Cer. Ren.
Sug. 633 0 0 0 0
Ann. 1 680 0 0 0
Past. 0 0 641 0 0
Cer. 2 0 0 711 0
Ren. 0 0 0 0 669
UA 100 99.85 100 99.72 100
PA 99.52 100 100 100 100

Table 4.  Confusion matrix and user’s (UA) and producer’s
accuracy (PA) for each class obtained with the Random Forest
classification applied to the Harmonized Landsat 8 Sentinel-2
multispectral dataset. Sug. =  sugarcane; Ann. =  annual crops;

Past. =  pastures; Cer. =  Cerrado native vegetation; Ren. =
renovated sugarcane fields.

As already discussed, the 30−meter temporal resolution is one
of  the  main  advantages  of  the  Landsat  multispectral  images
because  it  allows  a  relatively  detailed  mapping  at  regional
scales,  with  lower  computational  cost.  However,  the  low
revisiting  frequency  of  the  Landsat  does  not  permit  the
acquisition of consistent time series, often requiring the use of
interpolation  techniques  to  reconstitute  highly  contaminated
images  by  clouds.  Silva  Júnior  et  al.  (2020)  compared  the
performance of  MODIS,  Landsat 8 OLI,  and Sentinel-2 MSI
sensors  in  mapping  soybean  production  in  the  Mato  Grosso
State.  The Landsat images resulted in the worst  performance
because of their low number of available images. By adopting a
3% threshold for cloud cover, Oldoni et al. (2019) obtained 11
Landsat 8 OLI images for  two consecutive agricultural  years
(2015−2016  and  2016−2017)  in  a  study  carried  out  in  the
Paraná State. Montibeller et al. (2019) also pointed out the low
temporal resolution of the Landsat 8 OLI as the main source of
misclassifications. 

In  this  study,  we  relied  on  multispectral  bands  instead  of
vegetation  indices.  Montibeller  et  al.  (2019)  showed  that
spectral-temporal  profiles  using  multispectral  bands are  more
efficient  than  the  vegetation  indices  in  distinguishing
agricultural  classes  such  as  soybean,  maize,  and  sugarcane.
Chaves  et  al.  (2019)  also  reported  that  the  combination  of
multispectral  bands  in  the  shortwave  infrared  and  red-edge
wavelengths, in general, improves classification performances.
The authors also showed that the machine learning algorithms
improved  the  mapping  accuracy..  They  also  highlighted  the
potential of open-access harmonized images.

Mapping the spatial  distribution of  agricultural  areas  and the
types and patterns of cropping systems is an important activity
for crop yield estimation and LULC planning. They are parts of
a  critical  stage  of  studies  involving  remote  sensing  in
agriculture  (Bègué  et  al.,  2018;  Chen  et  al.,  2018).  The
acquisition of  consistent  cloud-free time series  is  the biggest
challenge for the accurate and detailed mapping of agricultural
systems in Brazil. The higher the density of the time series, the
higher the chances of detecting variations inherent to the crop
phenology. This information is essential not only to characterize
each  crop  cycle  but  also  to  distinguish  crop  types  and  crop
management  techniques  (Prudente  et  al.,  2020;  Bègué  et  al.,
2018).  The HLS dataset  was able  to  capture  these variations
even without cloud-free images from December to February. 

The HLS data were efficient in mapping LULC classes found in
the  Santa  Barbara  watershed located  in  the  southwest  of  the
Brazilian Cerrado with an accuracy of 0.99, an almost perfect
level  of  agreement,  and  precision  of  at  least  99%  in  the
detection of sugarcane and renovated sugarcane fields, annual
crops,  native  vegetation,  and  pasturelands.  Since  2021,  the
HLS30 version 2.0 is providing more regular and high-quality
data over the Cerrado and the results can be even better for new
studies.  Although  there  are  still  challenges  and  some  issues,
especially  regarding  time  gaps  over  the  Cerrado  and
irregularities in the F-mask, HLS is an important source of open
access, multitemporal dataset in which other applications can be
explored.  These  images  can  be  processed  through  different
image  classification  methods  and  different  enhancement
techniques such as the vegetation indices and spectral mixture
modeling. Their accuracy and uncertainties should be evaluated
in other landscape conditions from the Cerrado biome or other
ecosystems.

This study was carried out using training and validation data
acquired remotely. Therefore, further investigations using field
data as the ground truth to train and validate the classifiers may
bring more reliability of such models. The main advantage of
the  HLS  data  cube,  that  is,  the  high  temporal  resolution
combined with the 30−meter resolution,  was demonstrated in
this  study.  The  ongoing  studies  involving  other  agricultural
frontiers  in  the  Brazilian  Cerrado  will  be  able  to  show  the
potential  of  this  time  series  to  monitor  food  and  energy
production in this biome more consistently.

4. CONCLUSIONS

1. The HLS30, multispectral dataset showed high potential for
mapping rainfed crop production in the Brazilian savanna.

2.  We  were  able  to  count  on  27  nearly  cloud-free  HLS
overpasses within the period from October 2020 to September
2021, overcoming the low density of time series if only Landsat
or Sentinel-2 images are considered. 

3. Our results showed the potential of HLS30 to support public
policies  that  rely  on  accurate  LULC  maps  of  the  Brazilian
savanna.
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