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ABSTRACT:

Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more defor-
estation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland
with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big
challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context,
this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated:
one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested
(Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher
than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random
Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with
different rates of cloud cover.

1. INTRODUCTION

In recent years, there has been an increasing search for regen-
erative agricultural practices worldwide because traditional agri-
culture is not able to keep up with the population growth rate in
a sustainable way anymore (Ray et al., 2019). In this circum-
stance, aiming at regenerative agricultural practices, one studied
approach is the Integrated Crop Livestock System (ICLS), where
in the same field there is a synergism between crop and livestock,
increasing the productivity without needing more land (Cordeiro
et al., 2020). This practice could significantly improve food pro-
duction regarding sustainability and productivity since it brings
nutrients for degraded soils, improving the livestock system at
the same time that the area could be used for crop production
(Gil et al., 2018).

The ICLS has three main objectives, (i) reduce the soil cyclical
nutrients loss and consequently increase plant productivity, (ii)
organize agricultural practices in a way that contribute to eco-
system services, and (iii) increase economic resilience to adverse
hypotheses from an economic and environmental point of view
(Moraine et al., 2014). For these reasons, some countries, such
as Australia, Brazil, France, New Zealand, and the United States,
are stimulating the adoption of ICLS in agricultural areas (Garrett
et al., 2017).

Thus, the Brazilian government has a plan for mitigation and ad-
aptation to climate change, where one of the goals is to expand
from 17 to 35 Million hectares of ICLS areas (EMBRAPA, 2021).
However, the main challenge in remotely identifying and monit-
oring this type of system is the high complexity dynamic resulting
from the succession of different land cover and management.

In this framework, agricultural mapping using satellite imagery
increases significantly with the growing availability of high tem-
poral, spatial, and spectral data (Weiss et al., 2020). Optical
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remote sensing imagery is widely used for crop mapping and
monitoring once it presents detailed information about vegetation
components such as chlorophyll and water.

There are a few studies published regarding the use of remote
sensing data to map ICLS (Kuchler et al., 2020, Almeida et al.,
2021). Further, due to the high complexity of the time series,
several studies usually use a time window composed by the en-
tire season as input (Tian et al., 2021). This limits the applic-
ation of methodologies for in-season purposes as well as con-
sumes more time and resources to be done (Zhang et al., 2021).
Recently, in the annual report of the European Commission for
agricultural monitoring, the early-season mapping is highlighted
as one of the three main needed improvements for agricultural
monitoring (Charvat et al., 2020).Some authors are working on
using Sentinel-2 data to provide early-season mapping of crops,
achieving high accuracy for some crop types (Nasrallah et al.,
2018, Tian et al., 2021) In this context, deep learning algorithms
represent state-of-the-art for crop type mapping, which can deal
with highly complex information as well as tend to perform better
with reduced time series (Aduvukha et al., 2021).

Among the deep learning algorithms, deep neural networks are
the most used for remote sensing image analysis (Ma et al., 2019),
with emphasis on Recurrent Neural Network - RNN, for prob-
lems regarding the temporal dimension (Zhong et al., 2019). The
RNNs, are capable of dealing with data sequences in such a way
that the output of the previous time-step is the input data for the
current step (Campos-Taberner et al., 2019), handling temporal
problems (Ma et al., 2019). Regarding the RNNs, the Long-
Short-Term-Memory(LSTM) is a complex Recurrent Neural Net-
work currently considered the state-of-the-art in terms of dealing
with complex problems in the temporal dimension (Almeida et
al., 2021). If compared with a traditional Recurrent Neural Net-
work (RNN), the main idea behind LSTMs is an adapted cell
tends to detect long-term dependencies between variables, be-
sides the fact that it converges faster than the usual RNNs (Géron,
2019). On the other hand, it is also essential to always test ro-
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bust and more easy-to-implement existing classifiers to find the
most feasible approach for practical implementation. Within this
framework, the Random Forest classifier could be considered one
of the most robust and used machine learning algorithms for clas-
sification (Belgiu and Drăguţ, 2016). Furthermore, it is essential
to compare the result obtained by different classifiers with ulti-
mately approaches to perform the classification.

In this background, the present study aims to (i) evaluate the
potential of open remote sensing data to map integrated crop-
livestock systems, (ii) evaluate the possibility of performing an
early-season classification for those systems, and (iii) compare
the performance of a state-of-the-art deep learning algorithm (LSTM)
with a robust machine learning classifier (Random Forest) for
classifying ICLS areas.

2. STUDY AREA AND DATA

The study area comprises a farm located in the western portion of
São Paulo state, and its surrounding fields in the municipality of
Caiuá, at coordinates 21°36’26.3”S and 51°51’57.9”W, with an
area equivalent to 83 squared kilometers (Figure 1). According
to the Koppen classification, the region has a climate Aw type,
corresponding to tropical climate conditions with the dry season
in the winter (Alvares et al., 2013). The average temperature of
the region is 24.1ºC, and the average annual precipitation is 1496
mm (considering the period from 2013 to 2018).

Figure 1. Location of study area and collected ground truth
points in Caiuá municipallity, Sao Paulo state, Brazil.

At the Campina farm, the process of implementing the ICLS star-
ted in 2013 (Cordeiro et al., 2020). In this ICLS, soybean and
forage species (Brachiaria and Panicum) are inter-cropped in the
first and second seasons. At the first season (Summer) there are
two soybean cycles followed by mixed pasture with livestock
presence in the second season (Winter).

2.1 Ground truth data

2955 ground reference points of eight different land cover classes
were collected for this study area. The labels of each point were
attributed to segments previously generated,using the watershed
algorithm, based on temporal compositions of Enhanced Veget-
ation Index (EVI) done using Sentinel-2 imagery (Hossain and
Chen, 2019).

2.2 Satellite data

Images from the Sentinel-2 satellites freely available at the European
Space Agency (ESA) Hub were acquired from September 2019
to August 2020. The pre-processing of images from both satel-
lites was carried out by the Sentinel Application Platform (SNAP)
software offered by the ESA. Regarding the pre-processing of
products from the Sentinel-2 satellites, geometric, atmospheric,
and radiometric corrections were carried out, as proposed by (Ranghetti
et al., 2020). In total, 74 cloud-free Sentinel-2 images(L2A) were
obtained.

To complement the analysis, besides the Sentinel-2 bands (B2,
B3, B4, B6, B8, and B11) vegetation indices were generated as
described in Table 1.

Index Equation Reference
NDVI (NIR−RED)/(NIR+RED) (Rouse et al., 1974)
NDRE (NIR−REDEDGE)/(NIR+REDEDGE) (Gitelson and Merzlyak, 1994)
GNDVI (GREEN −RED)/(GREEN +RED) (Huete et al., 2002)

EVI (2.5 ∗NIR−RED)/(NIR+ 6RED − 7.5BLUE) + 1) (Liu and Huete, 1995)
RED EDGE 1 (REDEDGE/RED) (Cloutis et al., 1996)
RED EDGE 2 (REDEDGE −RED)/(REDEDGE +RED) (Cloutis et al., 1996)

Table 1. Generated vegetation indices description.

3. METHODS

3.1 Early season

Aiming to provide early season classification, three different data-
sets were generated to input in the classifiers. The first one com-
prised the entire season (from September to August), the second
one was composed of 180 days of data (from January to June).
Finally, the last one was composed of 120 days of data (from
January to April). January was chosen as the beginning of smal-
ler datasets because, for ICLS areas, the peak of the annual crop
usually occurs in January, and the pasture starts to be implemen-
ted in April (Dos Reis et al., 2020). Thus, the hypothesis is that
those short time windows would be the most representative since
both comprise the annual crop and the beginning of the pasture
season. Selecting those time windows, is expected to overcome
the main difficulty related with early crop mapping, which is the
lack of meaningful temporal information (Kwak et al., 2021).

3.2 Classifiers

Considering its robustness and its capacity to deal with outliers,
low processing costs, and flexibility (Belgiu and Drăguţ, 2016)
the Random Forest classifier was tested in the present study. Ran-
dom Fores is not known by recognition of temporal dependencies
a sit is probably needed in this study but, many studies already
highlighted its potential to select appropriate features for classi-
fication, especially when dealing with multispectral data as Sentinel-
2 (Benevides et al., 2021). This classifier is considered well
established and broadly applied for crop identification based on
satellite data (Saini and Ghosh, 2018).

Also, considering the high temporal dynamic of the target crop in
this study (ICLS), it could be supposed that the LSTM net would
be adequate to identify the temporal pattern of the ICLS area.
Since once the net could be able to ”remember” that the spec-
tral pattern of an annual crop occurred before a pasture spectral
pattern and further classify it as an ICLS area.

Thus, both classifiers were tested using the three different time
windows. Classifications were conducted in a python environ-
ment, mainly using sci-kit-learn and Tensorflow (Géron, 2019).
The classifiers performance were evaluated based on the over-
all accuracy, f-score, and confusion matrices.For both classifi-
ers the proportion train, evaluation and test was 70%,20% and,
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10%(used for prediction). Also, the Feature importance score
was calculated for RF classifications to identify the relevant dates
and indices for the classification.

3.3 Prediction

Finally, the best result for each classifier was used to predict the
land cover on the study area and surrounding fields, many of them
were the test set (which was not used as input in the training).
This is expected to better provide an overview of the potential of
the model to predict for unknown fields. Thus the spatial distri-
bution and area of each class could be observed.

4. RESULTS AND DISCUSSION

4.1 Exploratory analysis and dataset preparation

Concerning the dataset preparation and exploratory analysis, it
was observed that the classes were highly unbalanced, being the
class ’Cultivated Pasture’ representing more than 50% of the samples.
Also, the classes Wet Areas and Water were joined due to the
few samples of each class and the impossibility of distinguish-
ing among them relying on ground truth data. Also, to deal with
the problem of unbalanced data, the SMOTE algorithm was per-
formed in the training dataset (Wang et al., 2006). This algorithm
generates synthetic data for classes with few samples until they
achieve the same number of samples as the predominant class
(Cultivated Pasture) (Wang et al., 2006).

4.2 Early Season

Regarding the early season results, the random forest classifier
using the Sentinel-2 data achieved superior performance in terms
of overall accuracy even using a reduced time window (Table 2).
The overall accuracy was even higher using 180 days of data. On
the other hand, LSTM had a higher decrease in terms of overall
accuracy if compared to the use of the entire season dataset and
the 180 or 120 days dataset. However, the accuracy remained the
same for 180 and 120 days datasets.

Algorithm 365 days 180 days 120 days
RF 0.86 0.87 0.86

LSTM 0.85 0.79 0.79

Table 2. Overall Accuracy of LSTM and random forest(RF)
classifiers using three different time windows as inputs.

In this context, some authors have already tested the random forest
classifier for early season detection of different crops, achieving
acceptable results (more than 85% overall accuracy). They found
that for summer crops in Kansas, the USA, five months of data
was the optimal time series for identifying crops, rather than the
entire growing season (Hao et al., 2015).

In terms of accuracy per class, in the confusion matrices the recall
values are plotted, demonstrating that for both classifiers the main
problem was the attribution of less representative classes to the
class ’Cultivated pasture’(Figures 2, 3). This result is expected
since the cultivated pasture class has much more samples in the
dataset, however, it was expected that the SMOTE technique was
able to reduce this effect, as could be seen, in general, it was not.

Regarding the feature importance, there was no difference between
time windows in terms of the selected band for optical data. For
all the intervals, B11 (SWIR) had the higher importance (Table
3). The shortwave infrared region usually represents the con-
tent of water and other biochemical components present in the

leaves and was already indicated as a good source of information
for crop type classification (Zhang et al., 2017). Further, regard-
ing the most important feature for each time interval, it could
be seen that all three are at the beginning of the provided time
series (October for the entire season and January for shorter time
series which start in January). Regarding the ICLS areas, at this
period, there are only annual crops planted, the pasture comes
in March/April. Thus, this result could suggest that the Random
Forest is not identifying the ICLS system but the annual crop in-
stead. Since there are no other fields with a single crop than the
ones with ICLS, the accuracy for ICLS is high.

Time Window Band Date
Entire season B11 2019-10-25

180 days B11 2020-01-01
120 days B11 2020-01-01

Table 3. Entries with the highest feature importance in three
different time windows.

Figure 2. Confusion matrix(Recall values) for random forest
classifier (180 days).

Finally, its important to highlight that this approach needs to be
adapted accordingly to the growing season of each region, to as-
sure that the temporal window comprises the vegetative peak of
the annual crop.

4.3 Classifiers

The best overall accuracy for the RF classifier was obtained using
’nestimators’(The number of trees in the forest) equals 1000. For
the LSTM net, the architecture was one LSTM layer (200), fol-
lowed by one dropout layer (0.5), one dense layer (64), a batch
normalization layer, another dense layer (128), another dropout
layer (0.3), and finally a dense layer with the softmax activation
function. Also, the batch size was 32 and 1000 epochs (early
stopping applied). For the LSTM algorithm, more complex ar-
chitectures were tested. However, it did not change the accuracy
in more than 1% so, the simpler architecture was adopted (Zhong
et al., 2019).

Concerning the performance difference of both classifiers, it could
be seen that random forest achieved a better result than LSTM, if
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Figure 3. Confusion matrix(Recall values) for LSTM classifier
(Entire Season).

we consider that they have similar Overall accuracy when RF is
using only six months of data and LSTM the entire season dataset
2. Similar overall accuracy between random forest and LSTM for
crop type mapping was already identified in other studies (Zhong
et al., 2019). Also, it could be noticed that when reducing the
length of the time windows, the accuracy of the LSTM net de-
creases more than the random forest Accuracy (Table 2). This
result is expected since the LSTM net uses the time series to build
its predictions (Sun et al., 2019). Thus, based on our results, it
could be argued that maybe LSTM nets could be not so ideal for
early season mapping.

In this perspective, there are three possibilities to explain the in-
ferior performance of LSTM for the other classes and even for
smaller time windows, (i) the architecture is too simple for this
problem, (ii) the time series is too long for LSTM correctly detect
dependencies among it, or, (iii) there is not sufficient data to train
the model. Many authors highlighted that one of the main prob-
lems related to the use of Deep Learning is its high dependency
on large amounts of data for train (Géron, 2019). However, it is
interesting to notice that for our target class (ICLS) the LSTM net
obtained a higher accuracy(0.98) than the RF classifier (0.87).

4.4 Prediction

Using the best model for each algorithm (Entire Season - LSTM,
180 days - Random forest), two predictions for the entire study
area were made (Figure 4). It could be seen that LSTM net
probably over predicted many shrub areas since, accordingly to
ground reference data, there is more pasture areas than shrub pas-
ture areas surrounding the study area (Figure 4 - A). However, it
could be argued that maybe, LSTM net is distinguishing pasture
areas with the presence or absence of cattle, identifying temporal
variations in vegetation indices, but, more ground truth data is
needed to validate this hypothesis. Also, for our main interest
class (ICLS), if a comparison is made between the prediction
from LSTM and random forest, the ones identified by RF are
more gathered than the ones identified by LSTM, looks like both

nets missed some ICLS areas, but RF was more coherent with the
ground truth (Figure 4).

Figure 4. Predictions for the best result for each algorithm (A -
LSTM (Entire season), B - random forest (180 days)).

The prediction for the random forest algorithm closely represents
the results in the confusion matrix (Figure 2), it means that the
more frequent class in the map is Cultivated pasture. Probably
some of those fields belong to a less representative class (Figure
4). On the other hand, the prediction for the LSTM model clearly
overpredicted shrub pasture fields, and this is not present in the
confusion matrix (Figure 3).

Also, it needs to be highlighted that some regions were not cor-
rectly identified, probably due to required corrections in the seg-
mentation algorithm. This is the case of some wet areas/native
forest fields (mostly at the top of Figure 4), where LSTM clas-
sified as ICLS and RF classified it as Eucalyptus or Cultivated
pasture.

5. CONCLUSION

The aim of this study was to evaluate the potential of Sentinel-2
data to map integrated systems. The Random Forest and LSTM
were able to identify ICLS with accuracy equal to or higher than
85%. Regarding the test of the early-season approach, we achieved
high accuracy using only 180 days of data using the Random
Forest classifier, half of which is commonly used by most pub-
lished studies based on multi temporal classification, whose focus
is on an entire season of data.

Comparing both classifiers, the Random Forest was superior to
LSTM in the three tested periods (365 days: OA 86%; 180 days:
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OA 87%; 120 days: OA 86%). I.e., LSTM showed limitations
for the early-season approach because of its architecture suggest-
ing the test of more effective networks for our problem. Finally,
based on our results, there are many different next steps to be
suggested. Regarding the early-season approach, another study
testing different time windows could be performed to achieve the
highest accuracy as early as possible. Also, further studies could
increase the complexity of the proposed LSTM net, intending to
reach its maximum possible performance before discarding this
net. Additionally, another neural net such as Transformer could
be tested to identify ICLS, since this net is presenting promising
results for crop type mapping recently.
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