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Abstract: Biomaterials come from natural sources such as animals, plants, fungi, algae, and bacteria,
composed mainly of protein, lipid, and carbohydrate molecules. The great diversity of biomaterials
makes these compounds promising for developing new products for technological applications. In
this sense, antioxidant biomaterials have been developed to exert biological and active functions
in the human body and industrial formulations. Furthermore, antioxidant biomaterials come from
natural sources, whose components can inhibit reactive oxygen species (ROS). Thus, these materials
incorporated with antioxidants, mainly from plant sources, have important effects, such as anti-
inflammatory, wound healing, antitumor, and anti-aging, in addition to increasing the shelf-life of
products. Aiming at the importance of antioxidant biomaterials in different technological segments as
biodegradable, economic, and promising sources, this review presents the main available biomaterials,
antioxidant sources, and assigned biological activities. In addition, potential applications in the
biomedical and industrial fields are described with a focus on innovative publications found in the
literature in the last five years.
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1. Introduction

There is growing interest in the biomaterial field, which combines expertise from many
disciplines, including materials science, physics, engineering, chemistry, and medicine [1].
A biomaterial is a synthetic or natural material intended to interact with biological systems
and can direct the course of any therapeutic or diagnostic procedure. Its concept and
application have been expanded from medical instruments to medical products, including
implantable and interventional devices, in vitro diagnostic agents, and drugs and biological
products [2,3].

If a biomaterial is implanted, it typically triggers some degree of inflammatory re-
sponse and accompanying healing. If it turns into an excessive inflammation, reactive
oxygen species (ROS) are ordinarily produced to regulate the healing response. Therefore,
the biomaterial’s function may be negatively affected both short and long term [4]. ROS
are products of oxygen metabolism identified as molecules with unstable bonds or species
with one or more unpaired electrons on the external orbital. Besides the endogenous origin,
the generation of these species can also occur via exogenous causes and provides instability,
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causing exceptional reactive behaviors. When ROS production increases, the balance be-
tween their amount and the antioxidant defense is altered, and oxidative stress occurs [5].
This imbalance has implications for many disease states, including cardiovascular damage,
inflammation, cancers, and neurodegenerative diseases [6].

Antioxidants are well-known compounds that can play a significant role against these
disorders, eliminating harmful ROS excess, and inhibiting or delaying molecular oxidation.
Therefore, to overcome the problems arising from oxidative stress, the development of
biomaterials with antioxidant properties occupies an increasing segment in the current
panorama. Furthermore, engineering antioxidant properties into a material may be an
important goal to improve biocompatibility and propose a solution against oxidative
degradation. In this sense, there is a growing effort toward searching for antioxidant
molecules that are non-toxic and can be used as antioxidants and preservatives in food,
cosmetics, and medicines, as well as in different therapeutic applications [5].

Antioxidant biomaterials have been used in drug delivery systems, soft tissue regen-
eration, chronic wound healing, and cosmetical applications. Besides using antioxidant
materials in biomedical applications, they can also be incorporated into widely used poly-
mers for stabilization and functionalization. Antioxidants can increase the stability of
conventional polymer by inhibiting photo and thermooxidative degradations without
undesirable effects associated with releasing toxic additives. Likewise, studies regarding
functionalization are also important, especially for active food packaging development,
aiming to delay or prevent oxidative deterioration of packaged food [6].

This review presents an update of currently available biomaterials endowed with
antioxidants and provides an overview of their main biological properties and applications
in various sectors.

2. Biomaterials

Biomaterials are derived from synthetic or natural renewable sources. They must
present characteristics such as immunogenicity, availability, low production cost, and resis-
tance to sterilization processes to be considered biodegradable, economical, and promising
alternatives for applications in different industrial areas [7]. The conscious production of
biomaterials presents a viable and sustainable alternative for replacing packaging [8] and
textile materials [9], as well as applications in the areas of biomedicine and dentistry [10,11].
Some biomaterials show biological properties derived from raw material sources. These
biomaterials have attracted investigators because of their antioxidant properties. Therefore,
this review is focused on antioxidant biomaterials from natural sources for health and
food applications.

Natural biomaterials can come from living organisms such as animals, plants, fungi,
algae, and bacteria (Figure 1). Thus, there is a diversity of biomaterials spread throughout
nature, which can be formed by chains of already known molecules such as proteins,
carbohydrates, and lipids.
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Proteins are produced especially by members of the animal kingdom; collagen, keratin,
and gelatin, in particular, are used for pharmaceutical and food applications. Collagen
and keratin are long filamentous fibrillar proteins that make up the extracellular matrix
of animal cells, known as scleroproteins. The versatility of these biomaterials is reflected
in diverse areas of application in biomedicine, such as wound healing, tissue engineering,
surface coating of medical devices, and skin supplementation. In this sense, the biocompat-
ibility of these proteins contributes to the successful application of these biomaterials [11].
Furthermore, gelatin, a protein characterized as partially hydrolyzed collagen, has wide
applicability in food production, to modify texture, retain water, foaming, emulsifying,
and stabilizing colloidal systems [12]. In addition, gelatin can be used as an encapsulating
agent, as a delivery system for drugs and bioactive compounds, and in the production of
biological tissues, due to its biocompatibility, non-toxicity, and biodegradability [13].

Fatty acids and waxes are produced by insects such as bees. These components can
be used to develop solid lipid nanoparticles used as drug delivery systems for different
medications [14].

The biomaterials derived from carbohydrates are chiefly presented as polysaccharides,
which plants, bacteria, and algae can originate. Cellulose, consisting of a chain of glucose
joined by β-(1→4) bonds, can be produced by plants and bacteria. The use of cellulose
as a biomaterial involves the production of antimicrobial, biodegradable, and antioxidant
packaging, emulsifier, texture modifier, drug and polyphenol delivery systems, skin care
products, and heart valves and blood tubes [15]. Starch, a chain of glucose residues linked
together by α-(1→4) glycosidic bonds (amylose) and ramified by α-(1→6) glycosidic bonds
(amylopectin), is formed as an energy reserve in plants. Starches have a gelling capacity
and, therefore, are widely used in the food industry as texture modifying agents. In
the case of biomaterials, starches can be used in the production of biopolymers such as
ethylene and polyethylene, contributing to the reduction of consumption of materials
derived from petroleum [16]. Chitin and chitosan, widely used in tissue engineering due
to their biocompatibility, can be produced by some fungi and crustaceans. Chitin is a
semicrystalline homopolymer of β-(1→4)-linked N-acetyl-D-glucosamine. Chitosan is
obtained by boiling chitin in potassium hydroxide, making it soluble in organic acids [17].
Gelling polysaccharides such as alginate, agarose, and carrageenan are mainly extracted
from algae. They have been used industrially as thickeners, emulsifiers, gelling agents,
and film-forming agents, offering a unique texture for food products, with significant
application also in biotechnological or biomedical areas [18–20].

All of these biomaterials can be produced or used as inspiration for the production
of similar artificial materials in order to develop new products for industrial and medical
applications. However, natural sources can improve biological properties, such as the
antioxidant activity of such biomaterials.
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Among the biomaterials that have been developed, antioxidant biomaterials are
promising in this area [21,22]. These biomaterials can inhibit excess superoxide, hydroxyl,
hydroperoxyl, and hydrogen peroxide radicals, also known as reactive oxygen species
(ROS), which characterizes their antioxidant capacity. ROS are essential for the regulation
of metabolism. However, their excess, caused by several extrinsic factors, can affect their
healthy functioning. Thus, antioxidant biomaterials may have several positive health
effects, for example, the treatment of inflammatory diseases [23], metabolic diseases [24],
and wound healing [25]. The topic of antioxidant biomaterials and their biological effects
will be explored in detail in the following sessions.

According to the Web of Science database [21], there are 1460 registered publications
searched through the “antioxidant biomaterials” keyword, of which 168 are literature
re-views. These publications are divided by field, highlighting Materials Science Biomateri-
als, Engineering Biomedical, Polymer Science, Materials Science Multi-disciplinary, and
Biochemistry Molecular Biology (Figure 2B). Furthermore, there is a prospect of growth in
the number of publications per year, as shown in Figure 2A. Thus, antioxidant biomaterial
technology is a promising alternative for improving materials science technology.
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2.1. Antioxidant Biomaterials

The accumulation of ROS is responsible for the lipid peroxidation of the hydroxyl
radical, hydrogen and superoxide anion. ROS are associated with alterations and damage
to cellular constituents (membrane lipids, nucleic acids and proteins), which signal several
complications for human health (inflammation, proliferation and differentiation of stem
cells, chronic wounds, bone defects, Parkinson’s and Alzheimer’s diseases, among others)
and negative implications for food (reduction of shelf life, change in taste, aroma and
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odor) [26,27]. In this context, natural antioxidant biomaterials become promising to inhibit
or delay molecular oxidative stress through the release of compounds with antioxidant
activity, as shown in Figure 3 [26].
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Thus, the functionalization of these biomaterials becomes a promising strategy for ap-
plication in different technological segments, such as tissue regeneration engineering, active
packaging for food, and hydrogels for the treatment of chronic diseases and inflammations
(applications described in detail in Section 4 of this review article). In addition, new smart
biomaterials are being developed to programmably modulate oxidative stress [5].

2.1.1. Carriers and Antioxidants
Marine Organisms

The use of marine organisms to develop antioxidant biomaterials has also been well
explored to remove ROS responsible for molecular oxidation. For example, in the study by
Wang et al. [27], hydrogels were formed based on recombinant thrombospondin antioxidant
protein (rich in cysteine residues), which is extracted from adhesive components of sea
anemones. These hydrogels were able to prevent cellular oxidative damage, decrease lipid
oxidation in the skin of mice, and stimulate endogenous antioxidant systems. In addition,
they showed biodegradability, biocompatibility, and moisture resistance.

Carrageenan films (sulfated polysaccharides from red seaweed), ulvan hydrogels (sul-
fated polysaccharides from green seaweed), and alginate hydrogels (obtained from brown
seaweed) also show numerous bioactive antioxidant properties and promising viscoelastic
properties for use in medical applications, food or even as anti-polluting agents [27–29].
Like alginate, chitosan polymers (polysaccharides extracted from the exoskeletons of crus-
taceans) are the matrices most used as biomaterials associated with antioxidants. The study
by Kaczmarek-Szczepańska [30] developed antioxidant 3D scaffolds by cross-linking chi-
tosan and collagen polymers in glyoxal solution. After loading the matrix with melatonin,
this biomaterial presented maintenance of mitochondrial homeostasis and a cleaning of
ROS under stress conditions, offering, therefore, protection of the cells.

The low molecular weight chitosan production gives the biomaterial greater solubility
at different pHs, swelling capacity (0.2–2.0 mg/mg) required for an effective delivery
system, and an enhancement of radical scavenging activity (58–75%). This type of chitosan
can be obtained mainly by depolymerization from the solution plasma process [31]. Despite
the versatility, rapid cross-linking, and water solubility characteristics of chitosan itself, its
derivatives are also effectively employed as antioxidant biopolymers [32–35].
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In this context, Ali et al. [32] developed a biopolymer derived from chitosan imine
through chemical modification (Schiff base). As a result, the antioxidant activity showed the
potential to reduce intracellular ROS and stop bacterial growth, as well as non-cytotoxic and
biocompatible characteristics. Jafari et al. [33] used the oxidative degradation of chitosan
by means of microwave-assisted irradiation to produce the bioagent chitooligosaccharide,
whose developed films showed antioxidant activity, improved biological activities, cytocom-
patibility and a positive effect on fibroblast migration. Zhou et al. [34] also produced films
from tyrosine residues in silk fibroin (Bombyx mori) enzymatically oxidized using laccase;
later, the Schiff base reactions and Michael addition promoted the coupling of chitooligosac-
charide. This functionalization was responsible for the antioxidant characteristic of the
biomaterial, which was able to improve 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) free radical scavenging.

Tan et al. [35] incorporated α-lipoic acid into chitosan acetate films to improve its
antioxidant effect, which had a reducing effect on superoxide, hydroxyl anions and DPPH
radicals. This characteristic is associated with the action of α-lipoic acid, which promotes
the amortization of oxygen free radicals, chelating metals, recovery of oxidized antioxidants,
as well as aiding the functionality of enzymes with antioxidant properties.

The association of different polysaccharides has become an alternative strategy to
improve the synergistic properties of composite films. Don et al. [36], for example, de-
veloped chitosan films with ulvan, whose biomaterial showed antioxidant activity and
bleaching properties and controlled ulvan release of 40–65% for 12 h. Tan et al. [37] devel-
oped composite films of chitosan ascorbate and methylcellulose, which exhibited barrier
properties against visible ultraviolet light, excellent mechanical properties and increased
free radical scavenging.

2.1.2. Antioxidants
Microorganisms and/or Plant Extracts

Copolymers produced by microorganisms and functionalized with antioxidants are
also promising as biomaterials. Generally, these biopolymers, based on
poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-P(3HB-co-3HV), poly(3-hydroxybutyrate-
co-4-hydroxybutyrate)-P(3HB-co-4HB) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
-P(3HB-co-HHx), can be obtained from Escherichia coli [38].

In the study by Bhatia et al. [38], the copolymer poly(3-hydroxybutyrate-co-3-
hydroxyvalerated)-P(3HB-co-3HV) was functionalized with ascorbic acid, whose bioma-
terial presented antioxidant effects, biodegradability, better mechanical properties, ther-
mal stability (thermal degradation at 295 ◦C) and potential as a low-cost alternative to
petroleum-based polyesters. Similarly, Roy and Rhim [39] developed functional poly(lactic
acid) films incorporated with curcumin, which also showed antioxidant effects, biodegrad-
ability and better mechanical properties. In addition, the films exhibited barrier properties
against ultraviolet (UV) rays and water vapor. This barrier property against UV rays is
associated with the presence of chromophores, organic functional groups that establish
the conversion of visible and UV spectra into small differentiated molecules, in the struc-
ture of phenolic compounds responsible for the antioxidant activity of plant extracts such
as curcumin.

Polyphenols from different plant sources have been widely used in biomedicine
for the prevention and treatment of cardiovascular, neurodegenerative, bone and cancer
diseases, due to their antioxidant properties and targeting of molecular pathways involved
in the generation of ROS [5]. Phenolic compounds such as ferulic acid, catechin, and
cyanidin-3 from extracts of leaves and flowers (Camellia sinensis, Yerba mate and Hibiscus) and
fruits (acerola, melon, kiwi, tomato, apple and pomegranate) have shown an antioxidant
capacity, a determinant for their use for photoprotection against UV rays [40]. Mainly, when
incorporated into bacterial cellulose membranes, whose biopolymer is produced especially
by the strain Gluconacetobacter xilynus, their production can be optimized using several
parameters such as choice of fermentation method, production conditions (substrate, co-
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substrate, pH, temperature, dissolved oxygen and inoculum rate) and statistical methods
of experimental design [16].

Studies have shown that polyphenols can contribute to the mechanical, biological and
degradation properties of polymers intended for packaging and bone tissue regeneration.
The study carried out by Zhao et al. [41] showed that polyphenols extracted from Fructus
chebulae are useful for biomedical and pharmacological applications, due to the presence of
pyrogallol and hydrolysable tannins, which have phenol carboxylic acids of high nutritional
value and high antioxidant activity. These polyphenols were efficiently incorporated into
gelatin hydrogels as crosslinking agents, providing improved physical properties to the
hydrogel. Multifunctional and regenerative hydrogels developed with the addition of
green tea extract (Camelia sinensis) showed mechanical strength, biocompatibility and
antioxidant activity via ROS assay. In addition, they helped in the healing of diabetic
wounds, facilitating the pro-angiogenic properties [42].

Studies show that flavonoid-based polymeric materials may have better antioxidant
and antimicrobial properties compared to monomeric polyphenols [43]. The flavonoid
epigallocatechin gallate (EGCG) is available in high concentrations in red to violet colored
fruits. Polycaprolactone films coated with EGCG increased cell adhesion and were effective
for dermal tissue regeneration [44]. Another flavonoid with important applications in bio-
materials is naringenin, a natural and antimicrobial additive obtained mainly from citrus
fruits [43]. The oxidation resistance, thermal stability, and free radical and Cu2+ ion scav-
enging ability of naringenin cross-linked to glycerol diglycide ether makes this biomaterial
promising for application in polymeric packaging with active properties.

The Kerifran exopolymer has also been noted for its antioxidant and probiotic prop-
erties. This biopolymer can be produced from kefir grains, from restricted cultures of
Lactobacillus kefiranofaciens, or from mixed cultures of Lactobacillus kefiranofaciens with Saccha-
romyces cerevisiae, using anaerobic or aerobic conditions and/or ultrasound extraction [45].

Natural polysaccharides can be excellent biocompatible biomaterials for applications
in the food, biofuel, water purification and pharmaceutical industries. Inulin, for example,
is extracted mainly from roots and tubers (onions, garlic, artichokes and yacon) and has
antioxidant activity. However, its derivatives (amino-pyridine, o-(aminoethyl) inulin,
N-(aminoethyl) inulin and diphenyl phosphate) have this potentiated bioactivity, as is
the case for the polysaccharide diphenyl phosphate, which, compared to inulin, has high
antioxidant activity against hydroxyl radicals (98.2%), DPPH radicals (1.6 mg/mL) and
superoxide anion radicals (95.4%) [46].

Arbutin, a glycosylated hydroquinone belonging to the Ericaceae family, is often
found in mitrile, cranberry, uva ursi, strawberry, as well as cereals such as wheat. This
antioxidant has biological properties related to skin whitening and antimicrobial effects,
being potentially applied in the biomedical area. Arbutin-based polymeric coatings showed
good interaction with osteoblast precursor cells and suggested high biocompatibility [47].

Nanoparticles

Antioxidant biomaterials can also be used as a nanoparticle delivery systems. Sebasti-
ammal et al. [48] studied the use of curcumin in alginate to encapsulate hydroxyapatite
nanoparticles (biological molecule and mineral component found in bones), which showed
excellent free radical scavenging efficiency.

Vinay et al. [49] developed an antioxidant biomaterial under the hydrothermal synthe-
sis method from Elaeocarpus ganitrus seed extract with gold nanoparticles, whose covering
and reducing agent constituted by the extract rich in tannins, quercetin, flavonoids, ellagic
acid and gallic acid, reduces chloroauric acid (HAuCl4) into gold nanoparticles.

In the same way, copper nanoparticles can also be synthesized for the development
of bioactive and multifunctional hydrogels. The study by Gong et al. [50], for exam-
ple, aimed to produce a biomaterial with F127-copper nanoparticles using the in situ
coordination method. The formation of the antioxidant hydrogel occurs through the
interaction of sodium phytate (plant-based metal ion complexing agent) with the Cu2+
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of the F127 aqueous solution. Thus, this hydrogel has the ability to efficiently reduce
2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and reduce oxidative stress caused by
lipid peroxidation.

Other Antioxidant Sources

The incorporation of commercial antioxidants into biomaterials also presents signif-
icant potential for drug delivery systems and antioxidant solutions. In the study by Fan
et al. [51], for example, the authors incorporated Edaravone® polyacrylic ester nanoparti-
cles in alginate to be employed as a topical hydrogel of the commercial antioxidant. This
biomaterial was able to present an increase in solubility (5 mg/mL), loading efficiency and
prolonged release of the antioxidant, as well as an inhibition of lipid peroxidation.

Inorganic-organic hybrid biomaterials based on rare earths show promising antioxi-
dant activity associated with their composition of seventeen metals consisting of scandium
and yttrium and fifteen elements of lanthanum. This biomaterial, when incorporated into
hydrogels, nanoparticles, nanofibers or porous scaffolds from materials such as alginate,
gelatin, chitosan, poly-(ε-caprolactone), polyacrylonitrile, poly(vinyl alcohol), polylactic
acid and polyhydroxybutyrate, can be used for biosensor, drug delivery, photodynamic
therapy and tumor theranostics applications [52].

Liquid styrax from Anatolian sweet gum (Liquidambar orientalis Mill.) has been used
for the development of cryogel scaffolds [53]. This biomaterial loaded with liquid styrax
has important antioxidant and antimicrobial properties, due to its ferrous ion chelating
activity, with potential application in tissue engineering.

Biomaterials such as cryogels obtained from hyaluronic acid modified by adipic acid
dihydrazide have also been highlighted as multiphase biological dressings due to their
cytocompatibility, regulation of reactive oxygen species (antioxidant activity) and stable
mechanical strength, since their macroporous structure promotes a high swelling property
required for fluid delivery and/or removal systems [54].

Furthermore, they may depend on the cross-linking between the adsorbent matrix and
the adsorbate explained by electrostatic interactions [40], resulting, therefore, in a search
for antioxidant biomaterials that present high rates of release of their components in a
continuous and prolonged way [45,55], ensuring, then, that antioxidant biomaterials can
play a key role in a wide range of applications, including nanodrug delivery systems, cell
preservation (hypothermic and cryopreservation), food preservation (pathogen control
agents, packaging and biosensors), edible packaging or food stabilizers, water treatment,
orthopedic and dental coverings, wound dressing, and cosmetics with a protective and/or
anti-aging effect [55,56].

3. Biological Properties and Release of Antioxidants from Biomaterials

Biomaterials can be used as carriers of antioxidants or active principles for cells and
tissues with oxidative damage. For the antioxidant therapy to be effective, the delivered
antioxidant must scavenge the correct oxidative species, be delivered directly to the tar-
get tissue, reach effective levels at the intended site, and remain functional as long as
pathologically relevant oxidative stress is present [4].

It is important to relate the release of antioxidants with the biomaterial’s biodegrad-
ability and its type of in vivo application. Some biomaterials require long-lasting duration
in tissues or permanent integration into them; thus, the controlled release of antioxidants
can be achieved more or less slowly in balance with the scaffold’s physical features and
biodegradation [57]. Many loaded antioxidant components are released too quickly, are
released in incomplete form, or are unstable during the release process [27].

Encapsulated or entrapped antioxidant compounds often exhibit poor long-term
stability, and most of time, there is a need for sustained, long-term and targeted therapies.
Encapsulation strategies usually permit only limited depots of antioxidants and function
primarily through passive release or diffusion of antioxidant compounds, limiting their
potential for prolonged and controlled antioxidant therapy. Therefore, smart systems
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seem an interesting approach, where particles only release their antioxidant payload when
triggered by supra-threshold levels of reactive oxygen species, offering the advantages of
protecting the antioxidant from inactivation, providing continuous antioxidant protection
and relatively high mass of antioxidant payload [4].

In general, the release of bioactive compounds depends on solubilization and diffusion
in the biomaterial and solubility of the compound in solution. The biomaterial matrix with
different pore structures and water solubility plays a crucial role in the release of bioactive
compounds [39].

Studies demonstrate different delivery systems of antioxidants incorporated in bio-
materials. Gelatin microspheres loaded with curcumin nanoparticles were developed by
Liu et al. [58]. Curcumin release was greater in the presence of matrix metalloproteinases,
which are generally overexpressed in non-healing diabetic wound sites (Figure 4). Thus,
the system was responsive to these metalloproteinases, and curcumin was released specifi-
cally at the sites to enhance bioactive effects. Another curcumin-related study by Roy and
Rhim [39] evaluated the release of curcumin from poly (lactic acid)-based functional films.
The authors reported a slow curcumin release from the films that started after a few hours
of immersion in water. Furthermore, the release was low, probably due to the low water
solubility of curcumin.
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Wu et al. [59] modified polyvinyl alcohol using citric acid, aiming for the development
of a biomaterial model for therapy of degenerative and inflammatory diseases. Citric
acid was released as a co-oligomer with carbon chain fracture and autopolymerization.
According to the authors, both can degrade into stable molecular monomers (citrate) over
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time, which can provide relatively high antioxidant content and persistent local antioxidant
release. In the work carried out by Fan et al. [51], edaravone-loaded nanoparticles and
nanocomposite hydrogels based on alginate were prepared. Both formulations displayed
sustained release of edaravone over a period of 9 h, and edaravone released from nanocom-
posite hydrogel presented a longer sustained release pattern, which was related to the
complex structure of the matrix. The authors explained that, within the nanocompos-
ite hydrogel system, edaravone should cross two physical barriers, the inner Eudragit
nanoparticles and the outer alginate hydrogel.

Thus, the release profiles of biomolecules from polymeric systems can be controlled by
diffusion, polymer degradation, dose of antioxidant loaded in the system and biomaterial
composition (Figure 4).

Considering the delivery systems of antioxidant molecules described above, antioxi-
dant biomaterials may contributes to important biological properties in the human body,
such as anti-inflammatory, healing, anti-aging, antitumor, immunomodulatory, and antimi-
crobial effects, in addition to tissue regeneration and reconstruction (Figure 5).
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However, the systemic delivery of antioxidants by biomaterials can be influenced
and hampered by some factors related to malabsorption, loss of antioxidant activity and
efficacy [4]. As a result, new biopolymers incorporated with antioxidants have been
developed to maintain the bioaccessibility and bioavailability of antioxidant compounds,
exerting different biological functions in the human body (Table 1).
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Table 1. Biological activities of antioxidant biomaterials.

Source of Biomaterial Type of Biomaterial Function/Effect References

Alginate-chitosan and
tetracycline gelatin Hydrogel

Wound healing and antimicrobial
activity against Escherichia coli and

Staphylococcus aureus
Chen et al. [60]

Peptide conjugated with
caffeic acid Biocosmetic Slows down the natural aging process Lee et al. [61]

Curcumin Hydrogel Wound healing in diabetics Liu et al. [58]

Jujube extract Hydrogel Wound healing in diabetics Huang et al. [62]

Polyvinyl alcohol modified
with citric acid (PVA-C) Films

Inhibition of oxidative stress and
lipopolysaccharide-induced

inflammatory reactions
Wu et al. [59]

Alginate with Edaravone® Hydrogel nanocomposite Antioxidant effect and wound healing in
diabetic mice Fan et al. [51]

Chitosan Film Antimicrobial effect against
Staphylococcus aureus and Escherichia coli De Masi et al. [63]

Tannic acid and
benzalkonium chloride Catheters Bactericidal activity against

Staphylococcus aureus and Escherichia coli Liu et al. [64]

Curcumin-encased
hydroxyapatite nanoparticles Encapsulated Antimicrobial, antioxidant, and

anticancer effects
Sebastianmmal et al.

[48]

PEG, PPG e PDMS with lignin
extracted from coconut husk Nanogel

Accelerated healing of burns, reduced
active oxygen level, and protected

human hepatocyte cells
against apoptosis

Xu et al. [65]

Modified dopamine Hydrogel Wound healing and skin burns
in diabetics Hu et al. [66]

Chitosan Biopolymer Anticarcinogenic and
immunostimulating activity

Ivanova and Yaneva
[22]

Chitosan Hydrogel Dentin-pulp regeneration of teeth and
treatment of periodontitis Fakhri et al. [67]

Tannic acid and collagen Injectable spheres Post-lumpectomy breast
tissue reconstruction Baldwin et al. [68]

Carrageenan Film

Hydrophilicity and high ester sulfate
content; anti-inflammatory, antitumor,

antimicrobial, antioxidant,
anti-hyperlipemic, anticoagulant and

immunomodulatory properties

Wan et al. [28]

Ulvan Hydrogel Anti-coagulation, antioxidant,
antibacterial, and anti-tumor properties Wang et al. [27]

Chitosan with ulvan Film Antioxidant and whitening ability Don et al. [36]

Chitooligosaccharide Film Antibacterial and antioxidant properties
for wound healing Jafari et al. [33]

Elaeocarpus ganitrus extract Gold nanoparticles Antibacterial, antioxidant and cytotoxic
against a prostate cancer cell line Vinay et al. [49]

Thrombospondin protein Hydrogel
Resists oxidative stress damage,

antioxidant, anti-photoaging, and
wound healing effects

Wang et al. [29]

Chitosan with 3-Formylindole Polymer Intracellular ROS reducer, antioxidant,
and antimicrobial properties Ali et al. [32]

α-lipoic acid grafted with
chitosan Film Antioxidant activity Tan et al. [34]
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The study carried out by Wu et al. [59] showed the effects of antioxidant biomaterials
based on polyvinyl alcohol modified with citric acid (PVA-C) on degenerative diseases
induced by reactive oxygen species. The results showed that the citric acid-modified poly-
mer allowed the regulation of redox signaling of mesenchymal stem cells (BMSCs) through
peroxisome proliferator-activated receptor nuclear receptor γ (PPARγ) and superoxide
dismutase (SOD). Furthermore, in vivo assays showed that the PVA-C biomaterial inhibited
oxidative stress and inflammatory reactions induced by lipopolysaccharides (LPS).

Oxygen free radicals are also produced by physical, thermal, or physiological damage
to the skin. These reactive species increase cell wall permeability, causing damage to vascu-
lar endothelial cells and cell necrosis, which makes healing difficult. In this context, several
studies have been carried out on the application of antioxidant biomaterials for wound
healing. Xu et al. [65] demonstrated that nanogels, produced from polyurethane copoly-
mers of polyethylene glycol (PEG), polypropylene glycol (PPG) and polydimethylsiloxane
(PDMS) and incorporated from lignin extracted from coconut shell, can be incorporated
as antioxidant materials in dressings and accelerate the healing process of skin wounds.
In vivo studies showed that lignin-embedded nanogels increased the expression of the cell
proliferation marker Ki67, causing the acceleration of wound healing in mice. Furthermore,
these biomaterials reduced the active oxygen level and protected human hepatocyte cells
(LO2) against apoptosis. Other studies show that hydrogels loaded with natural (jujube ex-
tract [63], curcumin [58], Edaravone® [51] and ulvan—green macroalga [29,36]) or modified
(modified dopamine [66]) antioxidants, used alone or combined, can be efficiently applied
in an on-demand delivery system in wound healing in diabetics. Chen et al. [60] also
developed hydrogels composed of alginate-chitosan and tetracycline gelatin microspheres.
Different concentrations were tested, and hydrogels at 30 mg/mL showed better mechan-
ical and stable properties for wound healing. In addition, the developed biomaterials
showed significant inhibition of Escherichia coli and Staphylococcus aureus bacteria.

Incorporated biomolecules of antioxidant compounds, in addition to healing skin
lesions of varying severity, can slow down the natural process of human aging through skin
vascularization and migration of keratinocytes and fibroblasts. A biocosmetic produced
from peptide-conjugated caffeic acid reduced damage to the skin cell membrane induced by
oxidative stress [61]. Antioxidant biomaterials based on a specific invertebrate protein were
recently discovered as a potential tissue regenerator. Wang et al. [29] developed hydrogels
with the type 1 cysteine-rich thrombospondin-1 protein (TSRL) with stronger 1,1-diphenyl-
2-picrylhydrazyl (DPPH) radical scavenging rates than glutathione and ascorbic acid. The
TSRL hydrogels were applied to the skin of mice and demonstrated a decrease in epidermal
hyperplasia and in the degradation of collagen and elastic fibers caused by the ultraviolet
B (UVB) radiation.

Studies have shown that mitochondrial metabolism also influences the increase in reac-
tive oxygen species (ROS), which contribute to the induction and progression of tumor cells.
Local treatment methods (localized radiotherapy, chemotherapy or phototherapy) assisted
by antioxidant biomaterials can stimulate the immune system, through immunological
memory, and cause the death of metastatic cancer cells. Thus, these immunomodulatory
therapies with biomaterials could prove to be alternative strategies to improve therapeutic
responses against cancerous tumors [69,70].

Sebastiammal et al. [48] showed that nanoparticles (NPs) of hydroxyapatite (HAp), a
biological molecule and the main mineral component found in bones, incorporated with
curcumin have an anticarcinogenic effect against the HeLa cell line (cervical cancer), being
effective in biomedical applications. A minimum concentration of 100 µg/mL of HAp
NPs was sufficient to cause 30% of cell death. As a biomaterial, HAp NPs have a greater
ability to adhere to cancer cells than to normal cells, based on electrostatic interactions
between negatively charged sites on cell membranes and positive binding sites on the
HAp surface. Other biological activities, such as effects against Shigella flexneri, Escherichia
coli, Pseudomonas aeruginosa, Klebsiella pneumonia and Staphylococcus aureus bacteria, were
observed for HAp NPs nanoparticles. Similarly, Vinay et al. [49] developed an antioxidant,
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antimicrobial and anticancer biomaterial from Elaeocarpus ganitrus seed extract with gold
nanoparticles. The important biological activities of this material make it highly viable
for applications in different fields such as water treatment, food preservation, dressings,
nanomedicines, cosmetics, biocides and disinfecting agents.

Ivanova and Yaneva [22] showed that different studies with chitosan-based biopoly-
mers exhibited an anticancer effect. The mechanisms of anticarcinogenic action were
associated with activities of redox modulation (human defense system), depolarization of
the mitochondrial membrane and activation of caspases responsible for inducing apoptosis.
In addition, chitosan-based biomaterials were associated with immunostimulatory activi-
ties related to the alteration of calcium homeostasis in tumor cells. Other studies show that
biomaterials developed with chitosan have an antimicrobial effect, mainly against Staphy-
lococcus aureus and Escherichia coli, caused by increased positive charges and electrostatic
interactions with cellular components [32–36]. Fakhri et al. [67] cite chitosan biomaterials in
the production of biodental materials, oral drug delivery systems and bone tissue engineer-
ing for dentin-pulp regeneration processes and treatment of periodontitis. The versatile
biological properties, biodegradability, biocompatibility and non-toxic nature make this
biopolymer innovative and physiologically active for different applications.

Antioxidant biomaterials have also shown positive effects in the reconstruction and
regeneration of cellular tissues. Furthermore, these materials can prevent bacterial infec-
tions associated with medical devices introduced into the human body. Baldwin et al. [68]
studied the in vivo biocompatibility of injectable tannic acid and collagen spheres for
post-lumpectomy breast tissue reconstruction. After 12 weeks, the tannic acid and collagen-
based biomaterials showed adipose tissue regeneration and collagen redistribution in
the breast, indicating good biocompatibility and bioactivity. In addition, no infections,
tissue necrosis or chronic inflammation disseminated by the implantation of these bio-
materials were observed. Liu et al. [64] developed biomedical catheters with tannic acid
and benzalkonium chloride (hydrophobic agent) coatings in order to prevent bacterial
infections. The developed biomaterial showed excellent bactericidal activity against Staphy-
lococcus aureus and Escherichia coli. Thus, hydrophobic tannic acid easily formed a stable,
colorless coating on the luminal and external surfaces of catheters with antibacterial and
biocompatible properties.

The biological properties described in the studies discussed above make antioxi-
dant biomaterials important additives for the development of products in the biomedical,
chemical, cosmetic, pharmaceutical and food areas, as described in detail in Section 4 of
this review.

4. Industrial and Technological Applications

Antioxidant biomaterials, as mentioned in the topics above, are studied extensively
due to their potential applications in various industrial and technological areas with regard
to materials susceptible to oxidative degradation that require antioxidant protection. Thus,
providing a recent compilation of studies related to antioxidant biomaterials, applications
in the food, biomedical and pharmaceutical fields are discussed in this section [71].

4.1. Active Packaging

Packaging materials must present, in addition to basic properties such as tensile
and thermal resistance, characteristics that contribute to stability and shelf life, such as
antioxidant and antimicrobial agents [72]. Food quality and safety are important factors for
the development of active packaging based on biomaterials. Active packaging increases
shelf life through antioxidants, which contribute to food protection and quality based on
international traceability standards [73].

The oxidative process of lipids can result in changes in odor, color and texture in food
products [74,75]. Oxidation negatively alters nutritional and sensory quality and food
safety. As a result, new technologies have been developed through the incorporation of
additives with antioxidant properties to food packaging.
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Studies show that packages containing lignin can extend the shelf life of foods by in-
hibiting the action of free radicals and oxidation damage. Fontes et al. [75] developed films
of poly(lactic acid) (PLA) and lignin nanofibers extracted from rice husk by the Organosolv
method. The biomaterials showed good conditions of thermal stability and hydrophobicity
and high antioxidant activity. Active packaging and aerogels based on corn starch and
pine nut husk extract, produced by electrospinning and lyophilization, were considered
effective for food packaging. In addition, the starch-encapsulated extract showed bioacces-
sibility when subjected to in vitro gastrointestinal digestion, being considered a promising
functional food [76–78].

A versatile and widely used biomaterial in active packaging is chitosan. It is a renew-
able biopolymer, being the second most abundant polysaccharide in nature after cellulose.
It has good film forming ability, biodegradability, non-toxicity, and excellent antioxidant
and antimicrobial properties. However, some factors such as mechanical strength and
barrier properties need to be improved [79–82].

In order to improve the performance of chitosan films, studies have produced blends
from the incorporation of other compounds. Chitosan films with polyvinyl alcohol, guar
gum and moringa extract (bioactive rich in compounds with antioxidant, antitumor, anti-
inflammatory, antibiotic and antimicrobial properties) showed superior mechanical perfor-
mance compared to films without the extract. This behavior was attributed to the formation
of intermolecular hydrogen bonds between functional groups of the polymers and phenolic
and carboxylic groups of the extract [82].

Another relevant point concerns the antioxidant activity of pure chitosan, as it does
not reach the minimum standards for use in active packaging, and the addition of other
compounds is also necessary. Nanocellulose films oxidized with TEMPO and incorporated
with chitosan showed a high antioxidant capacity when compared to control nanocellulose
(without chitosan incorporation) [82]. Graphene oxide nanoparticles were incorporated
into chitosan films, promoting an increase of up to 82% in antioxidant capacity, as well as
a significant improvement in mechanical and electrical properties. The developed films
showed potential application in food packaging, body sensors and electro-responsive
devices [78]. Silica and β-acids from hops were incorporated into the chitosan matrix,
aiming to protect soybean oil against lipid oxidation and the presence of pathogens [80]. In
addition, baicalein was also incorporated into the chitosan matrix, causing improvement
in physical and antioxidant properties, in addition to inhibiting the oxidation of soybean
oil [81]. The extract of broken grains of Thai rice (Oryza sativa L.), rich in polyphenols and
anthocyanins, was incorporated into the chitosan matrix for the development of packaging.
The developed films proved to be a good visual tool to indicate the freshness of seafood
(pH indicator), ensuring food quality and safety [83]. Shen et al. [84] incorporated curcumin
into chitosan films. The edible packaging developed showed an effect against the lipid
oxidation of pork meat.

Thus, different studies in the literature present the importance of antioxidant biomate-
rials for applications in the food industry, mainly as active packaging (Table 2).
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Table 2. Antioxidant biomaterials from different polymer matrices and their applications in the
food industry.

Antioxidant Additive Source Applications References

Tannins Acacia Regenerated cellulose Active packaging films Huang et al. [72]

Phenolic compounds Honey and pollen K-carrageenan Edible films for meat Velásquez et al. [85]

Lignin Rice husk Poly(lactic acid) Ultra-thin membranes for
active packaging Fontes et al. [75]

Hop Chitosan-silica
Functional films with active

ingredient release for soybean oil
storage packaging

Tian et al. [80]

Ceratonia siliqua L. Cellulose Multi-layer packaging Ait Ouahioune
et al. [74]

Pine nut shell Maize starch Aerogels for water absorption
in packaging Fonseca et al. [77]

Moringa
Chitosan-guar

gum-polyvinyl alcohol
blends

Active films for packaging Bhat et al. [82]

Green tea Polycaprolactone/poly
(lactic acid)

Biodegradable active films
for packaging

Sadeghi, Razavi,
and

Shaharampour [86]

Pecan nut shell Whey protein Active films for packaging Arciello et al. [87]

Durian Gelatin Active films for packaging Joanne Kam et al. [88]

Essential oils

Zataria Ethyl cellulose/
polycaprolactone/gelatin Nanofibers for food packaging Beikzadeh et al. [89]

Lemon grass Chitosan and starch Biodegradable active film
for packaging Istiqomah et al. [90]

Others

Chitosan Oxidized
cellulose nanofiber Active films for packaging Soni et al. [79]

Graphene oxide Chitosan Food packaging and
biological applications Barra et al. [78]

Curcumin Chitosan Edible coating for pork Shen et al. [84]

Benzyl-isocyanate Chitosan-
cellulose nanocomposite Active films for packaging Jiang et al. [91]

Thymol and/
or carvacrol

Poly(lactic acid)/
poly(ε-caprolactone)

Biodegradable films for active
food packaging

Lukic, Vulic, and
Ivanovic [92]

Lysozyme Pullulan Functional food packaging films Silva et al. [93]

4.2. Biomedical Applications

Wounds are breaks or deformations in the skin caused by physical, thermal, medical
or physiological damage [94]. ROS interfere with wound healing, increasing cell wall
permeability and causing damage to vascular endothelial cells, necrosis and tissue disso-
lution [94]. In addition, ROS, associated with inflammatory principles, can cause effects
of premature aging, neural disorders, cardiovascular diseases and cancerous tumors [95].
Studies show that antioxidant biomaterials can inhibit the damage caused by ROS [96],
as biomaterials can be used as carriers of antioxidants for tissues that are under oxidative
stress, as well as drugs and cells [97,98].

A compound that has high potential for use as an antioxidant agent in biomaterials
is lignin, due to the large amount of phenolic compounds and phenylpropane units with
-CH2 side units [75,94]. Due to the antioxidant properties mainly of low molecular weight
lignins, several studies have explored their potential application in biomedicine, such
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as dressings and grafts. A nanogel of poly(dimethyl siloxane) (PDMS), polyethylene
glycol (PEG), polypropylene glycol and lignin-incorporated hexamethylene diisocyanate,
extracted from coconut husks, showed high antioxidant activity, compatible with other
potential antioxidants, such as ascorbic acid and trolox. In addition, it showed high healing
capacity in wounds, biocompatibility and non-toxic properties [65].

Another application of lignin is as protection against cartilage degradation. Oxidative
stress is one of the main causes of cartilage degradation leading to osteoarthritis. Nanofi-
brous membranes of polycaprolactone (PCL) and lignin, produced by electrospinning,
attenuated oxidative stress and increased cell viability, reducing apoptosis and inflamma-
tion factors. These properties have been associated with protection against osteoarthritis as
well as cartilage degradation [97].

Natural biopolymers such as chitosan and hyaluronic acid have been explored for
providing an extra-cellular matrix that mimics a microenvironment with excellent cel-
lular affinity. The combination of these matrices with a terpolymer containing catechol
resulted in an interpenetrated polymeric network that prevents binding with cytotoxic
agents. In addition, it allowed the controlled release of catechol into the medium. These
hydrogels showed good adhesion, protection against oxidative stress and suspension of the
anti-inflammatory process, biocompatibility, easy vascularization and potential for tissue
regeneration and treatment of chronic wounds [98].

Antioxidant biomaterials have shown great application potential in grafts for syn-
thetic neural tissues, instead of autologous grafts. In a study carried out by Puertas-
Bartolomé et al. [99], PCL/lignin nanofibers showed good mechanical properties, high
antioxidant capacity and biocompatibility. These factors promoted Schwann cell myelin
and stimulated neurite outgrowth of DRG neurons, highlighting good potential for other
tissue applications.

Table 3 presents antioxidant additives used in biomaterials and the various applica-
tions in biomedical devices found in the literature.

Table 3. Antioxidant biomaterials from different polymer matrices and their applications in
the food industry.

Antioxidant Additive Matrix Applications References

Lignin

Lignin

Polyurethane copolymers
of polyethylene

glycol/polypropylene gly-
col/polydimethylsiloxane

Nanogel for wound healing Xu et al. [94]

Lignin Poly(ε-
caprolactone) nanofibers

Membrane for effective
treatment of osteoarthritis Liang et al. [97]

Plant extracts

Leaves of Cinnamomum
osmophloeum Kanehira -

Suppresses melanogenesis
and protects against

DNA damage
Ho, Wu, and Chang [95]

Cassia alata extract
nanocomposite/silver

nanoparti-
cle/montmorillonite

Cellulose nanofiber Scaffold for
wound regeneration Subha et al. [100]

Zinc oxide complex and
grapefruit seed extract Cellulose

Nanocomposite hydrogel
films for potential

applications in the treatment
of chronic wounds

Dharmalingam and
Anandalakshmi [101]

Tiliaplatyphyllos Chitosan Scaffolds in
tissue engineering

Radwan-Pragłowska et al.
[102]

Cannabidiol Alginate/zinc Multifunctional dressing to
promote wound healing Zheng et al. [103]
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Table 3. emphCont.

Antioxidant Additive Matrix Applications References

Others

Citric acid Polyvinyl alcohol Modification of polymers to
biomaterial Wu et al. [59]

Derivatives of
hydroxycinnamic acid

(p-coumaric acid and ferulic
acid)

Polyvinylpyrrolidone Hydrogels as possible
wound dressings Contardi et al. [104]

Silver nanoparticles Chitosan/polyvinyl alcohol Nanoparticles for skin
healing dressings Hajji et al. [105]

Curcumin Polyurethane
Hydrogel for potential use

as dressings or tumor
isolation membranes

Feng et al. [106]

Polyorganophophazene - Microspheres for
bone regeneration Huang et al. [107]

Hydroxyapatite/
curcumin nanoparticles - Biomedical applications Sebastiammal et al. [48]

Hyaluronic acid/
tannic acid - Hydrogel sunscreen Gwak, Hong, and Park [98]

5. Conclusions

In the last decades, the growing interest in intercorrelating “bio” and “material” has
brought innovations and opportunities for researchers. This review contributes with an
overview of the common materials used for biomaterial development, the explored sources
of bioactive compounds with antioxidant properties, the biological properties and the main
applications of biomaterials reported in the literature.

Gelatin, cellulose, starches, chitin, chitosan, alginate and carrageenan are among the
most explored materials used for biomaterial development, and they are able contribute
to important material properties such as gelling, encapsulation, delivery of compounds,
texture modification and film formation. Due to the role of oxidative stress as a key player
in many disease conditions, marine organisms, microorganisms, plant extracts and other
sources have been explored for the development of biomaterials with antioxidants, which
may represent a relevant option for several areas, including materials science and the
pharmaceutical, medical and food science fields. These materials have shown interesting
properties, such as antimicrobial activity, anticancer effects, immunostimulant activity,
anti-coagulation properties, inhibition of oxidative stress and inflammatory reactions
and positive effects in wound healing. Another area that has been gaining attention
is the application of antioxidant biomaterials as active, intelligent and biodegradable
packaging films, overcoming a problem related to the utilization of materials from non-
renewable sources.

Nevertheless, there is still a huge opportunity for researchers to find different materials
that provide compounds with antioxidant properties, especially considering the widely
available sources from food and agricultural wastes and byproducts. Further works
could also explore blends between different materials to improve mechanical properties,
texture quality, and the chemical and physical stability of the biomaterials. However,
providing evidence for the biodegradability and biocompatibility of these biomaterials may
be challenging, and it highlights the need for further works.
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