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Abstract: Climate change already challenges people’s livelihood globally and it also affects plant 
health. Rising temperatures facilitate the introduction and establishment of unwanted organisms, 
including arthropods, pathogens, and weeds (hereafter collectively called pests). For example, a 
single, unusually warm winter under temperate climatic conditions may be sufficient to assist the 
establishment of invasive plant pests, which otherwise would not be able to establish. In addition, 
the increased market globalization and related transport of recent years, coupled with increased 
temperatures, has led to favorable conditions for pest movement, invasion, and establishment 
worldwide. Most published studies indicate that, in general, pest risk will increase in agricultural 
ecosystems under climate-change scenarios, especially in today’s cooler arctic, boreal, temperate, 
and subtropical regions. This is also mostly true for forestry. Some pests have already expanded 
their host range or distribution, at least in part due to changes in climate. Examples of these pests, 
selected according to their relevance in different geographical areas, are summarized here. The main 
pathways used by them, directly and/or indirectly, are also discussed. Understanding these path-
ways can support decisions about mitigation and adaptation measures. The review concludes that 
preventive mitigation and adaptation measures, including biosecurity, are key to reducing the pro-
jected increases in pest risk in agriculture, horticulture, and forestry. Therefore, the sustainable man-
agement of pests is urgently needed. It requires holistic solutions, including effective phytosanitary 
regulations, globally coordinated diagnostic and surveillance systems, pest risk modeling and anal-
ysis, and preparedness for pro-active management. 
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1. Introduction 
Climate change affects biological systems at multiple scales, from genes to ecosys-

tems [1–3]. It can have important effects on plant pests, where “pest” here is any species, 
strain, or biotype of plant, animal, or pathogenic agent injurious to plants or plant prod-
ucts. On average, between 10 and 28 percent of crop production is lost to pests at a global 
scale [4]. Post-harvest losses also occur, and mycotoxins in food and feed can severely 
threaten the health of humans and livestock [5,6]. 

Climate change may threaten food security through impacts on food crops and plant-
based animal feed, in terms of both quality and quantity. For wheat, rice, soybean, and 
maize, the worst impacts are expected in the tropics and subtropics, with climate change 
projected to negatively impact production, where the local temperature increases by 2 °C 
or more above late-twentieth-century levels. While some higher altitude or latitude loca-
tions may benefit from this change, these will likely be the exception [7]. Plant protection 
and plant biosecurity may also be adversely impacted [8–11], and thus, improved biose-
curity measures and climate-smart plant protection methods will be needed [12,13]. 

We review the effect of climate change on plant pests and methods for studying these 
effects and future pest risks. Case studies on insect pests and plant pathogens affected by 
climate change are provided. We also discuss the main pathways of pest invasion and 
how these are influenced by global trade. We emphasize that preventive, mitigation, and 
adaptation measures are needed to reduce the projected increase in pest risk, and invest-
ments in these measures will have benefits beyond adaptation to climate change. 

2. Effects of Climate Change on Plant Pests 
Climate-change effects on pest species are complex. They include indirect and direct 

effects and their potential interactions [14]. Examples of likely impacts of climate change 
on plant pests in different climate zones are reported in Table 1, where from this point we 
do not include weeds in the term “pest”. 

Table 1. Examples of some likely effects of climate change on plant pests in different climate zones 
(modified after [13]). 

Climate Zones  
Likely Effects of Climate Change on Future Pest Risk (Mainly 

2050–2100) References  

Arctic Increasing pest risk in the tundra. [15] 
Boreal Increasing insect pest and plant disease risk in boreal forests. [16] 

Temperate Increasing insect pest risk in agriculture and forestry. [17] 
 Increasing insect pest and plant disease risk in forests. [16] 

 Increasing disease risk in agriculture and horticulture (mostly 
based on western European studies). 

[18,19] 

 
Often poleward shift of insect pest and pathogen risk in different 

managed and unmanaged ecosystems. [20] 

 
Often range expansion of important insect pests in agriculture 

and horticulture. [21] 

 Increasing risk of weeds in different managed and unmanaged 
ecosystems. 

[22] 

Subtropical 
Increasing saturation of insect pest risk in agriculture and for-

estry in southern Europe. [17] 

 Increasing disease risk in agriculture and horticulture. [23] 

 Often range expansion of important insect pests in agriculture 
and horticulture. 

[21] 

Tropical 
Insects will often face supra-optimal temperature conditions in 
the future, presumably resulting in decreasing insect pest risk. [24] 

 
Conflicting information and expert opinions on disease risk in 

agriculture and forestry with respect to Brazil. 
[19,25,26] 
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Possible indirect and direct effects on pests include: changes in their geographical 
distribution, such as range expansion or retreat, or increased risk of pest introduction; 
changes in seasonal phenology, such as the timing of spring activity or the synchroniza-
tion of pest life-cycle events with their host plants and natural enemies; and changes in 
aspects of population dynamics, such as overwintering and survival, population growth 
rates, or the number of generations of polycyclic species [27–29]. 

In general, all important life-cycle stages of pests (growth, maturation, and reproduc-
tion for insect pests, survival, reproduction, and dispersal for plant pathogens) are more 
or less directly influenced by humidity, temperature, light quantity or quality, wind, or 
combinations of these factors [30]. The physiological processes of most pest species are 
particularly sensitive to temperature [31,32]. For example, plant pathogens may be partic-
ularly favored by high temperatures until their upper-temperature threshold is reached 
[33,34]. Indirect effects are mediated through the host plant or through climate-change-
driven adaptations to crop management [30]. Warmer mean air temperatures, especially 
in early spring under temperate climatic conditions, may result in earlier occurrence of 
life-cycle stages in the host plant [35]. This can affect pathogens that infect the host during 
a particular life-cycle stage [36], for instance, wheat pathogens such as Fusarium species 
that infect wheat during flowering [13,18,37,38]. 

2.1. Methodology to Investigate the Effects of Climate Change on Plant Pests 
Over the past 30 to 40 years, the effects of several factors—increased temperature, 

CO2, ozone or ultraviolet-B irradiation, and changing water or humidity patterns—on the 
incidence and severity of pests have been evaluated, mostly on field crops, such as wheat, 
barley, rice, soybean, and potato [39–43], horticultural crops [23,44], including tropical 
and plantation crops [25], and forest trees [45–48]. 

Many complementary research approaches have been used, including experiments 
to evaluate the effects of changes in one or more weather parameters (Table 2). Other ob-
servational studies have investigated species along latitudinal or elevational gradients as 
a proxy for changes in climate over time. In addition to these empirical approaches, “the-
oretical” approaches have also been adopted, such as the meta-analysis of published re-
sults [49,50] or the analysis of long-term datasets [51,52]. Finally, some studies have drawn 
upon expert opinion or have generated simulation models to predict how projected 
changes in climate or atmospheric composition will alter the distribution, prevalence, se-
verity, and management of pests and other organisms [13]. 

Table 2. Some examples of experimental and theoretical approaches in climate-change biology re-
search (modified after [27]). 

Type of Research Approach Description and Comments 
Selected Refer-

ences 

Experiments under con-
trolled conditions 

Controlled conditions are not realistic, but it is 
easier to study one or a few environmental pa-
rameters because of lower variability and fewer 

interactions. 

[23] 

Experiments on-station, on-
farm, and under natural con-

ditions 

Field conditions are realistic, but the environ-
mental parameters are difficult to control be-
cause of variability and complex interactions. 

[53,54] 

Studies along an elevation 
gradient from low to high el-

evation sites 

Effects of changes in temperature and precipita-
tion can be studied over a short distance, with 

day length the same (e.g., characteristics of a sin-
gle species can be compared). 

[55]  

Studies along a latitudinal 
gradient 

Research can be implemented along a climate 
gradient from temperate to tropical, with long-
distance changes in temperature and precipita-
tion, although day length may also vary (e.g., 

[56] 
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characteristics of a single species, or the biodiver-
sity of species in general, can be compared in dif-

ferent climates). 

Meta-analysis of published 
data 

Involves searches for general patterns in re-
sponses of specific taxa to variations in climate 

factors. A sufficient number of published results 
should be available to draw meaningful conclu-

sions. 

[16] 

Data monitoring, long-term 
datasets of different parame-

ters 

Involves long-term field observations to study 
effects already apparent due to climate warming 

in recent decades. Long-term weather records 
are necessary and, if available, other long-term 
datasets to search for other possible reasons for 
observed changes (particularly in managed sys-

tems). 

[57,58] 

Expert opinion 

Long-term experiences and knowledge of ex-
perts can be used. The complete life cycle of a 
pest species can be considered in theory; how-

ever, this approach is somewhat subjective. 

[59] 

“Climate matching” ap-
proach 

A present-day climate analogue to the future cli-
mate for an area of interest is found, and the pest 
dynamics in that location are studied in order to 
gain an appreciation of the comparative dynam-

ics (e.g., dynamic climate matching model 
CLIMEX). Other tools can also be used, such as 

MaxEnt, to compare the habitat suitability of dif-
ferent locations for the species of interest. 

[60,61]  

A modeling approach using one 
or several climate-change sce-
narios or models, or compre-
hensive ensembles of climate-
change scenarios or models, to 

simulate future pest risk 

It is possible to categorize scenarios or models 
used from “conservative” to “worst case”, and 

this is also possible within a single climate-
change model if different representative concen-

tration pathway (RCP) scenarios are applied. 

[26,62] 

Experimental approaches can yield valuable insights into the effects of climate 
change on plant pests, but few studies have realistically mimicked a changing climate 
[42,63–66]. Climate-change studies carried out in free-air CO2 enrichment facility (FACE) 
systems and in open-topped chambers have led to a better understanding of the effects of 
different parameters on the development of plant diseases in several crops [67]. Such sys-
tems have also been used to investigate effects on weeds [68] and insects [69]. In general, 
most of the insect and disease problems studied in FACE systems under high CO2 condi-
tions have shown increased impact, as recently summarized by Ainsworth and Long [70]. 

Phytotrons, environmental chambers built to test the effect of combinations of envi-
ronmental parameters [71,72], have been used to study the effects of short-term increases 
in CO2 and temperature on host–pathogen relationships [23]. They are used to understand 
how specific diseases may evolve in the future and to develop practical solutions to cope 
with future scenarios. For example, these studies can provide support to the plant-breed-
ing industry. Phytotrons have also been used to investigate more indirect effects of climate 
change on plants, such as effects on mycotoxin production or on disease-management 
practices [73,74]. 

Field approaches in natural environments include research along an elevation gradi-
ent from low- to high-elevation sites [55,75], with associated changes in temperature and 
air humidity. Another approach is research in habitats along a latitudinal gradient, in-
cluding, for example, subtropical, temperate, and semi-arid climatic conditions [56,76]. 
The first approach has the advantage of the photoperiod being the same along the 
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elevational gradient. In the second approach, the photoperiod is likely to vary across the 
latitudinal gradient. For example, in the tropics, days are shorter, and nights are longer 
during summer and the other way round in winter, compared to temperate climatic con-
ditions. These differences in photoperiod need to be considered when interpreting results. 
Nevertheless, both approaches can help identify broad patterns across wide environmen-
tal gradients and a range of climatic regions under real-world conditions. Such studies 
can help to determine whether a certain species is limited to a specific climate or is widely 
occurring, indicating whether it is likely to invade locations that are getting warmer 
[13,27]. 

Meta-analyses of published datasets have been performed to search for general pat-
terns in the responses of specific pests to differences in climate variables [77–79]. In addi-
tion, long-term datasets from field observations have been used to study climate change 
effects that are already apparent owing to warming in recent decades [57,80–85], and they 
can help researchers distinguish impacts due to climate change from those due to other 
factors [1,86]. Attempts have been made to improve estimates of climate-warming effects 
on insects by combining data from long-term datasets, large-scale experiments, and com-
puter modeling [87,17,88]. For example, a meta-analysis of data from laboratory studies 
concluded that higher trophic levels (e.g., predators) are more susceptible to climate 
change than lower-order organisms (plants or herbivorous insects) [89]. This is relevant 
when studying the changing role of natural enemies on insect pest dynamics and biolog-
ical control under climate change—a subject addressed by very few field data [13,90]. 

Simulation models can be used to project future climate change impacts on pests 
[2,91], and to help determine tactics and strategies to control pests [92–95]. One modeling 
approach, for example, uses “climate matching”, whereby a geographical area that has a 
present-day climate analogous to the future climate in the area of interest is studied (for 
pest dynamics in this case), and then the findings extrapolated to a future scenario in the 
area of interest [60]. Other modeling approaches may rely on long-term datasets for 
weather parameters, crop development, and pest distribution and prevalence to develop 
and validate “pest-crop-climate” models [26,37]. Other recent examples of modeling stud-
ies, listed in Table 2, consider parameters such as the number of generations per year for 
insect pests, the timing of plant flowering and related disease severity [13]. 

2.2. Future Pest Risk 
Simulation studies to determine future pest risks under climate change scenarios 

have mostly employed species-distribution models, population-dynamics models, or hy-
brids of both (Table 3). Climatic factors considered include temperature, precipitation and 
humidity, but elevated CO2 has generally not been considered [13,19,67]. The effects of 
climate change are probably easier to predict for those pest species that are primarily af-
fected by temperature. Prediction is more difficult for pests whose reproduction and dis-
persal are strongly related to water availability, wind, and crop management [13]. This is 
also true for pests that are strongly affected by interactions with other organisms, such as 
vectors of pathogens [31], unless their interactions are well studied [27,96,97], and thus, 
predictable (see the case study for Xylella fastidiosa). 

Table 3. Examples of pest risk simulation studies where pest models were linked to climate change 
scenarios and time spans indicated future projections (modified after [13]). 

Country or 
Region 

Time Span or 
Spans Crops Affected, Pest Species and Projection of Change Selected Ref-

erence  
  Insects  

Global 2050, 2100 
Multiple crops: Area suitable for fall armyworm (Spodoptera 

frugiperda) is projected to increase.  
[98] 

Global 2050 

Tomato: It is projected that several nations face a potential 
increase in two-spotted spider mite (Tetranychus urticae) out-
breaks, while biological control by its key predator Phytosei-

ulus persimilis will not improve. 

[99] 
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Global 
2041–2060 
2061–2080 

Potato: Expansion of Colorado potato beetle (Leptinotarsa de-
cemlineata) into northern regions is projected. 

[100] 

Africa 2041–2060 

Multiple crops: Habitat suitability for oriental fruit fly (Bac-
trocera dorsalis), mango fruit fly (Ceratitis cosyra), and tomato 

leafminer (Tuta absoluta) is projected to partially increase 
across the continent. 

[61] 

Luxembourg 
2021–2050,  
2069–2098 

Oilseed rape: Pollen beetle (Meligethes aeneus) is projected to 
invade crops earlier in the year. 

[101] 

Scandinavia 
and central 
parts of Eu-

rope 

2011–2040,  
2071–2100 

Forest trees, spruce: Increased frequency and length of late-
summer swarming events of the European spruce bark bee-

tle (Ips typographus) are projected. A second generation in 
southern Scandinavia is possible and a third generation in 

the lowlands of central Europe.  

[102] 

Switzerland 2070–2099 

Multiple crops: Brown marmorated stinkbug (Halyomorpha 
halys), which has a wide range of potential hosts, is projected 

to expand into higher altitudes, produce more generations 
per year, and be active earlier in spring. 

[103] 

United States 
of America, 

Midwest 

2001–2050,  
2051–2100 

Corn and soybean: The pressure of nine different insect 
pests is projected to increase in general. Insect pests will 

move northward, because “optimal climatic conditions” will 
be further north.  

[104] 

  Pathogens (diseases)  

Global 2050, 2100 
Bean: The area favorable for soybean rust (caused by 

Phakopsora pachyrhizi) is projected to decrease. 
[105] 

Brazil 
2011–2040,  
2041–2070,  
2071–2100 

Grapevine: The area favorable for downy mildew (caused by 
Plasmopara viticola) is projected to decrease across Brazil, alt-

hough there are differences across regions or states. 
[26] 

Canada, Que-
bec 

2041–2070 
Soybean: The number of generations of soybean cyst nema-

tode (Heterodera glycines) is projected to increase.  
[106] 

China, central 
2030s, 2050s, 2070s, 

2080s 
Kiwi: The area favorable for bacterial canker (caused by 

Pseudomonas syringae) is projected to increase. 
[107] 

Europe 2070 
Pine trees: Pine wilt disease risk (caused by the pine wilt 
nematode, Bursaphelenchus xylophilus) is projected to in-

crease. 
[108] 

France 
2020–2049,  
2070–2099 

Wheat: Risk of leaf rust (caused by Puccinia triticina) is pro-
jected to increase in spring time. 

[62] 

France 
2020–2049,  
2070–2099 

Apricot: Risk of blossom blight and twig blight (caused by 
Monilinia laxa) is projected to decrease or increase, depend-

ing on the cultivar grown (early vs late flowering). 
[36] 

Germany, 
south-west 

2050, 2100 
Sugar beet: Risk of Cercospora leaf spot (caused by Cerco-

spora beticola) is projected to increase. 
[109] 

India 
2010–2039,  
2040–2069 

Rice: Infection ability of leaf blight (caused by Magnaporthe 
oryzae) is projected to increase during the winter season (De-
cember to March), whereas during the monsoon season (July 

to October), it is projected to remain unchanged or to de-
crease slightly. 

[110] 

Italy 2030, 2050, 2080 
Grapevine: Increased importance of downy mildew (Plasmo-
para viticola), due to more spring days with favorable condi-

tions, with earlier attacks and more treatments needed.  
[111] 

Philippines 2050 
Banana: The area favorable for Fusarium wilt (caused by 

Fusarium oxysporum) is projected to increase. 
[112] 

The outcome of simulations depends on the data and methods used, including the 
global climate model used, the emission scenarios, the regional climate model, the specific 
pest model, and the precise parameters used in the simulation [18]. All of these contribute 
to the outcome of pest risk projections [62,113,114] and should be borne in mind when 
reading and interpreting the results from simulation studies such as those listed in Table 
3; consequently, generalizations should be treated with extreme caution and researchers 
need to be careful when extrapolating their results [30]. In addition, the effect of climate 
change on pest risk can vary across a country (e.g., lowlands vs mountains, north vs south, 
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summer vs winter, hot and wet vs cool and dry season) [18] and according to geographical 
location [13,115]. 

According to Juroszek and von Tiedemann (2015) [19], in general, the projected 
change (increase or decrease) in pest risk will be more pronounced by the end of the 
twenty-first century than earlier in the century if increasing temperature is the primary 
driver of results. This reflects the fact that global warming is projected to be greater by the 
end compared to the middle and the beginning of the twenty-first century (e.g., 3 °C vs. 2 
°C vs. 1 °C global temperature increase, respectively). 

Recently, Seidl et al. (2017) [16] published a comprehensive, global analysis of avail-
able results (more than 1600 single observations) and concluded that around two-thirds 
of all observations show that the risk of abiotic (e.g., fire, drought) and biotic (e.g., insect 
pests, pathogens) stress factors will increase in forestry worldwide. Warmer and drier 
conditions favor disturbances by insects, whereas warmer and wetter conditions favor 
disturbances by pathogens. The same trend is expected for many crop diseases (e.g., [19]) 
and insect pests (e.g., [21]), with increasing pest risk in most cases, at least in locations 
with currently relatively cool temperature conditions until supra-optimal temperature 
and/or sub-optimal humidity conditions are reached for plant pest species [13]. 

2.3. Case Studies 
Some pests have already expanded their host range or distribution, at least in part 

due to changes in climate. Examples of these pests, selected according to their relevance 
in different geographical areas indicated between brackets, are summarized below. 

2.3.1. Insects 
Emerald ash borer (Agrilus planipennis) (Asia, Europe, North America) is a phloem-

feeding beetle that infests ash trees (Fraxinus spp.) [116]. Native to north-east China, the 
Korean peninsula and the east of the Russian Federation, this pest has spread to other 
parts of Asia, North America (Canada and the United States of America) [117], and Europe 
(e.g., the western and southern parts of the Russian Federation, and Ukraine) [118]. It was 
probably introduced to North America in 2002, via wood packaging material, about a dec-
ade before its detection. The subsequent spread of the beetle was perhaps facilitated by 
the movement of infested nursery stock, logs, and firewood [119]. It is the most destructive 
and costly invasive forest insect in the United States of America [120], with economic 
losses exceeding USD 12.5 billion as well as negative effects on biodiversity and human 
health [121]. Modeling by Liang and Fei (2014) [122] has projected that climate change 
would result in a more northern distribution of the beetle in North America, and a subse-
quent long-lasting risk to ash in those areas. However, it is expected that the southward 
invasion of the emerald ash borer in North America would be limited within a warming 
climate change scenario, as the beetle requires strong seasonality with a long winter sea-
son. Extreme climate events associated with climate change could reduce the efficacy of 
biological control of the beetle with larval parasitoid species [123]. 

Tephritids are a diverse family of flies containing several invasive species causing 
substantial economic damage when their larvae develop in fruits of high market value. 
Bactrocera oleae on olive trees, B. dorsalis on several dozen fruit plant species, and Ceratitis 
capitata on a moderate number of tree crops are among the most relevant invasive species 
in the family. Tephritids have been able to expand geographically following the expansion 
of cultivation of their hosts, international trade, and because climate change has allowed 
their winter survival and reproduction in habitats otherwise unsuitable for the species. 
This has been the case of B. oleae and the new areas of olive trees in California and Mexico 
and potentially in areas where olives could be grown in the future [124]; although B. dor-
salis is primarily tropical and subtropical, the risk of direct economic losses from an incur-
sion into temperate areas is low, but climate modification by global warming could allow 
a rapid increase in fly populations in mild seasons [125]. C. capitata, which occurs in rather 
temperate areas, could expand to colder areas due to its capacity to overwinter as larvae 
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in fruits stored in warm places and then spread through the international trade of oranges, 
mandarins, and lemons [126]. 

Red palm weevil (Rhynchophorus ferrugineus) (Near East, Africa, Europe) is one of the 
most economically damaging insect pests of various palm species, including coconut and 
date palm [127,128]. Native to south-east Asia and Melanesia, the annual losses due to 
death and removal of palms severely infested by red palm weevil in the Gulf region of the 
Near East have been estimated to range from USD 5.2 million to 25.9 million, despite all 
means of integrated control [129,130]. First detected on date palms in the Near East in the 
mid-1980s, it subsequently spread to other countries in the Near East, and to Africa and 
Europe. Its global distribution has probably been assisted by the movement of palm off-
shoots as planting material. It has been reported in 45 countries, and ecological-niche 
modeling predicts that it could expand its range even further [131], resulting in its expan-
sion towards the north of China [132]. 

Fall armyworm (Spodoptera frugiperda) (native to tropical and-subtropical areas of the 
Americas) is a noctuid moth with a host range of hundreds of plant species, causing dam-
ages in forage grasses and cereals, causing particularly high losses on maize. In the last 
ten years, it has spread to sub-Saharan Africa and Egypt, all over southern and eastern 
Asia [133], several eastern Mediterranean areas [134], and the Australian continent. Such 
expansion in warmer climates is due to its adaptability to different environments, high 
dispersal capacity, the wide range of potential hosts, and the intense international trade 
of commodities attacked by the larvae or pupae of the moth [135]. A reduction or even 
partial disappearance of the species in the southern American hemisphere, due to the 
warmer and drier conditions expected there, is predicted [135]. In the European Union, 
some southern warm Mediterranean areas could provide suitable climatic conditions for 
the establishment of the species [136]. 

Desert locust (Schistocerca gregaria) (Africa, western and southern Asia [137], and oc-
casionally south-west Europe) swarms and voraciously feeds on key crops such as maize 
and sorghum, pastures, and any green vegetation, thereby significantly affecting small-
holder farmers and pastoralists [138]. It shows periodic changes in its body form and can 
change over generations, in response to environmental conditions, from a non-migratory 
form to a gregarious, migratory phase in which it may travel long distances, finally invad-
ing new areas. In general, the desert locust breeds extensively in semi-arid zones, threat-
ening the livelihoods of people in over 65 countries. However, there is also a much less 
well-known subspecies, S. gregaria subsp. flaviventris, that occupies a limited area in south-
ern Africa; the potential of these subspecies to pose a threat in the future should be inves-
tigated [139]. Outbreaks of desert locusts have been recorded over many centuries. The 
increases in temperature and rainfall over desert areas, and the strong winds associated 
with tropical cyclones, provide a new favorable environment for breeding, development, 
and migration. Consequently, climate change may have an impact on future migration 
routes of the desert locust. 

The old world date bug (dubas bug), Ommatissus lybicus, has caused heavy yield 
losses over the last ten years in the Arabian Peninsula [140]. Evidence for the effect of 
current climate change on date palm pests is still limited. The northern part of Oman is 
currently at significant risk of dubas bug infestation. The infestation level is predicted to 
remain high in 2050 and 2070, and integrated pest management will be of great im-
portance in the future to control this insect pest [141]. Climatic suitability studies have 
been used to develop distribution maps that also indicate areas projected to become un-
suitable for the dubas bug and, therefore, potentially suitable for expansion of date palm 
production [141]. Changes in the pest’s biology and ecology due to global warming have 
also been observed over the last decade in Iraq. 

Parlatoria date scale insect (Parlatoria blanchardii) (Near East) is widely distributed 
throughout most of the date-growing regions of the world, namely Algeria, Egypt, Libya, 
Iraq, the Islamic Republic of Iran, Israel, Morocco, Saudi Arabia, Oman, and the United 
Arab Emirates. It is easily spread to new locations through offshoots of the host plants 
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[142], and it infests all parts of the date palm and cause the fruits to shrink, rendering them 
unmarketable [143]. The Parlatoria date scale is one example of an insect pest that may be 
less of a problem in the future. In the climate change scenarios, considering three time 
series (2011–2040, 2041–2070, and 2071–2100) for a district near Luxor in Egypt, all ex-
pected values for the number of nymphs, adult females, and the total population across 
all-time series and RCP scenarios were smaller compared with the current population 
[144]. The total population was, therefore, projected to be smaller in 2071–2100. 

Among forest pests, some bark beetle species are examples of insects in which the 
impact of climate change has been projected to predict intra- and inter-continental move-
ment. In the pine beetle of western North America, Dendroctonus ponderosae, and the bark 
beetle in European Picea, Ips typographus, a physiological model was used and concluded 
that the strategy to maintain univoltine populations will promote both populations to shift 
northward in native areas with warming throughout the century. However, the tendency 
of expansion of Pinus and Picea habitats supporting a second generation in both continents 
can cause inter-continental establishment of both species [145]. 

2.3.2. Plant Pathogens 
Faba bean necrotic yellows virus (FBNYV) (Near East) is insect-transmitted and 

causes yellowing, stunting, and poor pod setting in chickpea, faba bean, and lentil crops. 
During the past three decades, a high incidence of insect-transmitted viruses has led to a 
substantial reduction in crop yield in Egypt, the Islamic Republic of Iran, Jordan, the Syr-
ian Arab Republic, and Tunisia [146]. With changes in the weather and the crop varieties 
used, viruses that previously occurred rarely may suddenly dominate, as happened in 
central Egypt during the 1991/1992 growing season. This has had substantial long-term 
impacts, with the production of faba bean subsequently having been forced to move from 
central to northern Egypt (the Nile Delta), where the weather and possibly other condi-
tions do not permit the frequent occurrence of high populations of aphid vectors that carry 
the virus. The average temperature in the delta region is lower than in central Egypt, 
which is presumably one reason why aphid populations are often lower in the delta re-
gion. However, with climate change and higher temperatures expected in the years to 
come, epidemics of FBNYV (or possibly other viruses) on faba bean may perhaps emerge 
in the delta region of Egypt in the near future, unless appropriate agricultural practices 
and crop protection methods are developed and implemented. 

Coffee leaf rust (Hemileia vastatrix) (Africa, Asia, Latin America and the Caribbean) is 
one of the main factors limiting arabica coffee yield worldwide. It has caused serious 
losses (up to 50–60 percent yield losses) in some Central American countries, such as Co-
lombia and Mexico, in the past few years. One of the factors that promoted the occurrence 
of the rust epidemics in Central America was a reduction in the diurnal thermal ampli-
tude, decreasing the latency period of the disease [147], which promotes the rapid increase 
of the pathogen population. Similarly, the pathogen’s incubation period may be reduced 
with global warming with more pathogen cycles within a growing season [25]. Conse-
quently, the risk of coffee leaf rust epidemics might increase in the future unless other 
factors, such as a reduced ability of the pathogen to infect coffee plants, change. Less cold 
winters can increase the amount of inoculum in anticipation of pathogen infection [147], 
but cold temperatures may not present a problem for the pathogen [148] and the pathogen 
can adapt to different climates [147]. 

Banana Fusarium wilt (Fusarium oxysporum f. sp. cubense tropical race 4) (Australia, 
Jordan, Mozambique, Colombia, Asia, Near East) was found in 1990 in eastern Asia, parts 
of south-east Asia, and northern Australia, attacking ‘Cavendish’ clones in the tropics 
[149,150]. The planting of ‘Cavandish’, a resistant cultivar, was the solution found for the 
devastation caused by race 1 of the pathogen [149,151]. Since 2010, tropical race 4 (TR4) 
has spread to south and south-east Asian countries (India, the Lao People’s Democratic 
Republic, Myanmar, Pakistan, and Vietnam), the Near East (Israel, Jordan, Lebanon, and 
Oman), Africa (Mozambique) [152], and South America (Colombia) [153]. High 



Sustainability 2022, 14, 12421 10 of 21 
 

temperatures (24–34 °C) and extreme environmental events, including cyclones and trop-
ical storms, may increase the risk of the disease, particularly when ‘Cavandish’ banana 
plants suffer from waterlogged soil [154,155]. 

Xylella fastidiosa (Americas, southern Europe, Near East) is a xylem-limited, Gram-
negative bacterium that causes diseases on economically important crops, such as grape-
vine, citrus, olive, almond, peach, and coffee, and in ornamental and forestry plants 
[156,157]. It was reported in North and South America and Asia in the 1980s [158] and 
Italy in 2013 [159]. X. fastidiosa is transmitted by numerous species of sap-sucking hopper 
insects, including spittlebug and sharpshooter leafhoppers, mainly of the Aphrophoridae 
and Cicadellidae families [158,160]. Models of species bioclimatic distribution have shown 
that the bacterium has the potential to expand beyond its current distribution and may 
reach other areas in Italy and elsewhere in Europe [161,162]. The subspecies fastidiosa rep-
resents a threat to most of Europe [163] and the Mediterranean basin, particularly Leba-
non, runs the highest risk for the establishment and spread of X. fastidiosa [164], followed 
by Turkey, Greece, Morocco, and Tunisia. Based on disease symptoms and laboratory 
analysis, X. fastidiosa has been found also associated with almond leaf scorch and Pierce’s 
disease in grapevine in several provinces of the Islamic Republic of Iran [165], indicating 
that it will start to spread to neighboring countries in the Near East. However, the com-
plete “host plant-vector-bacterium” relationship should also be considered when predict-
ing future risk [161]. Fortunately, vector performance is likely to suffer due to supra-opti-
mal temperature and suboptimal humidity conditions, as recently simulated by Gode-
froid et al. (2020) [166]. 

Oomycetes, including Phytophthora infestans and Plasmopara viticola (global), will po-
tentially be displaced poleward because of climate change and will present a challenge for 
plant protection, mainly in the northern hemisphere [20]. P. infestans, the oomycete that 
causes late blight in potatoes and tomato, has a great capacity to adapt to changing con-
ditions. It first occurred in Europe in the 1840s and caused the Great Irish Potato Famine 
and still today continues to be the main threat to potato production. It is favored by cold 
summers and wet weather conditions, particularly in northern European countries, with 
risk of severe epidemics in the future and several studies suggested an increased risk in 
several countries [167–170]. Studies in Egypt on the impact of climate change on tomato 
and potato late blight have shown how warmer winter weather affects their incidence and 
management [171,172]. Up to three additional fungicide sprays would, therefore, be 
needed each growing season in Egypt during the coming decades (2025–2100). Favorable 
conditions in the winter allow a build-up of pathogen inoculum on early cultivars early 
in the growing season, leading to a tendency for the blight to appear in later-planted po-
tato crops. It can, therefore, be expected that climate change will promote late blight epi-
demics in the future [172]. 

Downy mildew of grapevine, caused by the oomycete P. viticola, is another serious 
disease resulting in 5–40% production losses, in most grape-growing regions. As many of 
these regions have a temperate climate with suboptimal temperatures for the pathogen, 
an increase in air temperature will favor the occurrence of the disease. Studies considering 
future climate change scenarios have, therefore, projected earlier disease outbreaks that 
require more treatments to control [26,94,111]. Short-term studies carried out in phyto-
trons have also confirmed an increased severity of grape downy mildew under simulated 
climate change conditions [173]. 

The presence of mycotoxin-producing fungi in crops are in general expected to in-
crease as a result of climate change. However, the complexity of the fungal flora associated 
with each crop and its interaction with the environment makes it difficult to draw conclu-
sions without conducting specific studies. For instance, the work carried out by Battilani 
et al. (2016) [174] indicates that global warming could extend the northern limit of afla-
toxin risk in maize in Europe, and [6] have made quantitative estimations of the impact of 
climate change on mycotoxin occurrence. Medina et al. (2017) [175] reviewed the impact 
of climate change on mycotoxigenic fungi by key spoilage fungi in cereals and nuts, 



Sustainability 2022, 14, 12421 11 of 21 
 

including Alternaria, Aspergillus, Fusarium, and Penicillium species. The growth of Asper-
gillus flavus, responsible for producing aflatoxin B1, appears to be unaffected by simulated 
climate change scenarios. However, a significant stimulation of aflatoxin B1 production 
has been found both in vitro and in vivo in maize. In contrast, the behavior of other As-
pergillus species, responsible for ochratoxin A contamination, and Fusarium verticillioides, 
producing fumonisins, suggests that some species are more resilient to climate change 
than others, especially in terms of mycotoxin production. In addition, climate change 
could also influence the mycotoxin production of emerging pathogens, such as the in-
creases shown experimentally by Siciliano et al. (2017) [176,177] in Alternaria and Myrothe-
cium species. Furthermore, acclimatization of mycotoxigenic fungal pathogens to climate 
change factors may result in increased disease and perhaps mycotoxin contamination of 
staple cereals as well as other crops. Thus, managing mycotoxin risks will remain a great 
challenge in the future [114], as climate change could worsen the situation [178]. 

2.4. Main Pathways Used by Pests, Also in Relation to Global Trade 
Pest dispersal occurs through both natural and anthropogenic processes, accelerated 

during the past decades by the globalization of markets for plants and plant products, 
including food, planting material, and wood. Global travel and the trade of agricultural 
products have moved crops, weeds, pathogens, and insect pests away from their native 
environments to new ones. Horticultural trade is known to improve the spread of emerg-
ing plant pathogens outside of their distributional range [179]. In total, 5 to 61 new arrivals 
of plant pathogens by 2020 were forecasted in the US using historical data on merchandise 
import volumes and non-native species arrival rates [180]. Indeed, US border inspection 
points intercepted more than 50,000 non-indigenous plant pests in 2000, compared to 
around 20,000 in 1984 [181]. Trade network connectivity is a strong predictor of plant pest 
invasion in Europe and the Mediterranean region. Patterns of invasion are mainly gov-
erned by global trade networks connecting source areas for non-native species and the 
dispersal of those species through multiple trade networks [182]. 

In fact, the increased market globalization in recent years, coupled with increased 
temperatures, has led to a situation that is highly favorable to pest movement and estab-
lishment, with concomitant increases in the risk of severe yield losses [4,31]. Newly intro-
duced crops may expand pest distribution, and the introduction of new pests into a com-
pletely new ecosystem may cause extremely serious damage because pests and hosts may 
not have coevolved together. The coevolution of plants and their pests [183] can create a 
stable balance between hosts and pests in their endemic ecosystems. Anderson et al. (2004) 
[184] reported that half of all emerging diseases of plants were spread by global travel and 
trade, while natural spread, assisted by weather events, is the second most important fac-
tor. Since the early 2000s, global trade has expanded exponentially, with effects on pest 
movement. Considerable national and international efforts have been made to reduce the 
risk of the international movement of pests [185], including the publication and imple-
mentation of International Standards for Phytosanitary Measures (ISPMs), with guidance 
on how to conduct pest risk analysis (PRA) to determine the risk of introduction (entry 
and establishment) and spread of pests and to select which measures to apply to prevent 
introduction. Such phytosanitary measures are generally applied with reference to path-
way risks and are periodically reviewed. 

Wood packaging, such as pallets and dunnage, has played a major role in spreading 
plant pests, such as the wood beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) 
[133,186], a polyphagous species. Native to China and the Republic of Korea, it has been 
introduced to the United States of America and Canada through infested wood packaging 
and it has also been detected in several European countries. Careful inspection and treat-
ment of wood packaging material is an international requirement to prevent new intro-
ductions. Modeling efforts to predict the geographical distribution of the beetle have 
shown that climate change may alter its distribution and impact [187]. Wood packaging 
has also been indicated as the likely pathway of many bark beetle species. Movement of 
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the pine wilt nematode, Bursaphelencus xylophilus, or its insect vector through untreated 
wood packaging material, has also been reported [188]. 

Seeds, planting material, soil, and growing media, due to the globalization of their 
production and marketing, are among the main causes of the recent and rapid spread of 
pests to new regions. Some newly introduced pathogens and insect pests typical of warm 
areas have spread readily in temperate regions because of temperature increases. Mature 
plants can be an important source of live insects, including mites, aphids, caterpillars, leaf 
miners, and thrips. Particularly in the vegetable sector, the recent spread of old and new 
seed-borne pathogens, such as Alternaria spp., Fusarium equiseti, and Myrothecium spp., in 
several countries is linked to the fact that their diffusion is favored by market globalization 
and amplified by global warming [189]. Tomato brown rugose fruit virus is another ex-
ample of a pathogen that emerged in the last few years and spread quickly with seed 
movement. Even low levels of seed infection can lead to the rapid emergence of new dis-
eases in distant geographical areas [190–192]. 

The ornamental industry, due to its international nature, is greatly affected by the 
introduction of pests through infected material [193]. A vast pool of alien pests and dis-
eases of ornamental species may already be present in gardens, but not able to establish 
or spread until there are novel climatic conditions [194]. Only ornamental plants micro-
propagated through tissue culture (generally foliage plants) have a considerably reduced 
risk of infection by pathogens, provided that they are kept clean, consequently avoiding 
reinfection [195]. Ornamental plants, whether started from seed, from cuttings, or from 
cane sections, can easily harbor pests [196]. Several of the most damaging insect and mite 
pests of greenhouse crops have originated by importing infected plant material and have 
established quickly because of the favorable environmental conditions in greenhouses 
[197,198]. Ornamental coffee plants imported from Costa Rica and infected by Xylella fas-
tidiosa subsp. pauca are considered the possible source of this destructive pathogen in Eu-
rope [199]. 

Soil and potting media, often imported, can harbor soil-borne pathogens (e.g., 
Fusarium spp., nematodes), the larvae of insect pests, and weed seeds. This has been well 
documented in relation to peat and other media used in the ornamental industry and in 
nurseries. Contamination of growing substrates by soil-borne pathogens (e.g., Fusarium 
oxysporum, Pythium spp., Rhizoctonia solani) results in incomplete disinfestation and in 
early infection of young plants [200]. 

In addition to the pest risk posed by the movement of seed, planting material, soil 
and growing media described above, the increasing online market that spreads planting 
material around the world poses a new type of threat. This planting material is often of 
low quality and generally not subject to phytosanitary control. This potential new path-
way for pest introduction should be given due consideration in the future. 

Conveyances, cargo, and movement of animals are other important pathways. Trac-
tors, cars, trucks, trains, ships, airplanes, containers, re-sold used agricultural equipment, 
and other vehicles are common means for passively moving pests. Historically, the spread 
of pests is considered to be directly related to the speed of conveyances. The global ship-
ping network is widely recognized as a pathway for vectoring invasive species. One insect 
species that is known to have spread throughout the world by shipping, including trans-
portation by ships and shipping containers, is the spongy moth, Lymantria dispar. This 
species may be introduced into a new area when the port has a suitable climate for the 
survival and establishment of the species. Two subspecies, with different geographical 
origins, are known today, and the global distribution threat from the Asian subspecies has 
been estimated using a CLIMEX model [201]. The heteropteran brown marmorated stink 
bug, Halyomorpha halys (Hemiptera: Pentatomidae), is another example of an invasive in-
sect travelling mainly through international trade as a contaminant of non-regulated 
goods such as machinery, containers, and vehicles, but also by passengers and to a lesser 
extent through movement of plant material. It is highly polyphagous, feeding on more 
than 300 plant-host species, including food crops, forest trees, and ornamentals. This pest 



Sustainability 2022, 14, 12421 13 of 21 
 

has caused severe economic losses in hazelnut crops in the Republic of Georgia and fruit 
crops in Italy since its introduction—most likely from North America. A detailed report 
of a pest risk assessment for the introduction and establishment of H. halys can be found 
in Burne (2019) [202]. 

Business travelers and tourists can readily introduce pests, particularly in the absence 
of strict controls at points of entry. Leisure travel, in particular, is often associated with 
people bringing food, seeds, or exotic plants, and these can be infested with pests or can 
themselves be a pest. To counter this, an increasing number of countries are establishing 
campaigns at points of entry (airports and harbors), aimed at increasing public awareness 
of the threat to biosecurity posed by the movement of plants and plant parts. Many coun-
tries inspect baggage and mail for food and other biosecurity-risk material and encourage 
incoming passengers to declare potential biosecurity risks. They screen passengers and 
their luggage using X-rays, detector dogs, and manual inspections. Passengers with risk 
materials may be fined or even refused entry. In this respect, countries such as Australia, 
New Zealand, and the United States of America [181] have a long history of strict control, 
as well as of collecting and reporting data on interceptions. 

Natural dispersal, without direct human assistance, remains important for pest in-
troduction. There are examples where native and non-native pests have significantly ex-
panded their geographical ranges naturally, usually in response to significant changes in 
host distribution or climate. Increasing temperatures are likely the major climate factor 
facilitating range expansion in pests, especially at higher latitudes and altitudes. In Eu-
rope, for example, higher winter temperatures have increased larval survival and noctur-
nal adult dispersal of the pine processionary moth, Thaumetopoea pityocampa, allowing the 
northern expansion of its range [203]. In addition, wind and storms can transport spores 
of pathogens over long distances, even across continents. For example, changing wind or 
storm patterns are projected to promote the future distribution of wheat stem rust caused 
by Puccinia graminis [204]. Additionally, myrtle rust (Austropuccinia psidii), detected for the 
first time in Australia in 2010 on the central coast of New South Wales, is spreading and 
can now be found in a range of native forest ecosystems, with disease impacts ranging 
from minor leaf spots to severe shoot and stem blight and tree dieback [205]. The distri-
bution of several pests, including fruit flies, can be affected by hurricanes in the Caribbean, 
Central America, and the southeastern United States of America. For example, Flitters 
(1963) [206] observed that several insect species emerged in unusually large numbers in 
Texas after Hurricane Carla, suggesting that they had been transported there by the cy-
clone from distant locations. 

3. Concluding Remarks 
Most studies indicate that pest risk will generally increase in agricultural ecosystems 

under climate change scenarios [21,22,30,207,208], especially in today’s cooler arctic, bo-
real, temperate, and subtropical regions. Evidence suggests that all climates will be im-
pacted, but that the nature and extent of the impact will vary with the ability of production 
systems and natural ecosystems to adapt and evolve. This is also mostly true for patho-
gens and insect pests in forestry [16]. The impacts of global trade and invasion pathways 
may interact with climate change in many and often complex ways. Understanding them 
can guide choices about mitigation and adaptation measures. 

To conclude, preventive (including biosecurity), mitigation, and adaptation 
measures are strongly needed [13,209–213] to reduce the projected increases in pest risk 
in agriculture, horticulture, and forestry. Therefore, research to support these measures 
should have priority in the future. Taken together, climate change and globalization sup-
port the spread of current plant pests and also the emergence of new pest threats. Sustain-
able management of pests is urgently needed. It requires holistic solutions, including ef-
fective quarantine and phytosanitary regulations, globally coordinated diagnostic and 
surveillance systems, pest risk and epidemic modeling integrated in risk analysis, and 
preparedness for proactive management [214]. More information related to holistic, 
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effective and sustainable strategies to manage various plant pests can be derived in re-
cently published articles (e.g., [3,12,13,214]). These approaches are needed to reduce the 
detrimental effects of pests on the quality and quantity of plant production, to provide 
food security for an increasing human population. 
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