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Abstract

Genotype × environment (G×E) interaction is an important source of variation in soybean

yield, which can significantly influence selection in breeding programs. This study aimed to

select superior soybean genotypes for performance and yield stability, from data from multi-

environment trials (METs), through GGE biplot analysis that combines the main effects of

the genotype (G) plus the genotype-by-environment (G×E) interaction. As well as, through

path analysis, determine the direct and indirect influences of yield components on soybean

grain yield, as a genotype selection strategy. Eight soybean genotypes from the breeding

program of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) were evaluated in

field trials using a randomized block experimental design, in an 8 x 8 factorial scheme with

four replications in eight different environments of the Cerrado of Northeastern Brazil during

two crop seasons. Phenotypic performance data were measured for the number of days to

flowering (NDF), height of first pod insertion (HPI), final plant height (FPH), number of days

to maturity (NDM), mass of 100 grains (M100) and grain yield (GY). The results revealed

that the variance due to genotype, environment, and G×E interaction was highly significant

(P < 0.001) for all traits. The ST820RR, BRS 333RR, BRS Sambaı́baRR, M9144RR and

M9056RR genotypes exhibited the greatest GY stability in the environments studied. How-

ever, only the BRS 333RR genotype, followed by the M9144RR, was able to combine good

productive performance with high yield stability. The study also revealed that the HPI and

the NDM are traits that should be prioritized in the selection of soybean genotypes due to

the direct and indirect effects on the GY.
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Introduction

The tropical savannas (Cerrado) of the states of Maranhão and Piauı́ form one of the last agri-

cultural frontiers in Brazil, whose expansion of soybean (Glycine max (L.) Merrill) cultivation

areas was due to advances in plant breeding [1,2]. Despite this context, considering the large

extension of the Cerrado areas associated with the constant annual variations of climatic ele-

ments (rainfall, temperature and relative air humidity), the search for genotypes with high per-

formance and yield stability is essential for the producer market.

The phenotypic expression results from the G×E interaction that can significantly influence

the performance of genotypes in multi-environment trials (METs), justifying the need to

examine whether the response of this interaction is promoted by the difference in variability

between the genotypes in the environments (simple interaction) or if the superiority of the

genotypes shows inconsistency in relation to environmental variation (complex interaction)

[3,4]. In particular, the stability of a genotype reveals its homogeneous performance in differ-

ent environments. In contrast, adaptability reveals a genotype’s preferred target environments

to achieve high yields [5].

Several statistical methods described in the literature have been used to analyze the G×E

interaction and the adaptability and stability of genotypes tested in different environments [6–

10]. The biplot GGE analysis developed by Yan et al [11,12] is an effective multivariate method

widely applied in METs of different agricultural crops, grouping the genotype effect (G) with

the multiplicative effect of the G x E interaction and submitting them principal component

(PC) analysis that results in different graphic configurations (biplots) that provide information

about the performance and yield of the genotype, as well as identifying mega-environment for-

mation and ranking superior and stable genotypes and specific genotype combinations with

environments [13–15].

A concomitant alternative to the GGE biplot analysis is to examine the yield components

that are closely correlated with yield, since identifying the existence and degree of this correla-

tion allows the breeder to make simultaneous changes in yield by improving other specific

associated characteristics. However, estimates through simple correlations are limited by not

being able to determine the relative importance of the direct and indirect influences of the

characters that make up the grain yield [16–19].

The path analysis developed by Wright [20] is a method used in breeding programs to

unfold the estimated correlations in direct and indirect effects of characters associated with a

main variable (dependent variable) [21].

Thus, considering the strong influence of the environment on the phenotype of plants, this

study aimed to select soybean genotypes for performance and yield stability accessed by GGE

biplot analysis. Furthermore, based on the environments identified by the GGE biplot graphi-

cal tool, to verify using the path analysis the relative contribution (direct and indirect effects)

of yield components on GY as a breeding strategy.

Materials and methods

Genetic material

The genetic material used in this study belongs to the maturity groups (MG) recommended

for low latitude regions [22], developed by the EMBRAPA soybean breeding program, charac-

terized by soybean genotypes (M9144RR, M8766RR, M9056RR, ST820RR, BRS Sambaı́baRR,

BRS 333RR, BRS 9090RR, and BRS 8990RR) of determined growth and MG ranging from 8.2

to 9.4.
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Experimental design and conditions

Yield trials were carried out in the field in eight different environments of the Cerrado of

Northeast Brazil, of which five of them (Tasso Fragoso–MA, São Raimundo da Mangabeiras–

MA, Uruçuı́ –PI, Baixa Grande do Ribeiro–PI, and Balsas–MA) in the 2013/2014 crop season

and three other environments (Chapadinha–MA, São Raimundo das Mangabeiras–MA, and

Tasso Fragoso–MA) in the 2014/15 crop season (Table 1).

The experimental design followed a randomized block design, adopting an 8 x 8 factorial

scheme with four replications. The experimental plot was composed of four 5-meter rows

spaced at 0.5 m between rows. The two center rows were used for data collection (useful area),

disregarding the 0.5 m from the ends as a border area. All the trials were sown manually, uni-

formly distributing 15 seeds per meter (300,000 plants ha-1). The seeds were previously treated

with fipronil, pyraclostrobin, and thiophanate-methil at a dosage of 2.0 mL kg-1 and, just

before sowing, inoculated with Bradyrhizobium japonicum using a Cell tech1 liquid inoculant

(Monsanto, USA) at a dosage of 75 mL/27 kg of seeds. Fertilization was carried out with the

application, on average, of 60 kg ha-1 P2O5 and 80 kg ha-1 of K2O, distributing 40 kg ha-1 K2O

before sowing and 40 kg ha-1 K2O applied 20 days after emergence (DAE). Pre-emergent and

post-emergent herbicides were used at all trial sites. The fungicide applications were per-

formed with difeconazole, with the first application at 25 DAE, and the others at 15-day inter-

vals after the last application.

Evaluations of yield components

All phenotypic data were collected from five randomly selected and tagged plants in each plot.

NDF were recorded as the period between sowing and the start of flowering, when 50% of the

flowers are open (stage R1) to R2 (full flowering). HPI was measured with a graduated ruler,

from the soil to the insertion point of the 1st pod. FPH was measured from the base of the

plant at full maturity stage to the upper end of the main stem. NDM were recorded as the

period between sowing to full maturity (95% of the pods have reached their full mature color).

All of the trials were harvested manually. The GY and M100 were determined in the useful

area of each plot (4 m2), five days after the plants reached full maturation. The pods were man-

ually threshed and the harvested grains were stored in properly identified paper bags for later

determination of the grain mass per useful area of each plot. The GY (kg ha-1) was estimated

Table 1. Geographic coordinates, sowing dates, climatic variables (rainfall, temperature, and relative humidity) of the municipalities where the experiments were

installed in the 2013/14 and 2014/15 crop seasons.

Crop seasons E Sowing date Rainfall (mm) Temp. (˚C) Rh

(%)

Alt. (m) Latitude Longitude

2013/14 E1 26/11/2013 687 27.5 86.1 242 08˚28’30” S 45˚44’34” W

E2 18/12/2013 607 27.5 85.8 234 07˚01’09” S 45˚28’51” W

E3 12/12/2013 618 27.5 86.3 167 07˚13’46” S 44˚33’22” W

E4 11/12/2013 618 27.5 86.4 325 07˚51’01” S 45˚12’49” W

E5 28/11/2013 689 27.5 85.9 247 07˚31’57” S 46˚02’08” W

2014/15 E6 05/02/2014 1120 27.6 83.4 105 03˚44’30” S 43˚21’37” W

E7 15/12/2014 655 27.4 79.3 234 07˚01’09” S 45˚28’51” W

E8 25/11/2014 661 27.4 78.8 242 08˚28’30” S 45˚44’34” W

E = Environment; Alt. = Altitude; Temp. = Temperature average; Rh = Relative humidity; E1 = Tasso Fragoso (MA), E2 = São Raimundo das Mangabeiras (MA), E3 =

Uruçuı́ (PI), E4 = Baixa Grande do Ribeiro (PI), E5 = Balsas (MA), E6 = Chapadinha (MA), E7 = São Raimundo das Mangabeiras (MA), E8 = Tasso Fragoso (MA).

Source: INMET.

https://doi.org/10.1371/journal.pone.0274726.t001
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with the humidity adjustment to 13% as determined by the drying oven method at 105˚C for

24 h [23]. The M100 was determined by separating the grains according to the method estab-

lished by Brasil [23], and the masses quantified using a precision balance.

Data analysis

The phenotypic data were collected in the eight environments, the homogeneity of variance

was verified by the Bartlett [24] test and, given the assumption of homogeneity, the data were

submitted to joint analysis of variance (ANOVA) to determine the significance level of geno-

types (G), environments (E) (represented by crop seasons and location), and G x E interaction

using fixed linear model in R software [25].

To explain the G×E interaction, the multivariate stability analysis was performed graphi-

cally based on the GGE biplot model [26] using R package GGEBiplotGUI. Singular value

decomposition (SVD) of the first two principal components was used to fit the GGE biplot

model according to the equation below:

GGE ¼
Xn

K¼1

lkgikajk þ rij

where GGE is the matrix of the effects of genotypes added to the effects of the interaction; λk is

the k-th singular value of the original matrix interactions (GE); γik is the element corresponding

to the i-th genotype in the k-th singular vector of the GE matrix column; αjk is the element cor-

responding to the j-th environment in the k-th singular vector of the GE matrix row; and ρij is

the residual related to the adjustment.

GGE biplots are graphical tools to demonstrate the G×E interaction and the classification of

genotypes based on the mean and stability obtained for an evaluated character. The generated

graph is based on METs evaluation for environmental stratification (who-won-where pattern),

genotype evaluation (mean versus stability) and tested environment ranking (discriminatory

versus representative). The classification of genotypes was established in ascending order of

each stability parameter. The biplots were based on partitioning with singular value = 2, trans-

formed (transform = 0), centered on the environment (centering = 2) and standardized with

standard deviation (scaling = 0).

Estimates of phenotypic correlation coefficients between traits were obtained following the

methodology described by Steel and Torrie [27]. The diagnosis of multicollinearity was per-

formed for all environments, based on the Variance Inflation Factor (VIF) obtained according

to equation below:

VIFi ¼
1

ð1 � R2
i Þ

where Ri
2 is the multiple determination coefficient for the linear regression of Xi on the other

covariates. The VIF estimates how much the variance of a regression coefficient is inflated due

to multicollinearity presented in the model [28]. The correlations were divided into direct and

indirect effects among the studied variables relative to soybean GY through the path analysis

proposed by Wright [20].

Results and discussion

The analysis of variance showed that soybean GY, NDF, HPI, FPH, NDM, and M100 was sig-

nificantly (p< 0.001) affected by environments main effects, genotypes main effects and G x E

interaction effects (Table 2), demonstrating that differences between environments,
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represented by crop seasons and locations, require prudence in the selection process. Thus,

due to the lack of consistency in the performance of the genotypes, we cannot recommend

them for all environments in our study. According to Olanrewaju et al. [29], progress in selec-

tion requires considering the influence that the environment has on genotypes, mainly in the

breeding of polygenic traits that are highly influenced by the environment. Furthermore, it is

reported by Bhartiya et al. [30] that the selection of genotypes should prioritize, in addition to

the G x E interaction, the number of years or harvests over the number of locations, consider-

ing that environmental heterogeneity over the years tends to increase with constant climate

changes in regions and areas of cultivation.

Considering the GY, it is observed that the environments account for the greatest variation

in relation to G x E interactions, while the genotypes show the smallest variation. The magni-

tude of the mean square of the G x E interaction of GY, resulting from the product of the mean

square with the degree of freedom, was about 3.23 times greater than the magnitude of the

genotypes, reinforcing the significant differences in the genotypic response in the MET of this

study. The GGE biplot based on this data set is shown in Fig 1, with the scores of PC1 on the x-

axis and the scores of PC2 on the y-axis, for genotypes and environments.

GGE biplot analysis

GGE biplot aided on finding the best-performing genotypes adapted at the specific location or

stable genotype for multiple locations and even determines the most representative locations

(mega-environment—ME) for a genotype [13]. In the decomposition applied to the effects of

genotype and G x E interaction, considering the first two principal components (PC), the

biplot explained 61.34% of the total variation observed, with 37.52% explained by the first prin-

cipal component (axis 1), and 23.82% by the second principal component (axis 2).

The "which-won-where" graph (Fig 1A) allows for visual grouping of test environments

based on G x E crossing between the best genotypes. The genotype at the vertex of the polygon

performs best in the environment falling within the sectors. The vertices of the polygon are

formed by the genotypes: BRS 333RR, BRS 8990RR, ST820RR and M8766RR. The eight envi-

ronments were cut into 3 groups by the lines (red) that came out of the origin of the biplot, the

groups are formed by (ME1) E4 and E5 (ME2) E1 and E7; (ME3) E2, E3, E6 and E8. The BRS

333RR genotype had the best performance in ME3; the BRS 8990RR had the best performance

Table 2. Summary of the joint analysis of variance for number of days to flowering (NDF), height of first pod insertion (HPI), final plant height (FPH), number of

days to maturity (NDM), mass of 100 grains (M100), and grain yield (GY).

SV DF Mean squares

NDF HPI FPH NDM M100 GY

G 7 143.99��� 43.28��� 1,027.5��� 429.16��� 1,624.2��� 1,146,838.0���

E 7 767.29��� 368.39��� 4,014.1��� 1,184.93��� 4,505.0��� 10,749,342.0���

Block / E 24 2.68�� 11.84� 143.2�� 3.37ns 77.2ns 302,583.0ns

(G x E) 49 14.59��� 14.99��� 221.1��� 35.72��� 326.2��� 528,336.0���

Error 168 1.25 7.36 63.70 3.64 94.70 268,758.0

CV (%) 2.32 18.18 12.43 1.65 6.99 15.54

��� = Significant at 0.001 significance level.

�� = Significant at 0.01 significance level.

� = Significant at 0.05 significance level.

ns = non-significant by the F-test (p > 0.05).

G = genotypes; E = environments; SV = Sources of variation; DF = degrees of freedom; CV = coefficient of variation.

https://doi.org/10.1371/journal.pone.0274726.t002
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in ME1; and M8766RR was considered with the best performance in ME2, so these are the

most adapted genotypes in these environments. The ST820RR genotype is present in a sector

that does not contain environments, meaning that this genotype is not productive in any envi-

ronment, that is, this genotype is the worst genotype in relation to GY in some or all

environments.

The GGE biplot "Mean versus Stability" is an effective tool for the evaluation of genotypes

in both aspects [11]. In Fig 1B, the genotypes are arranged along the "average environment-

axis" (or AEA) based on their average performance in all environments, with the arrow point-

ing to the highest yield value. The perpendicular line separates genotypes that produced below

average from those that produced above average. Thus, genotypes can be ranked according to

their average GY as follows: BRS 333RR > M9144RR > M8766RR > BRS SambaibaRR > BRS

9090RR> general average (GY)> BRS 8990RR >M9056RR > ST820RR.

The length of the projections of each genotype to the AEA (dotted lines) approximates their

contributions to the GxE interaction, which is the measure of their instability [11,13]. There-

fore, the larger this vector, the lower the yield stability of the genotype throughout the test envi-

ronments. According to Fig 1B, BRS 333RR and M9144RR, are located further upstream to the

average yield value and with relatively low projections in relation to the AEA, being the

Fig 1. (a) GGE biplot representing the which-won-where, where the genotypes at the vertices of the polygon represent

the genotypes indicated for the respective mega-environments formed (red lines). (b) GGE-biplot analysis for “mean

performance versus stability” for yield of soybean genotypes. (c) GGE biplot comparing eight genotypes evaluated

according to the estimate of an ideal genotype. (d) GGE biplot comparing eight soybean genotypes evaluated according

to the discrimination and representativeness of environments for grain yield (kg ha-1).

https://doi.org/10.1371/journal.pone.0274726.g001
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genotypes that best allied high yield and stability, with their rankings consistent across loca-

tions. BRS 333RR and M9144RR are good candidates in breeding programs aimed at selecting

broad yield adaptability in soybeans.

The good performance of these genotypes is confirmed when they are compared to a hypothet-

ical ideal genotype represented by the concentric area of Fig 1C, located in the region correspond-

ing to the smallest circle on the AEA [13]. Thus, the BRS 333RR genotype, followed by M9144RR,

can be considered the closest to an ideal genotype, that is, able to combine good grain yield perfor-

mance with high stability throughout the multi-environment productivity trials.

The goal of the test environment assessment is to identify environments that can be used to

effectively select superior genotypes for a mega-environment [13]. In this way, the relationship

between environments can be seen in the GGE biplot (Fig 1D) designed for this purpose. The

test environments with longer vectors are more discriminating with respect to genotypes.

Those environments with a short vector are less discriminating, which means that all geno-

types tend to perform similarly and little or no information about genotypic differences can be

revealed in such an environment, and therefore should not be used as a test environment. The

environments (E5 and E6) showed short vectors, meaning they are less discriminating with

respect to genotypes. A second utility of Fig 1D is to indicate representative test environments.

The test environments that have small angles with AEA (average environment-axis), for exam-

ple, E2, E3 and E8, are more representative than those that have larger angles, for example, E1,

E4 and E7. Therefore, the test environments that are discriminatory and representative (for

example, E2, E3 and E8) are ideal test environments for the selection of adapted genotypes.

The test environments that are discriminatory but not representative (for example, E1, E4 and

E7) are useful for the selection of genotypes adapted specifically in mega-environments; or for

the selection of unstable genotypes if the test environment is a single mega-environment [11].

Path analysis

Understanding the relationship of the various yield components with grain yield can be

explored for use as an indirect selection criterion to improve genotype yield in breeding pro-

grams [31]. In this study, it was verified that the phenotypic and genotypic correlations are

similar, indicating that there is an intrinsic association between several characters.

The correlation analysis (Fig 2) showed different degrees of association between GY and

the yield components in each mega-environment. There was a positive and significant associa-

tion (p< 0.05) of GY with HPI in the ME1; and with HPI and NDM in the ME3. Similarly, a

positive and significant correlation (p< 0.05) was observed in HPI with FPH, and NDM with

NDF (ME1); HPI with FPH, and NDM with M100 (ME2); and HPI with NDM, FPH and

NDF, and NDF with NDM (ME3). No significant correlation was observed between GY and

the yield components in ME2. These results are similar to those found by Nogueira et al. [32]

and Ferrari et al. [33], who observed that the correlation magnitudes between the same traits

had a high oscillation according to the crop seasons and sowing period. The correlation results

in each mega-environment indicated the existence of variability among the soybean genotypes

with different performances according to the cultivation environment.

Therefore, observing trait correlations relative to the growth environment suggests that

selecting soybean genotypes based on yield traits could be efficient when performed in the

environment to which the genotype is most adapted [32]. Thus, we can infer a potential indi-

rect selection for GY by the evaluation of HPI in ME1, and HPI and NDM in mega-environ-

ment 3. According to Nogueira et al. [32], the interpretation of secondary components effects

on the primary must be conducted carefully because when the coefficients of determination

are low, the corresponding residual effects are high with fewer significant variables.
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The identified strong correlations could be related to factorial linkages through pleiotropy,

in which a gene can influence the expression of more than one trait, enabling the simultaneous

selection of two or more traits, although selecting only one trait [34]. Furthermore, the correla-

tion coefficient only measured the linear relationships, while nonlinear variables could still be

valid. A high correlation does not imply a direct cause-and-effect relationship between the ana-

lyzed variables [35]. According to the results obtained in the GGE Biplot analysis the direct

effect magnitudes can change based on the growth environment.

Justified by the similarity of phenotypic and genotypic correlations, it was prioritized for

path analysis, the use of phenotypic data and, proceed with the analyzes within each mega-

environment safeguarding the results obtained by GGE analysis. In Mega-environment 1 (Fig

3A) HPI had the greatest direct effect on soybean GY, with direct effect of 1.3244, followed for

NDM (1.2899). For ME2 (Fig 3B), NDM was the most important trait for selection of GY

(1.6498), and in ME3 (Fig 3C), NDM was the trait that most contributed for GY, followed for

HPI (1.1799, and 0.9982, respectively). Thus, the NDM can be considered a key trait, with the

greatest contribution, in all environments.

Therefore, for recommendation of new cultivars in the evaluated environments, NDM and

HPI, can be used to develop an ideally effective selection index for soybean breeding programs.

Similar results were found by Val et al. [36], who found a greater influence of NDM on soy-

bean GY. In a study reported by Zuffo et al. [37], also was observed the direct effects of HPI on

soybean GY.

However, our results do not coincide with those found by Nogueira et al. [32], who found a

greater direct phenotypic effect on GY for the number of pods per plant, M100, and number

of grains per pod. Alcântara Neto et al. [16], observed a low correlation between HPI and FPH,

number of nodes per plant and the average number of pods per plant. Furthermore, they veri-

fied the smallest direct and indirect effects on the production of dry matter, M100, and total

GY per plant.

HPI showed a low cause-and-effect relationship in the variables studied by Zuffo et al. [38],

and for Baig et al. [39], M100 and NDM, showed a strong association with GY as well as direct

and indirect positive effects for one or more characters. They also verified that direct selection

for these traits would increase the efficiency of genetic gains for GY in soybean.

In this study, NDF, in general, was the variable with the highest negative influence on soy-

bean yield, with negative estimates in terms of direct effects in all mega-environments

(-1.4736, -0.2369, and -0.8756, respectively). Considering that genotypes with very different

cycles interfere in the consistency of interactions, it is important to evaluate the effect only of

the best genotypes with similar flowering cycles.

The current study showed a significant influence of vegetative components in soybean GY.

These variables have direct and indirect effects on the yield and its contributing traits. Further-

more, the traits of HPI and NDM must be prioritized in the selection of superior soybean geno-

types due to their direct and indirect effects on GY, which were very influential in all cultivation

environments. Hence, indirect selection to increase GY is an efficient selection strategy to opti-

mize the genetic gain of soybeans [40], even when considering contrasting environments.

Conclusions

This study pointed out the effect of the G×E interaction through the GGE biplot analysis, dem-

onstrating the stability of the genotypes and the representativeness and discriminative capacity

Fig 2. Estimates of the phenotypic correlation between the variables NDF, HPI, FPH, NDM, M100 and GY in tree

mega-environments ((a) ME1, (b) ME2, and (c) ME3) used to test soybean genotypes.

https://doi.org/10.1371/journal.pone.0274726.g002
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of the environments for grain yield. The GGE biplot analysis made it possible to identify stable

and high-yield genotypes in the environments. The genotypes ST820RR, BRS 333RR, BRS

Sambaı́baRR, M9144RR and M9056RR are, in this sequence, the genotypes the showed the

greatest stability of grain yield in the average of the environments studied. However, only the

BRS 333RR genotype, followed by the M9144RR, was able to combine good productive perfor-

mance with high productive stability throughout the multi-environment productivity trials.

Thus, according to the growing conditions in each mega-environment, the components yield

present different behavior and, therefore, such information can be useful in the soybean breed-

ing process using the genotypes of this study.

This study highlighted the importance of evaluating vegetative components in multi-envi-

ronment trials that aims to select genotypes with higher grain yield in soybean breeding pro-

grams. Vegetative traits can also be considered as key in the development of early selection

indices when the objective is to obtain genotypes with good stability and adaptability in this

crop.

Fig 3. Diagram of path coefficients between the variables NDF, HPI, FPH, NDM, M100 and GY in tree mega-

environments ((a) ME1, (b) ME2, and (c) ME3) used to test soybean genotypes.

https://doi.org/10.1371/journal.pone.0274726.g003
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24. Bartlett MS. Properties of sufficiency and statistical tests. Proc. Royal Soc. 1937; 160: 268–282.

25. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statisti-

cal Computing. Vienna, Austria. URL https://www.R-project.org/.

26. Yan W, Tinker NA. Biplot analysis of multi-environment trial data: Principles and applications. Canadian

Journal of Plant Science. 2006; 86: 623–645. https://doi.org/10.4141/P05-169.

27. Steel, RGD, and Torrie JH. Principles and procedures of statistics: A biometrical approach. 2st ed.

New York: McGraw-Hill Book Company; 1980.

28. Daoud JI. Multicollinearity and Regression Analysis. IOP Conf. Series: J. Phys. Conf. Ser. 2017; 949:

012009. https://doi.org/10.1088/1742-6596/949/1/012

29. Olanrewaju OS, Oyatomi O, Babalola OO, Abberton M. GGE Biplot Analysis of Genotype X Environ-

ment Interaction and Yield Stability in Bambara Groundnut. Agronomy. 2021; 11: 1839. https://doi.org/

10.3390/agronomy11091839.

PLOS ONE Grain yields of soybean genotypes in multi-environment trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0274726 October 12, 2022 12 / 13

https://doi.org/10.3389/fpls.2016.01530
https://doi.org/10.3389/fpls.2016.01530
https://doi.org/10.2135/cropsci1966.0011183X000600010011x
https://doi.org/10.1590/1984-70332020v20n2a33
https://doi.org/10.3390/su14020897
https://doi.org/10.3390/su14020897
https://doi.org/-z
https://doi.org/10.1080/23311932.2020.1752603
https://doi.org/10.1371/journal.pone.0233290
http://www.ncbi.nlm.nih.gov/pubmed/32442213
https://www.R-project.org/
https://doi.org/10.4141/P05-169
https://doi.org/10.1088/1742-6596/949/1/012
https://doi.org/10.3390/agronomy11091839
https://doi.org/10.3390/agronomy11091839
https://doi.org/10.1371/journal.pone.0274726


30. Bhartiya A, Aditya JP, Singh K, Pushpendra P, Purwar JP, Agarwal A. AMMI and GGE biplot analysis of

multi environment yield trial of Soybean in North Western Himalayan state Uttarakhand of India.

Legume Research—An International Journal. 2016; 40: 306–312.

31. Anwar K, Joshi R, Morales A, Das G, Yin X, Anten NPR, et al. Genetic diversity reveals synergistic inter-

action between yield components could improve the sink size and yield in rice. Food and Energy Secu-

rity. 2022; 11: e334. https://doi.org/10.1002/fes3.334.

32. Nogueira AP, Sediyama T, Sousa LB, Hamawaki OT, Cruz CD, Pereira DG, et al. 2012. Análise de

trilha e correlações entre caracteres em soja cultivada em duas épocas de semeadura. Bioscience

Journal. 2012; 28(6): 877–888.

33. Ferrari M, Carvalho IR, Pelegrin AJ, Nardino M, Szareski VJ, Olivoto T, et al. Path analysis and pheno-

typic correlation among yield components of soybean using environmental stratification methods. Aus-

tralian Journal of Crop Science. 2018; 12: 193–202.

34. Sikkink KL, Reynolds RM, Cresko WA, Phillips PC. Environmentally induced changes in correlated

responses to selection reveal variable pleiotropy across a complex genetic network. Evolution. 2015;

69: 1128–1142. https://doi.org/10.1111/evo.12651 PMID: 25809411

35. Vasconcelos UAA, Dias LAS, Corrêa TR, Rosmaninho LBC, Silva DM, Zaidan IR. Estimates of genetic

parameters and path analysis of crambe: An important oil plant for biofuel production. Acta Scientiarum.

Agronomy. 2020; 42: e42490. https://doi.org/10.4025/actasciagron.v42i1.42490

36. Val BHP, Silva FM, Bizari EH, Leite WS, Groli EL, Pereira EM, et al. Identification of superior soybean

lines by assessing genetic parameters and path analysis of grain yield components. African Journal of

Biotechnology. 2017; 16: 328–336. https://doi.org/10.5897/AJB2016.15766.

37. Zuffo AM, Zuffo Júnior JM, Fonseca WL, Zambiazzi E, Oliveira AM, Guilherme SR, et al. Path Analysis

in Soybean Cultivars Grown under Foliar Spraying and Furrow Inoculation with Azospirillum brasilense.

Journal of Agricultural Science. 2017; 9: 137–144. https://doi.org/10.5539/jas.v9n10p137.

38. Zuffo AM, Ribeiro BM, Bruzi AT, Zambiazzi EV, Fonseca WL. Correlações e análise de trilha em culti-

vares de soja cultivadas em diferentes densidades de plantas. Cultura Agronômica. 2018; 27: 78–90.

39. Baig KS, Kaware PP, Sarang DH, Chandrawat KS. Association analysis for yield contributing and mor-

pho-physiological traits in soybean. Soybean Research, 2017; 15(1): 18–24.

40. Dvorjak DS, Unêda-Trevisoli SH, Leite WS, Silva AJ, Silva FM, Mauro AO. Correlations and path analy-

sis in soybean progenies with resistance source to cyst nematode (race 3). Comunicata Scientiae.

2019; 10: 168–175.

PLOS ONE Grain yields of soybean genotypes in multi-environment trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0274726 October 12, 2022 13 / 13

https://doi.org/10.1002/fes3.334
https://doi.org/10.1111/evo.12651
http://www.ncbi.nlm.nih.gov/pubmed/25809411
https://doi.org/10.4025/actasciagron.v42i1.42490
https://doi.org/10.5897/AJB2016.15766
https://doi.org/10.5539/jas.v9n10p137
https://doi.org/10.1371/journal.pone.0274726

