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Abstract
Schizotetranychus hindustanicus Hirst (Acari: Tetranychidae) known as the Hindustan cit‑
rus mite, is a quarantine pest present in Roraima, Brazil. In 1924 this pest was described in 
India. It was reported in 2002 in Venezuela and in Roraima in 2008. In 2010, the Hindustan 
citrus mite was reported in Colombia. It is possible that it will be introduced in other areas 
of Brazil, resulting in a threat to Brazilian citrus industry. Our objective was to determine 
the most suitable regions of Brazil for S. hindustanicus using a maximum entropy (Max‑
ent) algorithm, based on native and invasive updated occurrence records from published 
research, field surveys and online databases. To avoid overfitting and improving transfer‑
ability, we chose parameter settings of Maxent to construct and validate models by search‑
ing for the best combination of feature classes and regularization multipliers. The model 
obtained showed excellent performance according to all evaluation metrics used. A high 
potential for the establishment of S. hindustanicus was identified in large areas of Roraima, 
the extreme west of Amazonas, the entire north of the State of Pará, also in northeast, 
south, east, and north of the State of Amapá, and in a small portion northwest of the State 
of Maranhão (all states belonging to the northern region of Brazil). Our results provide 
information for policy making and quarantine measures, especially where S. hindustanicus 
is still absent in Brazil.
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Introduction

Schizotetranychus hindustanicus, also known as the Hindustan citrus mite or citrus web 
nest mite, was described from citrus specimens in India (Hirst 1924). This mite was 
detected to be infesting lemon trees in northwest Venezuela, Department of Zulia, in 
2002 (Quiróz and Dorado 2005). In 2008, the mite was reported in the far north region 
of Brazil, in Roraima (Navia and Marsaro Jr 2010), also causing severe symptoms on 
the lemon trees. Subsequently, S. hindustanicus was also found in northern Colombia 
(La Guajira, Magdalena; Mesa 2010). In Venezuela, S. hindustanicus is present in all 
areas where citrus is cultivated, from the northwest (Zulia) to the northeast (Sucre), 
in the southern and central regions (Nienstaedt and Marcano 2009). It has also been 
reported to infect citrus in Iran (Sheikholeslamzadeh and Sadeghi 2010).

Severe damage caused by high infestations of S. hindustanicus on citrus leaves 
and fruits has been observed in commercial plantations and small family farms, both 
in Venezuela and Brazil (Fantine 2011; Quiróz and Dorado 2005). Although there is 
no quantitative information on citrus production losses caused by S. hindustanicus, 
the infestations cause esthetic damage that reduce the economic value of fresh fruits. 
Schizotetranychus hindustanicus has been reported to infest Tahiti lemon, lime, Rang‑
pur lime, Ponkan mandarin, Valencia orange, tangerine, lemon, sweet orange and Mur‑
cott tangor (Quiróz and Marcano 2005; Quiróz and Dorado 2005; Navia and Marsaro Jr 
2010).

According to the Brazilian Association of Exporters of Fruit and Derivatives (Abra‑
frutas), Brazil is the third-largest fruit producer globally. The substantial potential 
impacts of the spread of S. hindustanicus in Brazil could be the imposition of phytosani‑
tary barriers in the international trade of citrus fruits and increased production costs due 
to pest control measures. According to FAO data, Brazil is one of the largest producers 
and exporters of citrus and orange juice (http://​faost​at3fao.​org).

In 2019, based on data from the Municipal Agricultural Production Survey (PAM) 
of the Brazilian Institute of Geography and Statistics (IBGE), the harvested area of 
citrus (orange, lemon, and tangerine) in Brazil was 698,901 ha, 69% of which was in 
the Southeast Region, with 60% of the total concentrated in São Paulo state. The value 
of orange production in the country was R$ 9.5 billion (Brazilian real, ca. 1.8 billion 
USD), lemon production was R$ 157 billion, and tangerine production was R$ 999.7 
million. According to data from the Foreign Trade Secretariat (Secex) compiled by 
Abrafrutas, lemon exports increased 10% in 2019 compared to 2018, and the total value 
of citrus exports by Brazil in 2019 was US$ 1,058 million.

The anticipation of potential areas for species introduction is fundamental to prevent 
economic damage. Thus, predicting areas suitable for S. hindustanicus helps plan phy‑
tosanitary control policies. The methodology used to identify suitable areas for species 
invasion may be accessed with ecological niche models (De Andrade et al. 2019). Species 
distribution modeling (SDM) are developed based on the environmental variables in which 
species occur. SDM has been applied to different modeling approaches (Elith et al. 2011), 
and the techniques involved in the method can be adequate to estimate the invasive species 
potential in the region of the fundamental niche (Jiménez-Valverde et al. 2011). Also, SDM 
has applications in ecology, evolution, and epidemiology studies (Corsi et al. 1999; Huerta 
and Peterson 2008; Peterson 2001; Phillips et al. 2006).

Species distribution modeling explores the geographical space that has the most suit‑
able conditions for a species to survive, grow, and reproduce. Thus, SDM results could 

http://faostat3fao.org
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be used to predict areas of species occurrence. The model results may also be used to 
determine the main potential routes of accessibility for the invasion of species (Barve 
et al. 2011).

Maxent has been widely used and allows for modelers to use only presence data and 
categorical predictors (Phillips et  al. 2006). Maxent can be efficient for a small sam‑
ple of reported species (Benito et al. 2009; Hernandez et al. 2006; Papeş and Gaubert 
2007; Pearson et al. 2007; Wisz et al. 2008). Results of Maxent are robust and maintain 
maximum accuracy levels for smaller samples (Hernandez et  al. 2006). Therefore, we 
modeled and mapped Brazil’s areas most suitable for the occurrence of S. hindustanicus 
using Maxent with recently registered occurrence data and bioclimatic variables.

Material and methods

Occurrence data

Occurrence data for S. hindustanicus were obtained from databases CABI and EPPO 
(CABI/EPPO, 2020), published research (Figueirêdo et  al. 2019; Hirst 1924; Mesa 
2010; Navia and Marsaro Jr 2010; Nienstaedt and Marcano 2009; Poorani 2017; Quiróz 
and Dorado 2005), and field sample data from the of Roraima state. 144 occurrence 
points were registered. Spatial filtering of the data using the R software package spThin 
(Aiello‐Lammens et al. 2015) was used to reduce spatial autocorrelation, which is the 
degree of spatial association present in the datasets that may prevent the separation of 
the points used for testing. The occurrence data used for the development of the model 
are show in Fig. 1.

Fig. 1   Distribution of Schizotetranychus hindustanicus: occurrence points (144 red dots) and study area 
(blue rectangle delimiting a rectangular bounding box buffer around the species extent of occurrence 
records)
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Bioclimatic variables

Data from 19 bioclimatic variables were considered potential predictors of the potential 
distribution of S. hindustanicus (Table 1). The data were downloaded as layers of matrix 
data (raster) from the WorldClim database v.2, which contains annual averages from 1970 
to 2000 (Fick and Hijmans 2017), represented in a generic grid of 5 arcmin.

The variables with Pearson’s correction coefficient (r) >|0.80| (significant at α = 0.05) 
were grouped according to hierarchical cluster analysis (Fig. 2). The values of the variables 
were tested for collinearity using the variance inflation factor (VIF), which indicates the 
extent of the variance of a regression coefficient estimated by one variable that is inflated 
due to the collinearity with the others (Naimi et  al. 2014). The procedures for selecting 
the variables were performed using vif.corr and vif.step functions from the usdm package 
(Naimi et al. 2014) in the R environment (R Core Team 2013). Collinearity reduces effi‑
ciency and increases uncertainty in distribution models for species (De Marco and Nóbrega 
2018).

Table 1   Bioclimatic variables (WordClim, v.2) that were used for modeling the species distribution of Schi-
zotetranychus hindustanicus in Brazil. The variable with codes in bold were used to model fit. The ones 
with permutation importance in bold were bioclimatic variables that most influenced the potential geo‑
graphical distribution, as stated in results

a (Bio2 / Bio7) × 100
b Standard deviation × 100
c (Bio5–Bio6)
d Coefficient of variation
e Variance Inflation Factor indicates the extent of the variance of a regression coefficient estimated by one 
variable that is inflated due to the collinearity with the others

Codes Description VIFe Contribution % Permutation 
importance

Bio01 Annual mean temperature
Bio02 Mean diurnal range 3.0622 11.05 49.5700
Bio03 Isothermality a 5.2322 14.85 27.2400
Bio04 Temperature seasonality b 5.5464 4.82 3.1860
Bio05 Max temperature of warmest month
Bio06 Min temperature of coldest month
Bio07 Temperature annual range c

Bio08 Mean temperature of wettest quarter
Bio09 Mean temperature of driest quarter 1.5038 3.58 1.4190
Bio10 Mean temperature of warmest quarter
Bio11 Mean temperature of coldest quarter
Bio12 Annual precipitation
Bio13 Precipitation of wettest month
Bio14 Precipitation of driest month 2.9120 27.05 4.8660
Bio15 Precipitation seasonality d

Bio16 Precipitation of wettest quarter
Bio17 Precipitation of driest quarter
Bio18 Precipitation of warmest quarter 2.3345 17.76 12.2200
Bio19 Precipitation of coldest quarter 3.1895 20.89 1.4910
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The use of all environmental variables was scrutinized based on collinearity during 
the construction of the species distribution model. Variables with a VIF > 10 (Naimi et al. 
2014) were removed after evaluating their probable biological significance (Fitzpatrick 
et al. 2013). The bioclimatic variables used in the models are highlighted in Table 1: aver‑
age variation of daytime temperature (Bio02), isothermality (Bio03), temperature seasonal‑
ity (Bio04), average temperature of the driest quarter (Bio09), precipitation of the driest 
month (Bio14), precipitation of the coldest quarter (Bio18), and warmest quarter (Bio19).

Model and validation

The Maxent software implements features, which are an expanded set of transformations of 
the original predictor covariates: product (P), linear (L), quadratic (Q), threshold (T), and 
hinge (H). These predictor covariates restrict the means, variances, and covariance of the 
variables to correspond to their experimental values (Phillips et al. 2006). Maxent maxi‑
mizes the gain function, a maximum likelihood function with a penalty term, to reduce 
the model’s over-parameterization (Merow et al. 2013; Phillips et al. 2006). Regularization 

Fig. 2   Correlation between bioclimatic variables described in Table 1. Blue color with right slope indicates 
positive correlation, whereas red color with left slope indicates negative correlation. The intensity of Pear‑
son’s correlation coefficient (r) increases from the circle (r = 0) via the ellipse (r = intermediate) to the line 
(r = 1). Correlated variables with r > 0.80 were grouped with hierarchical cluster analysis
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coefficients are adjusted by multiplying with a user-defined constant, the regularization 
multiplier (RM), to vary the complexity of the models (Elith et al. 2011).

Maxent compares the locations where a species has been found in all study area envi‑
ronments. It defines these available environments by sampling many points throughout 
this area, referred to as background points. Because background points can include loca‑
tions where the species is known to occur, background points are not the same as pseudo-
absence points because they define the available environment. Using this method, 10,000 
(Maxent standard) random points were generated within the species extent area of occur‑
rence (red rectangle in Fig. 1), according to Phillips (2008), using the random points func‑
tion of the dismo package (Hijmans and Elith 2013) in R.

Maxent default settings are based on an extensive study of empirical tuning (Phillips 
and Dudík 2008), a study has shown that its use may result in poor performance models 
(Radosavljevic and Anderson 2014; Shcheglovitova and Anderson 2013). In addition, arti‑
ficial spatial autocorrelation between training and test data partitions (e.g., due to sampling 
bias) may increase the number of metrics used to assess model performance (Radosavljevic 
and Anderson 2014; Veloz 2009; Wenger and Olden 2012).

It is important to analyze combinations of parameters to select the best model (Morales 
et al. 2017); thus, the ideal parameters of the model were adjusted using the ENMevaluate 
function of the ENMeval package (Muscarella et al. 2014) in R, and the following com‑
binations of features were evaluated: L, Q, H, LQ, LQH, LQHP, and LQHPT. The regu‑
larization multipliers ranged from 0.50 to 200 in increments of 0.25 (half and double of 
Maxent’s default = 100).

The k-fold cross-validation method was used to partition the dataset into 10 groups for 
training and testing the model (Burman 1989; Fielding and Bell 1997; Peterson 2001). This 
method is helpful for modeling studies that involve transferring models in time or space, 
including the possibility of finding non-analogous conditions (Wenger and Olden 2012).

Groups of 5, 10, or 20 are recommended to be statistically stable, and the choice of 
group size is determined by the size of the study population (Kohavi 1995; Salzberg 1997). 
Thus, considering the complete set of features (s = 7 + 7 = 14 parameters), including the 
regularization multipliers, and the data partitioning (k = 10), according to Muscarella et al. 
(2014), a total of s(k + 1) = 154 models were compared to determine the best model. The 
models were classified using the corrected Akaike information criterion (AICc) (Hurvich 
and Tsai 1993), the best model is the model with the lowest AICc value (Morales et  al. 
2017).

AICc is a comparison of the model’s adjustment and complexity. It is a variation of 
the complete AIC metric, with adjustments to the formula to consider small sample sizes 
(Burnham and Anderson 2002). Under the statistical principle of parsimony, the AICc 
seeks to balance excess of simplicity and complexity in the model while considering the 
model’s general adjustment. Models with lower AICc scores are desirable, as they indicate 
less complexity and a better fit.

In addition to these more traditional metrics, the ENMeval package results include addi‑
tional metrics used to evaluate SDMs. The avg.test.orMTP (Minimum Training Presence 
Omission Rate), avg.test.or10pct (10% Training Omission Rate), and var.diff.AUC​, which 
is the difference between the area under the curve (AUC) of the training data vs. the test 
data (Warren and Seifert 2011), indicates potential over-adjustment (by high values). The 
AUC is a model performance measure and ranges between 0 and 1, and perfect discrimi‑
nation shows a value of 1 (Fielding and Bell 1997). The AUC was an efficient autono‑
mous threshold index capable of evaluating the ability of a model to discriminate presence 
from absence. AUC scores could be divided into five categories (Swets 1988): AUC < 0.5 
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describes models that are less than chance and rarely occur; an AUC of 0.5 represents a 
model that is no better than random; model performance is classified as failing (0.5–0.6), 
bad (0.6–0.7), reasonable (0.7–0.8), good (0.8–0.9), or great (0.9–1).

Based on thresholds, the avg.test.orMTP and avg.test.or10pct metrics are measured 
(Radosavljevic and Anderson 2014), with the avg.test.orMTP indicating the proportion of 
sites with species presence in the test data below the lowest training sites. Likewise, avg.
test.or10pct sets the test limit at a level of 10% of the training data.

Results

The metrics of combinations of feature classes (FC) with regularization multipli‑
ers (RMs) are shown in Fig.  3. The best combination was obtained using hinge feature 
(H), with a regularization multiplier of 1.75. The metrics (ENMEval) of evaluation for 
the test data with this model were: delta.AICc = 0, AICc = 2,065, train.AUC = 0.9784, 
avg.test.AUC = 0.9757, avg.diff.AUC = 0.01078, avg.test.orMTP = 0.009091, avg.test.
or10pct = 0.1119, and TSS = 0.4327. The ROC curve of the model is shown in Fig. 4, with 
an AUC = 0.923.

The bioclimatic variables that most influenced the potential distribution of S. hindusta-
nicus were the average variation of daytime temperature (Bio02), isothermality (Bio03), 
and precipitation of the coldest quarter (Bio18) (Table 1).

Fig. 3   Metrics for selection of the feature sets and regularization multiplier value for the final model. The 
plots show how the five metrics used to evaluate the model vary according to changes made to the regulari‑
zation multiplier. The last graph allows to evaluate the best feature combination according to the difference 
in AICc (delta.AICc) and the mean AUC​
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The response curves for bioclimatic variables used are shown in Fig. 5. The values on 
the y-axis are the predicted probabilities of suitable conditions, as given by the logistic 
output format, with only the predictor variables used to develop the Maxent. This result 
presents the response curves showing the relationship between the environmental variables 
and the predicted probability of occurrence. According to the response curves, the follow‑
ing trends were observed in the predicted suitability: suitability has small variation with 
oscillations of the average daytime temperature variation (Bio2) between 9 and 14 °C, it 
increases with isothermality (Bio3) above 80, and it presents a slight increase with an aver‑
age temperature of the driest quarter (Bio09) above 36 °C.

There are large areas with suitable conditions in Brazil where S. hindustanicus has not 
been reported to occur, such as in Amazonas, Amapá, and Pará (Fig. 6). 

Discussion

Our model results demonstrated high predictive capacity. The temperature threshold for 
S. hindustanicus is 20–30  °C with an optimal developmental temperature of 27  °C (EG 
Fidelis, unpubl. data), which has also been shown in population studies (Nienstaedt and 
Marcano 2009). The most suitable regions for invasion by this mite had higher tempera‑
tures and lower variation in climate.

Fig. 4   Receiver Operating Characteristic (ROC) graph for the potential geographical model for Schizotet-
ranychus hindustanicus in Brazil, with area under the curve (AUC) calculation. An AUC value ≥ 0.9 was 
considered an excellent model fit
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The model prediction shows a high probability of suitable conditions for S. hindustani-
cus in the following locations: most of Roraima, the far west of Amazonas, all of the north 
of Pará, especially in its northeastern region, southern, eastern, and northern parts of the 
State of Amapá, and a small portion to the northwest of Maranhão (all states belonging to 
the northern region of Brazil).

The bioclimatic variables that most influenced the potential geographical distribution 
of S. hindustanicus, were the average variation of daytime temperature (Bio02), isother‑
mality (Bio03), and precipitation of the coldest quarter (Bio18). We observed that S. hin-
dustanicus has a high potential for establishing and dispersing new regions in the north. 
This dispersal may make areas with a low probability of climate suitability become highly 
suitable over time. This is because Maxent correlates with the existing occurrence data. 
Thus, updating the model over time is necessary if new records and bioclimatic variables 
can further influence its establishment and dispersion. This model shows that areas of high 
suitability should be prioritized to monitor this pest in the north and avoid invasion into 
other states in Brazil over time.

Fig. 5   Response curves for seven bioclimatic variables (bold codes in Table 1) used as predictors in distri‑
bution model for Schizotetranychus hindustanicus in Brazil. For each climate variable, the predicted suit‑
ability over all values in the gradient of the variable was generated, whereas the other variables were kept 
constant
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