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ABSTRACT 

Brazilian agriculture is productive, efficient, and profitable for a few farmers. However, 

due to the restricted access to technology, the major part of the rural producers are marginalized 

and outside of the mainstream of production. In this paper we assess the significance of external 

factors critical for productive insertion and poverty reduction in the countryside, by means of a 

two-stage DEA approach. The covariates considered are credit for production and exports, 

technical assistance, infrastructure, participation in cooperatives, education, and use of 

environmental friendly practices. We investigated the statistical significance of these contextual 

variables in production performance by means of two-stage regressions using maximum 

likelihood via a regional heteroskedastic beta-inflated model, which shows a superior 

performance over fractional regression models. The response variable is the ratio of conditional 

to unconditional DEA measures of efficiency, computed for each Brazilian county.  
 

KEYWORDS. Conditional measures of efficiency. Fractional regression. Beta-inflated 

probability model. 
 

Paper topics. DEA – Data Envelopment Analysis; AG&MA – OR in Agriculture and 

Environment. 
 

RESUMO 
A agricultura brasileira é produtiva, eficiente e lucrativa para um conjunto pequeno de 

agricultores. No entanto, devido ao acesso restrito a tecnologias, grande parte dos produtores 

rurais é marginalizada e está fora do fluxo principal da produção. Neste artigo é avaliada a 

importância de fatores externos para a inserção produtiva e a redução da pobreza no campo, por 

meio de modelagem DEA em dois estágios. As covariáveis consideradas são crédito para 

produção e exportação, assistência técnica, infraestrutura, participação em cooperativas, 

educação e uso de práticas ecologicamente corretas. A significância estatística dessas variáveis 

na eficiência é investigada por abordagem em dois estágios usando máxima verossimilhança e 

um modelo beta-inflado heterocedástico regional, que apresenta desempenho superior em relação 

aos modelos de regressão fracionária. A variável resposta é a razão de medidas de eficiência 

DEA condicionais e não condicionais, calculadas para cada município brasileiro. 
 

PALAVRAS-CHAVE. Medidas condicionais de eficiência. Regressão fracionária. Modelo 

probabilístico Beta-inflacionada. 
 

Tópicos. DEA – Análise Envoltória de Dados; AG&MA – PO na Agricultura e Meio 

Ambiente. 
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1. Introduction 

Brazil is an important player in the international agricultural market, as it is the leading 

world exporter of several products, such as coffee, meat, soybeans, and refined sugar. According 

to [OECD/FAO 2015], the development of the Brazilian agricultural sector was primarily based 

in science and technology, which enabled the country to achieve the most advanced technology 

for tropical agriculture. 

Recent data from the Brazilian agricultural censuses show that Brazilian agriculture is 

extremely income concentrated, and this evidence is persistent [Alves et al., 2020]. The 2006 

agricultural census data indicated that 51% of the total production value was concentrated in 

27,306 rural farms (0.62% of the total farms in Brazil) with declared annual income above 200 

minimum wages [Alves et al., 2020]. The numbers in the 2017 agricultural census are not quite 

different. The same income class comprised about 24,000 farms, representing 0.65% of the total, 

and was responsible for about 53% of the total production value in 2017 [Alves et al. 2020]. The 

Gini index of income concentration, measured at the farm level [Souza et al. 2020a], changed 

from 0.85 in 2006 to 0.90 in 2017, confirming a persistent high-income concentration in 

agricultural production. Recent studies have pointed out that access to technology is the main 

causal factor of concentration and, probably, rural poverty [Souza and Gomes 2019]. 

Income concentration may be explained by market imperfections, resulting from 

different market conditions for poor and rich farmers. These may be defined [Souza and Gomes 

2019] as asymmetries in access to credit for production, infrastructure, information, rural 

extension, and technical assistance, which inhibit the access of small farmers to technology and, 

therefore, to productive inclusion. On one hand, large producers can negotiate better prices for 

inputs and products. On the other hand, small farmers experience difficulties in adopting better 

technologies, as they sell their products at lower prices and buy inputs at higher prices. The 

evidence is that qualified labor and technological inputs are the drivers of production and 

productivity and that these are too expensive for rural extension to be effective in small and poor 

farms.  

Given this background, in this paper we evaluated external factors that may affect the 

use of technology and lead to higher economic efficiency. We used county data derived from the 

2017 Brazilian agricultural census. The modeling process updates previous studies for 2006 

agricultural census [Souza et al. 2020b] and postulates that production may benefit from 

contextual variables reducing market imperfections. This is a two-stage analysis and follows the 

proposal of [Daraio and Simar 2007a, 2007b]. In the first stage, we computed a ratio of 

conditional to unconditional measures of efficiency, using density estimation methods in the 

conditioning process [Daraio and Simar 2007a, 2007b] [Bădin et al. 2012, 2014]. The ratio is 

used to determine whether the external factors were favorable to production in a second stage 

analysis. The efficiency measures computed were Free Disposal Hull – FDH and Data 

Envelopment Analysis – DEA, and we also investigated the effect of convexity. The statistical 

analysis in the second stage used a variation of the two-part fractional regression model proposed 

by [Ramalho et al. 2010]. Our choice to model the responses ratios was the beta-inflated model at 

1 [Ospina and Ferrari 2012] and this is an extension of the proposals of [Ramalho et al. 2010] and 

[Souza et al. 2017, 2020b]. The major improvements are the use of DEA, the allowance of 

regional heteroskedasticity, and the joint maximum likelihood estimation of unit and less than 

unit conditional to unconditional ratio values. The method is more precise than quasi-maximum 

likelihood [Papke and Wooldridge 1996] and more flexible than nonlinear least squares.  

 

2. Data 

Farm-level data from the 2017 Brazilian agricultural census were aggregated by 

counties (municipalities). We have valid data for 5,236 counties, which represent 94% of the total 
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municipalities in Brazil (5,570). These municipalities comprise 4,916,083 rural establishments, 

97% of the total number of establishments investigated in the 2017 census (5,073,324). 

Production is the gross revenue earned from agriculture (the sum of the revenues 

obtained from animals, vegetables, and agroindustry). The inputs are land, labor, and technology. 

All the variables were transformed into ranks and subsequently measured in logs. Labor was 

measured as the log of the municipal rank of the sum of expenditure on salary and on contracting 

services. Expenditures on land and technological inputs are not directly available in the census 

data, and we built proxies with appropriate scores. As a proxy for land, we used the log of the 

municipal rank of the sum of the area used in agriculture and the leased area. For technology 

(technological inputs), a factor model was applied to the totals of several variables. A single 

technological score was obtained by means of the weighted average of the ranks of these 

variables. The weights applied were the relative communalities derived from the factorial model. 

The technological inputs include: expenditures on seeds and seedlings, salt, feed, medicines, 

fertilizers, corrective agents, and pesticides; expenditures on fuel and electricity, other expenses, 

and transportation of production; capacity of warehouses, inflatables, bulk carriers, and silos; the 

number of tractors, seeders or planters, harvesters, fertilizers, or lime dispensers; the number of 

trucks, utilities, automobiles, motorcycles, airplanes, and aircraft for agricultural use; the number 

of animals (cattle, buffaloes, horses, donkeys, mules, pigs, goats, sheep, chickens, roosters, hens 

and chicks, quails, ducks, geese, drakes, partridges and pheasants, rabbits, turkeys, and ostriches); 

and patrimony (bee boxes, total feet of permanent crops, and total feet of forestry). 

The contextual variables, tentatively identified based on previous studies [Souza and 

Gomes 2019] [Souza et al. 2020a, 2020b] as key factors that may affect the production process, 

were a municipal index of the relative use of ecological agricultural practices, financial credit, 

participation in cooperatives, education, infrastructure, and technical assistance. These variables 

are all proxies for market imperfections.  

The environmentally friendly agricultural practices index is a weighted average of 

rankings, resulting from a factor model, with weights defined by relative communalities. The 

factor model is applied to the county proportions. The index includes the categories of forest 

management, other environmental practices (contour planting, crop rotation, soil rest, and slope 

conservation), and soil preparation. The financial credit index was defined as the rank obtained in 

the classification of the proportion of farmers who receive financial credit. The cooperative index 

is the rank obtained in the classification of the proportion of farmers who are members of 

agricultural cooperatives. The education or literacy index is the rank of the proportion of literate 

farmers. Infrastructure also results from a factor model applied to the ranks of the proportions of 

farmers with internet, telephone, and electric energy service. Technical assistance was measured 

by classifying the proportion of farmers who have received technical assistance.  

 

3. Methodology 

 

3.1. Conditional analysis 

Our production model comprises n=5,236 decision making units (DMUs), one output 

(total rural income), and three inputs (labor, land, and technology). We computed efficiency 

using FDH and DEA approaches, with emphasis in the later. We assumed variable returns to 

scale and output orientation. Output orientation was the natural choice given that, ultimately, we 

seek productive inclusion and higher income gains. At this point it is worth mentioning that the 

FDH and DEA are not restricted to univariate production models and to output orientation 

[Daraio and Simar 2007a].  

To consider the influence of covariates that are potentially associated with the 

production process, avoiding the drawbacks of [Simar and Wilson 2007], [Daraio and Simar 
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2007a, 2007b] proposed the analysis of conditional measurements of efficiency, assuming 

continuity of the covariates. These measurements are derived as follows.  

Let, for each DMU  , 
1 2 3( , , )X X X X

    be the vector of input variables and Y 
 

the output variable. We assume that the production process for all DMUs is described by a joint 

probability measure in 
4R  associated with ( , )X Y  [Daraio and Simar 2007b]. This measure is 

defined by the function  ( , ) Pr ,H x y X x Y y    with support in the set 

 4

1 2 3( , ) , ( , , ) 0,at least one 0, 0 | can produce ix y R x x x x x y x y       .  Notice that:  

1. ( , )H x y  gives the probability that a unit operating at (input, output) levels  yx,  is 

dominated, i.e., that another unit produces at least as much output while using no 

more of any input than the unit operating at ( , )x y ;  

2. ( , )H x y  is monotone non-decreasing in x and monotone non-increasing in y.  

3. The random variables ( , )X Y  are distributed as ( , )X Y for all  . 

We have the decomposition shown in (1). 

   ( , ) Pr | Pr

( | ) ( )

H x y Y y X x X x

F y x G x

   


     (1) 

The output-oriented efficiency score ( , ),x y for  all ( , )x y  , is defined by (2). 

 

 

( , ) sup ( , ) | ( , ) 0

sup ( | ) | ( | ) 0, ( ) 0

x y H x y H x y

F y x F y x G x





  

 

 

  
    (2) 

Consider production observations ( , ), 1, , 5,236x y n     . A nonparametric 

estimator of the technical efficiency ( , )x y  of a producing unit (DMU), operating at ( , )x y , is 

obtained replacing ( | )F y x
 
by its empirical version (3), where (.)I is an indicator function. 

1

1

( , )
ˆ ( | )

( )

n

n

I x x y y

F y x
I x x

 











 







      (3) 

Let (4) and (5). The set ˆ
DEA

 
is the convex hull of ˆ

FDH . Under convexity the two 

sets coincide. 

 ˆ ( , ) , , , 1, ,FDH x y y y x x n                  (4) 

 ˆ ( , ) , , , 0, 1, , , 1
1 1 1

n n nx y y y x x n
DEA

     
     

           
 (5) 

The estimates of the output efficiency ( , )x y of a unit operating at  yx,  are given by 

(6) and (7). 

 ˆ ˆ( , ) sup | ( , )FDH FDHx y x y          (6) 

 ˆ ˆ( , ) sup | ( , )DEA DEAx y x y          (7) 

Under free disposability ˆ ( , )FDH x y  is a consistent estimator of ( , )x y . If, additionally, 

  is convex, ˆ ( , )DEA x y  is also consistent with a faster rate of convergence. We also have for a 

DMU operating at  ,x y   the definitions (8) and (9). 
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 
1 1 1

:

ˆ ( , ) ; , , 1, 0,1

i

n n n
j j

FDH j j j j

j j j

i

xi x

x y Max y y x x

y
Max

y


   



      
  



 
     

 

 
 
 



  
 (8) 

1 1 1

ˆ ( , ) ; , , 1, 0
n n n

j j

DEA j j j j

j j j

x y Max y y x x         
  

 
     

 
     (9) 

The transformation of the data into ranks before the analysis, beyond minimizing scale 

issues and lending nonparametric properties to the analyses, reduces the influence of outlying 

observations. The underlying assumption for the DEA estimator is variable returns to scale.  

The significance of a continuous contextual vector variable Z  
m

+ is studied 

considering the conditional distribution of ( , )X Y  given , which leads to the probability 

function  ( , | ) Pr , |H x y z X x Y y Z z     and the decomposition (10). 

   ( , | ) Pr | , Pr |

( | , ) ( | )

H x y z Y y X x Z z X x Z z

F y x z G x z

     


   (10) 

Let 
z  be the support of the probability function ( , | )H x y z  defined for all  ,x y 

, such that ( | ) 0.G x z   Equivalently, 
z  can be defined by the support of  ( | , )F y x z . The 

output-oriented conditional efficiency ( , | ),x y z  given that , for a unit operating at ( , )x y

, with an environment condition Z z , is defined by (11). 

 

 

( , | ) sup ( , | ) | ( , | ) 0

sup ( | , ) | ( | , ) 0, ( | ) 0

x y z H x y z H x y z

F y x z F y x z G x z





  

 

 

  
   (11) 

To estimate ( | , )F y x z  and to deal properly with the conditioning, let 
1( , , )mz z z  

and 1( , , )mz z z    be the vector of observations on Z  for unit  . [Daraio and Simar 2007a, 

2007b] proposed the nonparametric density empirical estimate (12), where ( )K u  is a multivariate 

kernel function with support in the unit ball 1.u  The component 
1( , , ) 0n n mnh h h  is a 

vector of bandwidths of appropriate size.   

 
 

 

1 1

1
1

1 1

1
1

, , ,

ˆ ,

, ,

n
m m

n mn

n
m m

n mn

z zz z
I x x y y K

h h
F y x z

z zz z
I x x K

h h


 












 
   

 
 

  
 





   (12) 

We expect that the choice of kernels and of bandwidths would not greatly influence the 

statistical inference process we describe later. We notice here that the estimates FDH and DEA 

we use below are not dependent on the kernel function, but only on the bandwidths.  

[Silverman 1986] suggested the multivariate Epanechnikov model, as shown in (13), 

where u  is a point in a d-dimensional space and dc  is the volume of the unit sphere. In our 

application, d = 6 and   3

6 1 6c  . 

  1 (2 ) 2 (1 ) if 1
( )

0 otherwise

dc d u u u u
K u

    
 
      (13) 

Z z

Z z
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The optimal bandwidth selection for the smoothing of normally distributed data with 

unit variance is calculated as follows. Let (14) and use , 1, ,opt opt

in nh v i m  . 

   

1
( 4)

1
( 4)

18 4 2

opt d

n

d d

d

v An

A c d 









 

       (14) 

For data with no unit variances, [Silverman 1986] proposed the use of a single-scale 

parameter ̂  and to use the value ˆ opt

nv  for the window width for all components. The average 

variance of the covariates 2 2

1

1
ˆ ˆ

d

iid
 


  , where 2 2

1
ˆ ˆ( , , )d   is the vector of sample variances of 

the covariates, is an appropriate choice for the single-scale parameter ̂ .   

The conditional FDH and DEA empirical estimates of ( , | )x y z , of a unit operating at 

 yx,  with environmental conditions defined by z are given by (15), respectively, considering 

(16) and (17). 

 

 

ˆ ( , | ) sup | ( , ) ,

ˆ ( , | ) sup | ( , )

z

FDH FDH

z

DEA DEA

x y z x y

x y z x y

  

  

 

 
     (15) 

    
 ˆ ( , ) | , , for   such that < for all 1, ,  z opt

FDH i i inx y x x y y z z h i m        
  
(16) 

 

 

ˆ ( , ) | ,    

| < for all 1, , , 1, 0,  

z

DEA B B

opt

i i in B

x y x x y y

B z z h i m B

 

  



 

 

   

 



    

     

 


  (17) 

We then have: 

1. The set ˆ z

DEA is the convex hull of ˆ z

FDH . 

2. 
1 1

ˆ ˆ ˆ ˆ,
n nz z

FDH FDH DEA DEA

 

  
    . 

3. Under disposability of  , ˆ ( , | )FDH x y z  is consistent for ( , | )x y z . If, 

additionally,   is convex, ˆ ( , | )DEA x y z  is also consistent.  

4. For a DMU   operating at ( , , )x y z  
, we have (18). 

 1 1 1; , , ,

ˆ ( , ) max
opti i i opt

m m mnn

i

FDH i x x z z h z z h

y
x y z

y
  

  




    

 
  

 
 

 

 

ˆ ( , | ) max | ,    

| < for all 1, ,  

1, 0,

DEA B B

opt

i i in

x y z x x y y

B z z h i m

B

     

  

 

 

    



  

 



  

  

  

 



  (18) 

5. For a DMU  operating at ( , , )x y z   , we have (19). 

ˆ ˆ( , ) ( , )

ˆ ˆ( , ) ( , )

FDH FDH

DEA DEA

x y z x y

x y z x y

    

    

 

 




       (19) 

6. The global indicator of convexity for each DMU is defined in (20). 

ˆ ( , )
1

ˆ ( , )

FDH

DEA

x y
IC

x y

 

  




 

        (20) 

7. The conditional indicator of convexity for each DMU is defined in (21). 
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ˆ ( , | )
1

ˆ ( , | )

FDH

DEA

x y z
ICZ

x y z

  

   




         (21) 

[Daraio and Simar 2007a] suggested a nonparametric statistical analysis using the 

conditional ratio (22) as the response variable to study the influence of the covariates on the 

efficiency measurements. In (22), ˆ ˆ ˆ( , ) ( , )or ( , )FDH DEAx y z x y z x y z            and 

ˆ ˆ ˆ( , ) ( , )or ( , )FDH DEAx y x y x y        . 

ˆ( , )
( , ) 1

ˆ( , )

x y z
q x y z

x y

  

  

 




         (22) 

As a function of z, ( , )q x y z , for output-oriented models, marginally, an increasing 

regression in a covariate corresponds to a favorable environmental factor, which in this case acts 

as a sort of extra input that is freely available to increase production. [Daraio and Simar 2007a] 

argued that, in this context, the value of ˆ( , )x y z  will be closer to ˆ( , )x y , indicating efficiency 

in the use of the contextual variables.  

Here we used the conditional rate with DEA measurements. The convexity indicators, 

globally and conditionally, in our application, were superior to 94% and we did not detect any 

serious depart from convexity. This supported the use of DEA. Also, DEA is a less benevolent 

measure of efficiency and easier to interpret under scale conditions. 

 

3.2. Modeling the conditional ratio  

We began with the inflated beta at 1 distribution. Following the parameterization of 

[Ospina and Ferrari 2012], the beta distribution with parameters 0 1, 0     has the density 

function (23), where (.)  is the gamma function,  

1 (1 ) 1( )
( , , ) (1 ) , (0,1)

( ) ((1 ) )
f u u u u  

 
  

  
  
  

    (23) 

The inflated beta at 1 distribution [Ospina and Ferrari 2012] has the density function 

shown in (24), where   is the probability mass at 1.  

1
( , , , )

(1 ) ( , , ) (0,1)

u
bi u

f u u


  

  


 

 
     (24) 

Its mean and variance are given, respectively, by (25). 

2

( ) (1 )

(1 )
( ) (1 ) (1 )(1 )

1

E u

Var u

  

 
   



  


    



     (25) 

It follows that the mean is a weighted average of the mean of a degenerate distribution 

and the mean of a beta distribution with weights   and 1  . Notice that ( | (0,1))E u u    

and ( | (0,1)) (1 ) / (1 ).Var u u        We can see that the larger the parameter  , the smaller 

the variance of y .  

We then combined the inflated beta at 1 distribution with the two-part model proposed 

by [Ramalho et al. 2010] to model the conditional ratio measurements ( ) ( , )u z q x y z    . We 

assumed the ratios to follow inflated beta at 1 distributions, with ( ' )G z  , where (.)G  is 

the standard normal distribution function. We interpreted the component   as the probability of 

efficient use of the contextual variables. This component may be dependent of external variables. 
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The model can be made heteroskedastic also imposing a dependence of   on a set of external 

factors. 

The advantage of this formulation is the joint estimation of models for efficient and 

inefficient units in the use of covariates, by maximum likelihood, and using the complete sample. 

[Ramalho et al. 2010] pointed to the common use of the beta family in the case of DEA responses 

and, in this instance, suggested the use of the logistic, normal, or extreme value distributions for 

(.).G   

Another model allowing the use of nonlinear regression and the general method of 

moments (GMM), when fitting efficiency measurements, somehow robust to the beta distribution 

specification, follows from the expression (26) for the expected value of ( )u z . This later 

formulation has been used by [Souza et al. 2017, 2020b].  

( ( )) (1 )) ( ( ) | 0 ( ) 1)

( ( )) (1 ) ( )

E u z E u z u z

E u z G z

  

 

 

  

    

  
     (26) 

The expectation formula is useful for computing the marginal effect of a covariate iz , 

as stated in (27). 

( ( ))
(1 ) ( )i

i

E u z d
G z

z du


  


     

      (27) 

 

4. Results and Discussion 

DEA efficiency, conditional DEA, and the conditional ratio 

ˆ ( , | )
( , | )

ˆ ( , )

DEA

DEA

x y z
q x y z

x y

  
  

 




  were computed as previously described. These measures vary per 

county and their distribution is presented by region in Table 1, considering the output-oriented 

scores in the interval [1, +∞). From this table we may observe that the Northeastern region is the 

least efficient region. This is the region in which it is likely that the covariates will influence 

most. The Center-Wester region performs better.   

Table 2 shows the fit resulting from the modeling of the ratio of conditional to 

unconditional DEA measures of efficiency using the beta-inflated probability model, as proposed 

in section 3.2. The rank correlation between observed and predicted values is 0.7183. All the 

covariates are positively associated with the ratio scores, which mean that, when it is increasing, 

a covariate is favorable for production. The exception is literacy. All the covariates are 

statistically significant. For the unit ratios, only environmental practices are not significant, and 

for less than unit ratios, credit is not significant. The variance components for the North and for 

the Center-West do not differ statistically. The ratios are less variable in the Northeastern, 

Southeastern, and Southern regions.  

The total elasticities, as well as the marginal elasticities, vary by municipality. The 

medians of the total elasticity and the marginal relative elasticities for the country and regions are 

given in Table 3, for each covariate.  
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Table 1: Regional descriptive statistics for DEA efficiency, conditional DEA efficiency, and the 

conditional ratio.  

Region Scores Minimum 1st Quartile Median 3rd Quartile Maximum 

Center-West DEA  1.000 1.060 1.087 1.116 1.228 

 

Conditional DEA  1.000 1.046 1.074 1.106 1.221 

 

Conditional ratio  0.901 0.985 0.994 0.997 1.000 

North DEA  1.000 1.086 1.108 1.133 1.303 

 

Conditional DEA  1.000 1.025 1.057 1.087 1.201 

 

Conditional ratio  0.818 0.931 0.957 0.979 1.000 

Northeast DEA  1.000 1.132 1.162 1.190 1.313 

 

Conditional DEA  1.000 1.036 1.069 1.102 1.240 

 

Conditional ratio  0.771 0.901 0.923 0.950 1.000 

South DEA  1.000 1.092 1.107 1.124 1.295 

 

Conditional DEA  1.000 1.070 1.090 1.108 1.254 

 

Conditional ratio  0.860 0.977 0.988 0.994 1.000 

Southeast DEA  1.000 1.099 1.127 1.158 1.455 

 

Conditional DEA  1.000 1.076 1.103 1.134 1.343 

 

Conditional ratio  0.819 0.971 0.991 0.996 1.000 

 

Table 2: Maximum likelihood estimation of the ratio of conditional to unconditional  measures of 

efficiency modeled by the beta-inflated probability model. The function G(.) is the standard 

normal distribution function. The vector of covariates is z = (credit, cooperatives, literacy, 

technical assistance, environmental practices, infrastructure). D is the vector North, Northeast, 

Southeast, and South of dummy variables for the respective regions. 

Parameter Estimate Standard error p-value 

0( )G b   0.0018 0.0006 <0.0001 

0b  -2.9181 0.1038 <0.0001 

( )G b z      

Constant -0.8816 0.0343 <0.0001 

Credit 0.0174 0.0071 0.0143 

Cooperatives 0.2169 0.0045 <0.0001 

Literacy -0.2556 0.0097 <0.0001 

Technical assistance 0.0820 0.0079 <0.0001 

Environmental practices 0.1714 0.0077 <0.0001 

Infrastructure 0.1321 0.0056 <0.0001 

exp( )d D      

0d  3.8128 0.0636 <0.0001 

North 0.1135 0.0913 0.2139 

Northeast 0.3414 0.0754 <0.0001 

Southeast 0.3546 0.0665 <0.0001 

South 0.7771 0.0696 <0.0001 

 

We can see from Table 3 that the highest expected gains in support of production via 

unit relative increases in external factors will occur in the Northern and Northeastern regions. 

The key factors in this regard will be cooperatives, literacy, technical assistance, and 
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environmental practices, the latter for less than unit ratios and probably inefficient counties. In 

this regard, we see a strong association of technology with environmental practices. Technology 

is the driver of production and productivity increase. Credit and technical assistance are clearly 

dominated by the other covariates. Credit and technical assistance are intuitively associated with 

higher performance scores. Favoring access to credit and to technical assistance, they should be 

part of agricultural public policies oriented toward alleviating poverty [World Bank 2003]. 

However, for this higher performance to be effective, the obstacles of the type of market 

imperfections to non-included farmers should be substantially reduced.  

The results in Table 3 show that the influence of technical assistance is greater than that 

of credit. This means, considering Table 2, that rural extension is reaching out where market 

imperfections are relatively controlled (unit ratios). Regarding the context of Brazilian 

agriculture, [OECD/FAO 2015] stated that agricultural credit is the main instrument to support 

Brazilian productive farmers, being provided to both commercial and small-scale family farms.  

 

Table 3: Medians of the total elasticity and of the marginal relative elasticities for Brazil and 

regions for each covariate. 

Region Total Credit Cooperatives Literacy 
Technical 

assistance 
Infrastructure 

Environmental 

practices 

Brazil 0.0311 0.0430 0.5376 -0.6335 0.2032 0.4248 0.4248 

Center-West 0.0216 0.0431 0.5376 -0.6335 0.2032 0.4248 0.4248 

North 0.0424 0.0431 0.5376 -0.6335 0.2032 0.4248 0.4248 

Northeast 0.1138 0.0190 0.2372 0.2794 0.0896 0.1874 0.1874 

South 0.0182 0.0431 0.5376 -0.6335 0.2032 0.4248 0.4248 

Southeast 0.0217 0.0431 0.5376 -0.6335 0.2032 0.4248 0.4248 

 

We see from Table 3 that the region likely to benefit the most of an increase in all 

external factors is the Northeast. Apart from the Northeast, relative elasticities are about the same 

for all covariates.  

The literacy covariate also plays an important role. In our model, it has a negative 

association with the performance control of market imperfections. We see this as the need to 

consider a higher level of education than literacy to productive inclusion. Its relative elasticity is 

positive only for the Northeast. Under the paradigm of emerging technologies, connectivity, and 

digitalization in the countryside, it is imperative to improve the qualification of the rural 

workforce. Farmers who are unable to use technological inputs (based on education and 

information) will be left out of the production process.  

The effect of the covariate participation in cooperatives is positive and typically the 

most intense in Table 3. Cooperatives play an important role in the construction of human and 

social capital, with an impact on improving the managerial and organizational skills of farmers 

[Souza et al. 2020b]. In this sense, the agricultural performance benefits since cooperatives will 

help farmers to respond readily to changes in technology and market conditions.  

Environmentally friendly agricultural practices are positively statistically significant 

with its relative effects similar to infrastructure. For units with ratio equal to one, these practices 

may already be part of their technological use. These practices will be transferred by technical 

assistance, and farmers may improve their performance thorough soil conservation and keeping 

forested areas, for instance. This result reinforces the idea that farms that do not use technology 

and preserve the environment will be outside of the mainstream of the production process.  

The fact that only 0.17% of the observations are unit for the conditional ratio supports 

the model ( ( )) ( )E u z G z  , which validates the assumption necessary for fractional 

regression. In this context, we also considered the Probit, heteroskedastic Probit (as in Stata 17) 
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and Weibull (as in SAS 9.4) models. The later was motivated by the fact that the asymptotic 

distribution of the FDH estimator (which in our case is close to the DEA estimator) is in the 

Weibull family. The parameter estimates (contextual variables) for all fractional models point to 

the same direction; they show the same signs for all models, but their significances vary with the 

model. Table 4 shows goodness of fit measures for each model. We see that, by far, the best 

model is provided by the inflated beta distribution, followed by the heteroskedastic Probit, 

heteroskedastic Weibull, Weibull and Probit. The general formula used for fractional regression 

(inflated beta not included) is given by (28), where y  denotes conditional DEA ratio, (.)G
 
is a 

distribution function, x  represents the vector of covariates and , , , k  
 
are parameters to be 

estimated. 

         
   ln ( , , , , ) ln ( , , , , ) (1 )(1 ln ( , , , , ) )j jj

L x k y G x k y G x k           
   (28)

 

The functional forms used are as follows: 

1. Probit: ( , , , , )G x k   = ( )x  , where (.)
 
is the standard normal. 

2. Heteroskedastic Probit: ( , , , , )G x k   = ( / exp( ))x z   , where z  is a set of 

variables affecting the variance. 

3. Weibull: ( , , , , )G x k   =
 /

1
k

x
e

 
 . 

4. Heteroskedastic Weibull: ( , , , , )G x k   =  /
1

k
x

e
 

 , exp( )z  , where z  is 

a set of variables affecting the variance. 

 

Table 4: Goodness of fit measures for fractional regression models. 

Model -2log(likelihood) Akaike Information 

Inflated beta -29,019.0 -28,993.0 

Probit 1,556.6 1,570.6 

Heteroskedastic Probit -1,544.7 -1,566.7 

Weibull 1,551.7 1,569.7 

Heteroskedastic Weibull 1,541.6 1,567.6 

 

5. Concluding Remarks 

All the contextual variables are favorable to production, with exception of literacy. The 

median total elasticity estimated for Brazil is 0.0311. The relative elasticities are higher for 

participation in cooperatives (0.5376), ecological agricultural practices (0.4248), and literacy      

(-0.6335). The negative effect of literacy in all regions, except in the Northeast, is interpreted as 

the need for a variable reflecting a higher level of education to be included in the model. The 

factor ecological agricultural practices is heavily associated with technology, the main driver 

leading to productive insertion and poverty reduction. The effect of participation in a cooperative 

is strong for all regions.  

The highest expected gains from public policies, envisaging proper control of 

contextual variables and reduction of market imperfections, will occur in the North and 

Northeast. Public policies should focus on providing fair market opportunities for small and large 

farmers. Access to credit and to technical assistance and the workforce qualification level restrict 

the adoption of innovations, with emphasis on the adoption of low-carbon agricultural production 

systems. When considering the new paradigm of 4.0 agriculture, these covariates are also of 

importance, as they are responsible for the diffusion and adoption of new technologies. These are 

important to strengthen and to transform Brazilian agriculture in the context of the digital 

agriculture and of the climate change agenda. 
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