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Abstract: The Brazilian Cerrado is the second largest biome in Brazil, occupying approximately 25% of the national territory. 

It is characterized by an expressive biodiversity of fauna and flora, and it is considered the richest savanna in the world. 

Despite its environmental importance, it is considerably endangered and still undervalued in terms of conservation. Due to 

its flat lands, agricultural activities are largely developed in the Cerrado. Thus, more detailed studies in this region are 

necessary to help define mitigation measures against degradation, as well as conservation plans. This paper sets out to 

represent the geomorphology of the Cerrado based on geomorphometric parameters, using a semi-automatic relief 

classification method. Four metric parameters were considered for defining and characterizing the relief units: available relief, 

slope, orientation and shapes of the slopes. Representing geomorphological models with these parameters enables more 

reliable descriptions of real conditions. The geomorphological mapping of the Cerrado via mathematical modelling allows 

describing its key geomorphometric archetypes through six metric relief-classes that represent their actual conditions. 

Keywords: Cerrado; Geomorphological mapping; Geomorphometry 

Resumo: O Cerrado Brasileiro é o segundo maior bioma brasileiro, ocupando cerca de 25% do território nacional. É 

caracterizado por expressiva biodiversidade de fauna e flora, sendo considerado como a savana mais rica do mundo. Apesar 

de sua importância ambiental, ele encontra-se bastante ameaçado e pouco valorizado em termos de conservação. Devido aos 

seus terrenos planos, atividades agropecuárias são largamente desenvolvidas no Cerrado. Assim, estudos mais detalhados 

nessa região são necessários para a definição de medidas mitigadoras à degradação e de planos de conservação. Este trabalho 

tem o objetivo de representar a geomorfologia do Cerrado com base em parâmetros geomorfométricos, usando um método 
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semiautomático de classificação do relevo.  Foram considerados quatro parâmetros métricos para a definição e caracterização 

das unidades de relevo: amplitude, declividade, orientação e formas das vertentes. A representação de modelos 

geomorfológicos baseados nesses parâmetros possibilita caracterizações mais fidedignas da realidade. O mapa 

geomorfológico do Cerrado, definido por modelos matemáticos, possibilitou a definição dos arquétipos geomorfométricos e 

a definição de seis classes métricas do relevo que representam o seu comportamento mais factual. 

Palavras-chave: Cerrado; mapeamento geomorfológico; geomorfometria 

 

1. Introduction 

Considered a Neotropical savanna, the Brazilian Cerrado is a complex natural system that covers 

approximately 25% of the national territory. It is the second largest biome in the country (CASTRO et al., 2016) and 

occupies the central portion of Brazil, extending to its Northeast-region and parts of the states of Minas Gerais, São 

Paulo and Paraná (Figure 1). It is characterized by vegetal formations that include forest, savanna and grassy 

formations (SANO et al., 2010; RIBEIRO & WALTER, 1998).  

The Cerrado has a significant biodiversity of fauna and flora marked by endemism (MYERS, 2000; ARRUDA, 

2003; STRASSBURG et al., 2017). It is recognized as the richest savanna in the world and the habitat of over 12,400 

recorded native plant species (FORZZA et al., 2012). Climate, soils, the availability of water and nutrients, geology 

and geomorphology are some of the relevant factors for the formation of this peculiar and unique biome (CASTRO 

et al., 2016; OLIVEIRA et al., 2014; FRANCO et al., 2014; COE et al., 2017; RUGGIERO et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of the Cerrado. 

 

Despite its proven socio-environmental importance, the Cerrado continues to be undervalued in terms of 

conservation, and only 7.5% of its areas are protected (STRASSBURG et al., 2017). According to the Brazilian 

Ministry of the Environment (MMA), by 2013, approximately 43% of the biome had been converted into different 

land use and land cover (MMA, 2015) and the current prospect, according to Harfuch et al. (2016), points to the 

legal conversion of 3.1 million hectares of native Cerrado vegetation into agricultural and livestock farming 

activities by 2030. 
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Approximately half of the areas destined to agriculture and cattle farming in Brazil are in the Cerrado, which 

experienced high rates of deforestation in recent years (IBAMA, 2015; SPERA et al., 2016). The high levels of 

vegetation conversion are associated with other threats to the Cerrado’s biodiversity, such as soil erosion and 

compaction, the siltation of rivers and groundwater contamination (Klink & Machado, 2005 and Cunha et al., 2008), 

which may generate serious consequences to the environment.  

The emphasis on the development of agricultural and livestock activities in Cerrado areas is associated with 

its flat lands (demoted tablelands) (SANO et al., 2019; OLIVEIRA et al., 2019). Consequently, the Cerrado is 

considered one of the most threatened regions of the planet, due to the destruction and disintegration of its natural 

habitats (HIDASI-NETO et al., 2019; MACEDO et al., 2020).  

A greater focus on characterization studies of this system is necessary in order to increase the available 

knowledge and enable the improvement of conservation policies. It is important to count on a consistent database 

for the construction of models of devastation and susceptibility to degradation, as well as of the respective solutions 

to these problems. As a fundamental part of this database, more detailed geomorphological studies contribute to 

the understanding of the Earth's relief, as well as to the enhancement of environmental modeling, which, in turn, 

facilitates the planning of mitigating measures against environmental degradation.  

Within this context, geomorphological maps are essential tools for better physical characterizations of the 

Cerrado. Geomorphological maps of Brazil are currently available based on parameters such as morphology and 

altimetry, produced by the RADAM BRASIL Project and IBGE (RADAM, 1982; IBGE, 2009). However, these maps 

do not yet meet the need for more detailed and specific analyses, due to their small-scale approaches. Regions such 

as the Brazilian Cerrado require more accurate studies and maps with larger scales that allow a more detailed view. 

Furthermore, new proposals for geomorphologic mapping are emerging aiming to reduce subjectivity in the map 

making-process – for instance, semi-automatic methods (JASIEWICZ & STEPINSKI, 2013; TRENTIN et al. 2015; 

SILVEIRA et al. 2018).  

From the understanding of the relief-dynamics, it is possible to determine areas with higher risk of 

degradation, their associated vegetation classes, predominant forms of erosion and possible types of agriculture to 

be developed (MENDES, 2015). With the semi-automatic method, this mapping-effort becomes more impartial and 

accurate. For Bishop et al. (2012), semiautomatic methods refer to the automatic procedures of geographical 

accident extraction in computational environments. They are of great importance, as they allow more 

homogeneous and standardized results in geomorphologic cartography (SOARES NETO & MARTINS, 2019).  

The classification method of this study is the mapping of Basic Relief Units (BRUs) developed by Soares Neto 

& Martins (2019). According to the authors, a BRU corresponds to the primordial unit described to begin the 

classification of geomorphological features, defined by their geomorphometric parameters (available relief and 

slope). It is based on the combination of the classes of available relief and slope of a digital elevation model.  

This paper presents, therefore, the Geomorphologic Map of the Brazilian Cerrado based on geomorphometric 

parameters, using a semi-automatic method of relief classification. This method enabled the development of a map 

with a higher level of information and greater scale, when compared to the pre-existing maps (RADAM BRASIL 

Project). 

2. Materials and Methods 

The delimitation of Basic Relief Units based on morphometric criteria is weighted following two parameters: 

the available relief (which denotes the height of the forms) and the slope. The interaction of these variables allows 

inserting new geomorphometric parameters for an improved definition of their singularities, as well as the 

characterization of archetypes. 

The selection of these two geomorphometric indicators (slope and available relief) is due to the representation 

of the minimum level of discretization of the common relief at first sight (NAVEH, 1998; BURROUGH, 1998). A 

digital elevation model (DEM) was developed based on the methodology of Hutchinson (1988), from which it was 

possible to extract morphometric data to be represented. New ways to obtain DEMs have been developed, such as 

the interferometric synthetic aperture radar (inSAR), used to obtain the Space Shuttle Radar Topography Mission 

(SRTM). In this study, SRTM DEMs with 1-arc second global digital elevation models were used, which have a 

spatial resolution of about 30 meters. Also, it covers most of the world with an absolute vertical height accuracy of 

less than 16m (USGS, 2021).  
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The available relief was defined by subtracting the lowest DEM-value from all altimetric values, then zeroing 

the lowest value and having it represent the highest local height. The slope represents a 1st order derivative of 

altimetry and was obtained by calculating the maximum rate of change for the value of each cell (pixel) compared 

to its neighbors. Basically, the maximum change in elevation over the distance between the cell and its eight 

neighbors identifies the steepest slope descent of the cell. 

The methodology developed by Soares Neto & Martins (2019) presents the idea of topographic correlation 

(Tc) as regions with topographic archetypes concentrated in distinct altimetric gradients. Thus, the Tc-definition 

took into consideration two ratios: (1) the lowest possible range of available relief (h) divided by the available relief 

in the analyzed basin (H), represented by the abscissa in the graph; and (2) the area of each available relief’s range 

(a) divided by the total area of the analyzed basin (A), represented by ordinate values. 

Thus, the determination of available relief-ranges is defined by the hypsometric inflection (Hif), which, in 

turn, is defined by the inflection points of the polynomial regression line1 of the curve resulting from the 

topographic correlation, and by the hypsometric maximum (Hmax), elucidated by the local maximum points of 

the curve resulting from the topographic correlation. The points on the graph-curve that either coincide or are 

closest to Hif and Hmax values represent the limits of the available relief’s range (SOARES NETO & MARTINS, 

2019). 

The intervals between inflection and local maximum points of the curve represent distribution-patterns of the 

topographic behavior in a given area. Thus, the inflection and maximum point of the regression line, of n-th degree 

polynomial (with R-square ≥ 0.9), of the topographic correlation determine the range of the available relief, which 

is represented by the following Eq. (1): 

 

𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1𝑎𝑛−2𝑥𝑛−2 + ⋯ . +𝑎0 = ∑𝑛
𝑘=0 𝑎𝑘𝑥𝑘, 𝑥 =

ℎ

𝐻
 e 𝑅2 ≥ 0,9 local maximum point is 

such a 𝑥: 
𝑑𝑝

𝑑𝑥
(𝑥) = 0 ↔ 𝑛𝑎𝑛𝑥𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑥𝑛−2 + ⋯ + 1𝑎1 = 0 ↔ ∑𝑛

𝑘=1 (𝑘)𝑎𝑘𝑥𝑘−1 = 0 & 

inflection point is such a 𝑥: 
𝑑2𝑝

𝑑𝑥2 (𝑥) = 0 ↔ 𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 + (𝑛 − 1)(𝑛 − 2)𝑎𝑛−1𝑥𝑛−3 + ⋯ + 2.1𝑎2 =

0 ↔ ∑𝑛
𝑘=2 (𝑘)(𝑘 − 1)𝑎𝑘𝑥𝑘−2 = 0 

 

(1) 

The delimitation of slope ranges is possible due to the clinographic inflection (Cif) and clinographic maximum 

(Cmax) values, defined by the inflection points and the local maximum point of the polynomial regression line2 of 

the curve resulting from the frequency graph (SOARES NETO & MARTINS, 2019). 

The intervals obtained by the inflection and local maximum points denote slope distribution patterns in a 

given area. These clinographic archetypes show roughness levels on the ground, delimiting flatter and steeper 

surfaces. Therefore, the rule for delimiting slope ranges can be understood as the local inflection and maximum 

points of the regression line, of n-th degree polynomial (with R-square ≥ 0.9), of the frequency curve of declivity, 

represented by the following Eq. (2): 

 

 

 

 

 

 
1
 The polynomial order to be set will depend on the best fit of the regression line. Polynomials of 

lower orders determine smaller numbers of intervals and adjust better when converted into 

computational algorithms. Thus, it was determined that when the regression line yields an R-

square ≥ 0.9, it will represent the best fit to represent the Tc-regression. 

2
 The polynomial order to be set will depend on the best fit of the regression line. Polynomials of 

lower orders determine smaller numbers of intervals and adjust better when converted into 

computational algorithms. Thus, it was determined that when the regression line yields an R-

square ≥ 0.9, it will represent the best fit to represent the regression of the frequency curve. 



Revista Brasileira de Geomorfologia, v. 23, n. 3, 2022 1678  

Revista Brasileira de Geomorfologia. 2022, v.23, n.3; (Jul-Set). DOI: 10.20502/rbg.v23i3.2132                                  https://rbgeomorfologia.org.br/rbg/ 

𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1𝑎𝑛−2𝑥𝑛−2 + ⋯ . +𝑎0 = ∑𝑛
𝑘=0 𝑎𝑘𝑥𝑘, 𝑥 =

ℎ

𝐻
 e 𝑅2 ≥ 0,9 local maximum point is 

such a 𝑥: 
𝑑𝑝

𝑑𝑥
(𝑥) = 0 ↔ 𝑛𝑎𝑛𝑥𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑥𝑛−2 + ⋯ + 1𝑎1 = 0 ↔ ∑𝑛

𝑘=1 (𝑘)𝑎𝑘𝑥𝑘−1 = 0 & 

inflection point is such a 𝑥: 
𝑑2𝑝

𝑑𝑥2 (𝑥) = 0 ↔ 𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 + (𝑛 − 1)(𝑛 − 2)𝑎𝑛−1𝑥𝑛−3 + ⋯ + 2.1𝑎2 =

0 ↔ ∑𝑛
𝑘=2 (𝑘)(𝑘 − 1)𝑎𝑘𝑥𝑘−2 = 0 

(2) 

Two other geomorphometric parameters were considered for characterizing Basic Relief Units: the orientation 

and the shape of slopes. The slope-orientation – a 1st order derivative of altimetry – was calculated from a raster by 

the direction of the downward curve of the maximum rate of change of the value of each neighboring cell. The 

shapes of slopes, on their turn, are defined by combining the horizontal (convergent, plane and divergent) and 

vertical (concave, straight and convex) curvatures of the terrain. They represent 2nd order derivatives of altimetry 

and were calculated by the altimetric comparison of each cell, in the case of vertical curvature, and by comparing 

the orientation of slopes via comparison of neighboring cells to a reference cell, in the case of the horizontal 

curvature.  

Thus, to delimit the basic units of relief, an algebra of maps between the intervals is taken into consideration, 

according to the method of Soares Neto & Martins (2019).   

In order to represent the landforms of the Cerrado, five steps were followed in a methodological flow (Figure 

2). The methodology starts with the selection of the database and involves delimiting the available relief’s range 

and slope, and cross-linking these data that determine the BRUs. Finally, it involves inserting other 

geomorphometric parameters (orientation of slopes, and relief shapes) to obtain the final representation of the 

geomorphological map. The processing of the final product was performed using the MATLAB (2010) and ArcGIS 

10.6 (2016) softwares.  

Figure 2. Steps of the methodological procedure. Step 2A: database selection. Step 2B: representation of the available relief from 

the DEM. Step 2C: delimitation of available relief and slope ranges. Step 2D: algebra of available relief ranges and slope to 

determine the BRUs, and insertion of other geomorphometric data, to define the geomorphological map. 
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3. Results and Discussion 

With the definition of BRU-limits and other geomorphometric parameters (shape and orientation) (Figure 3), 

it was possible to determine the singularities of distinct BRUs. The frequency of relief forms and topographic 

orientations were defined by histogram analysis on a class-by-class basis (Figure 4). 

Six Basic Relief Units were obtained from the combination of data on available relief and slope of the relief 

features of the area under study (Figure 5). 

The map presents greater scale (1:100.000), when compared to previous maps (RADAM BRASIL – 1:250.000) 

and brings a higher level of geomorphometric information, which enables the representation of the landforms that 

is associated to the 5th taxon in Ross (1992) classification. Information such as slope orientation, form and curvature 

may be useful to support environmental studies, for instance erosion susceptibility, land use and land cover, 

wildfires, mineral exploration, groundwater management, flood protection programming and recovery of 

degraded areas (Rao, 1972; Benavente et al., 2002; Remondo et al., 2008; Ferreira et al., 2016; Schneider et al., 2020; 

Carabella et al., 2019; Keller et al., 2020; Feoli et al., 2002). 

 

Figure 3. Correlations between available relief (A) and slope (B) determining the classes of Basic Relief Units (C) and graphs 

used to obtain the available relief’s and slope’s intervals. R-values higher than 0.9. 
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Figure 4. Histograms of orientation and slope forms determining the frequency of each BRU-class. 

  

Figure 5. Geomorphological map of the Cerrado. 

Depression 

This BRU extends from north to south of the study area. It is more expressive in the central portion of Brazil, 

mainly in the states of Tocantins (TO) and Mato Grosso (MT), representing approximately 24.5% of the Cerrado-

area. The available relief of this BRU ranges from 0 to 420 meters, with slopes of up to 4%. Its predominant relief 

shape is concave-divergent, followed by convex-divergent, with main slopes directed to the north.  
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Dissected Depression 

Dissected depression areas are located predominantly in the northern portion, in the states of Maranhão (MA) 

and Piauí (PI) and correspond to 13.22% of the Cerrado-area. The available relief in these areas ranges from 0 to 

420 meters with slopes greater than 4%. It includes recurrent concave-divergent and convex-divergent slopes, 

predominantly facing the west.  

  

Plateau 

Plateau areas are concentrated in isolated regions in the states of Bahia (BA), Goiás (GO), Distrito Federal (DF), 

Minas Gerais (MG) and Mato Grosso do Sul (MS), accounting for approximately 5% of the Cerrado-area. This BRU 

is characterized by an available relief above 800 meters with flattened top areas and slopes of up to 4%. Its 

predominant relief shape is concave-divergent, mainly oriented towards the north. 

 

Dissected Plateau 

This BRU represents 9.14% of the study region and is located mainly in the states of Goiás (GO) and Minas 

Gerais (MG). Its available relief is greater than 800 meters and its slopes are greater than 4%. Its prevailing forms 

are concave-divergent and convex-divergent, mostly facing the north.  

 

Demoted Tableland 

The demoted tablelands are distributed in the eastern and southwestern portions of the study area. These 

formations represent the greatest part of the Cerrado with 25% of its overall area. Their available relief ranges 

between 420 and 800 meters, with slopes of up to 4%. Predominant forms are concave-divergent and convex-

divergent, recurrently facing the north, followed by the east.  

Sierra 

This BRU is dispersed throughout the study area and corresponds to 23.13% of the Cerrado’s overall area, but 

it is concentrated in its center-south portion. Its available relief ranges between 420 and 800 meters, with slopes 

above 4%. Its most recurrent forms are concave-divergent and convex-convergent, predominantly directed to the 

east and west. 

4. Concluding Remarks 

The representation of geomorphological models based on geomorphometric parameters enables more reliable 

characterizations of reality. The Brazilian Cerrado’s geomorphological map, defined by mathematical models, 

made it possible to define its key geomorphometric archetypes and to define the relief metric classes that represent 

its actual conditions. 

Producing a specific geomorphological map for the Cerrado can significantly contribute to its physical 

characterization and, consequently, help meeting the needs of environmental analyses. Maps with larger scales 

through the method described above allow for greater detail and improved visualization of geomorphological 

features, thereby enabling more accurate analyses. 

Each represented class defines distinct levels of dissection. Plateaus are currently the best preserved class, and 

Dissected Depressions are the most dissected class. Defining classes that represent metric patterns of relief enables 

cartographic representations that can be more easily interpreted. 

A region at once affluent and threatened such as the Brazilian Cerrado needs more attention and carefulness. 

A geomorphological map of the Cerrado provides an improved basis for further studies, such as environmental 

analyses and studies on land use and land occupation, as well as for setting limits to agricultural expansion and 

promoting deforestation control, among other uses. Such analyses are crucial for the definition and execution of preventive 

and mitigating actions against environmental damage. 
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