
18th CONTECSI – INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGY MANAGEMENT
ISSN 2448-1041 - OCT 13-15, 2021 TECSI – FEA USP SÃO PAULO/ SP BRAZIL

18th CONTECSI 2021 - Proceedings and Abstracts

DOI: 10.5748/18CONTECSI/COM/ITM/6787

APPLICATION RESPONSE TIME COMPARISON BETWEEN ETHEREUM SMART CONTRACT AND SQLITE
DATABASE

Renato Mota Ruiz - UNIFIEO - CENTRO UNIVERSITÁRIO FIEO - Orcid: https://orcid.org/0000-0001-5447-5376

Inacio Henrique Yano - EMBRAPA - Orcid: https://orcid.org/0000-0003-2698-6309

Alexandre De Castro - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA - Orcid:
https://orcid.org/0000-0002-2019-0142

Julio Cezar Souza Vasconcelos - FEDERAL UNIVERSITY OF SÃO CARLOS, UNIVERSITY OF SÃO PAULO - Orcid:
https://orcid.org/0000-0001-6794-3175

This work aims to evaluate the storing and retrieving data response time using an Ethereum Smart Contract application to verify the
feasibility of its utilization instead of using relational databases in web application development. To achieve the objectives of this work.
There was a comparison between the Ethereum Smart Contract and the SQLite, considering response time as the user experience for
database choice decisions in future application development. This study consisted of the development of two similar applications. The
first one was the Ethereum Smart Contract Application, and the other was the SQLite Application. Using these applications to build
graphs of response time behavior as the number of records processed grows. For storing data Blockchain application was much faster
than the SQLite application. When retrieving data, the Blockchain application usually starts slower but finishes faster than the SQLite
application. Blockchain is a recent technology for secure data storage in a distributed architecture. The hypothesis to be checked was if
it also has a good response time compared with other databases. The contribution of this work is to provide information about the
efficiency and possible user satisfaction of Blockchain applications.

Keywords: application development, blockchain, performance, security, user experience

1 Introduction

Blockchain is a recent technology that permits the transfer of assets and data in a secure way.
The blockchain emerged from a study by Nakamoto (2008:21260) to create a decentralized
ledger for the virtual cryptocurrency Bitcoin. However, as technology is in constant evolution,
its use goes far beyond cryptocurrencies. Other applications have great potential for using
blockchain, especially those that need transparency, security, traceability, and privacy
(Bovério et al., 2018:109).

Due to its origin focused on transactions involving the transfer of values, blockchain has
several security mechanisms. The distributed architecture in a point-to-point network avoids a
single point of failure. Another valuable security aspect is the block construction process,
which only allows the aggregation of a new block after the previous one has been recorded
and distributed over the network. Finally, to avoid tampering, the hash of the precedent block
is recorded in the current block. So that any change in an already written block would change
the content of the following blocks, turning the storage data immutable (Miraz and Ali, 2018).

Currently, there are several studies to use blockchain usage beyond financial applications like
health care (Agbo et al., 2019:56), voting systems (Fusco et al., 2018:221), agriculture (Yano
et al., 2020:), among many other applications.

There are two types of blockchain networks:

1) Private or Permissioned blockchains. These networks belong to individuals or companies
with the purpose to attend their commercial use. In some cases, companies join, deploy and
share a proprietary network to exchange information between them, e.g., information systems
like supply chain management (Gonczol et al., 2020:11856).

2) Public or Permissionedless blockchains, in these networks, anyone can have an account to
use the services, e.g., cryptocurrencies blockchains networks like bitcoin (Michael et al.,
2018).

The possibility of using private networks is one of the factors that most drives the spread of
blockchain technology due to the restrictive access that facilitates the tests, development, and
implementation of applications aimed at specific companies and market niches.

The Blockchain network is suitable for many applications via smart contracts. Smart contracts
são programas de computador com funções, variáveis e orientada a eventos implementados
em uma rede blockchain (Khatoon, 2020: 94). Each contract writes and reads data of its
storage. The data definition on the smart contract defines if it is temporary (stored in memory)
or it is permanent (stored in storage) (Gürsoy et al., 2020).

Since blockchain acts as a distributed database in a peer-to-peer network (Bragagnolo et al.,
2018:9), it will be helpful to know its performance considering the user experience
concerning other databases used for this purpose, the parameter used for comparison was the
response time.

This work aims to evaluate the read and write response time of a small web application using
a private Ethereum Blockchain network comparing with the same application using the
SQLite relational database for a future resource utilization decision of application
development.

2 Methodology

As described in the previous section, the objective of this work was to compare the response
time between the Ethereum Smart Contract with the SQLite database. For this, there was the
development of two very similar applications. One application for blockchain and another one
for a relational database. Both with the same interface and recording the same content in the
smart contract and the SQLite.

2.1 Environment

The operating system used to deploy the applications was Linux Ubuntu 20.04 on virtual
machines, with one processor, 4 GB of RAM, 1 GB of swap area, and 25 GB of disk. The
virtualizer used was VirtualBox 6.1, running below a Linux Operating System Ubuntu 20.04,
12-Core CPU, 32 GB of RAM, 2 GB of swap area, and 500 GB of disk. The choice for virtual
machines was to create clean machines to avoid as much as possible the interference of other
software when processing and collecting data.

The language used for the SQLite web application was JavaScript, and the blockchain web
application was JavaScript and Solidity for the smart contract. Both applications run on the
Node.js platform. Node.js choice was due to costs reduction with servers because it requires
less memory and time for application development when compared to applications using, for
example, PHP/Nginx (Shah, 2017). Google Chrome was the browser used as the users'
interface (Figure 1). The interface passes one flag, number 1 to store data or number 3 to
retrieve data to be processed.

Figure 1 – User Interface

Source: Authors

2.2 SQLite Application

The architecture used for SQLite Application development was MVC (Model, View
Controller). This architecture divides the application into three main parts:

1) Model procedure defines the data structure and session control. In this application, the
Model procedure used Knex (bin Uzayr et al., 2019: 377). Knex is a library for SQLite
connection and standardized responses.

2) View procedure manages the user interface.

3) Controller is the event handling. It receives requests from View, retrieves data from Model
to finally generate responses to View again (Pop and Altar, 2014:1172).

The user starts the application from the web interface that passes the flag to store or retrieve
data. This event is captured from the View procedure. Handled by the Controller procedure
and finished by the Model procedure with the database writing or reading data (Figure 2).

Figure 2 – SQLite Application Architecture

Source: Authors

For SQLite application response time measurement, there is a looping to store or retrieve the
data a certain number of times. In this study, response time was measured for every 400
records processed, stoping when totaling 2000 records. Figure 3 shows the code for SQLite
response time registration.

Figure 3 – SQLite Response Time Registration Code

Source: Authors

2.3 Ethereum Smart Contract Application

The smarts contracts are codes written in high-level languages. Usually, the language used for
the Ethereum Blockchain network is Solidity (Khatoon, 2020: 94). There is an example of the
development, compilation, and deployment process of a Solidity smart contract in detail at
Yano et al. (2020). In this work, the Solidity version was 5.0. Figure 4 lists the smart contract
code used in this work.

Figure 4 – Smart Contract Code

Source: Authors

The UserStore contract stores the data at the usStore Struct. The user id maps the usStore
Struct to retrieve the user name and email using the functions set and get repetitively. The
emit function stores the variables declared by the event command in transaction logs.

These contracts run in the Ethereum Virtual Machine (EVM). In this work, Truffle Develop
provided the EVM (Robertson, 2018). Each smart contract has its area of code and storage
(Figure 5). Firstly, the user interacts with the HTML interface (Viewer process in Figure 5).
The action captured by the Viewer interface starts Bundle.js functions which call the
corresponding procedures at the smart contract using Web3.js libraries by ABI (Application
Binary Interface). The process finishes with the set or the get operation in the smart contract.

For Smart Contract response time measurement also there is a looping to store or retrieve the
data a certain number of times. The code difference is only for the methods for data handling.
In this work, response time was measured for every 400 records processed, stoping when
totaling 2000 records. Figure 6 shows the code for Smart Contract response time registration.

Figure 5 – Smart Contract Application Architecture

Source: Authors

Figure 6 – Smart Contract Response Time Registration Code

Source: Authors

3 Results

There were five response time measurements according to Tables 1 for Storing Data and 2 for
Retrieving Data. For storing data Blockchain application was much faster than the SQLite
application. When retrieving data, the Blockchain application usually starts slower but
finishes faster than the SQLite application. Figures 7 and 8 show the graphs of the storing and
retrieving data behavior as the number of records processed grows.

Table 1 – Storing Data Response Time in Milliseconds

1 2 3 4 5

Records Blockchain SQLite Blockchain SQLite Blockchain SQLite Blockchain SQLite Blockchain SQLite

400 220 4855 234 4978 228 5400 227 5270 212 4991

800 309 9764 324 10254 320 10865 316 10519 302 10203

1200 419 14784 443 15585 430 16244 430 15840 422 15374

1600 517 19954 539 20705 525 21457 526 21189 523 20498

2000 630 25035 681 26102 652 26793 650 26479 644 25566

Source: Authors

Table 2 – Retrieve Data Response Time in Milliseconds

1 2 3 4 5

Records Blockchain SQLite Blockchain SQLite Blockchain SQLite Blockchain SQLite Blockchain SQLite

400 111 134 134 132 150 141 144 141 151 135

800 168 234 186 244 202 254 201 252 204 257

1200 245 334 262 344 273 365 282 365 275 391

1600 318 450 334 460 347 491 353 487 343 507

2000 387 568 417 579 419 596 423 621 410 630

Source: Authors

Figure 7 – Comparison Graph for Storing Data: Blockchain x SQLite

Source: Authors

Figure 8 – Comparison Graph for Retrieving Data: Blockchain x SQLite

Source: Authors

4 Conclusion

Given the observed results, the analysis of the data presented in the graphs, it is concluded
that the performance of BlockChain is better than SQLite. Blockchain also has security
attributes like data immutability, distributed architecture that avoids a single point of failure.
In stored data readings, Blockchain had a little smaller response time than SQLite. In the data
recording process, the response time of Blockchain was very much lower when compared to
SQLite. These results demonstrate that Blockchain surpasses SQLite in a stand-alone server
environment.

In continuation of this study, the response time measurements will be focused on a multi-point
network to test a Blockchain network against a cluster of databases.

5 References

Agbo, C. C., Mahmoud, Q. H., & Eklund, J. M. (2019, June). Blockchain technology in
healthcare: a systematic review. In Healthcare (Vol. 7, No. 2, p. 56). Multidisciplinary Digital
Publishing Institute.

bin Uzayr, S., Cloud, N., & Ambler, T. (2019). Knex and Bookshelf. In JavaScript
Frameworks for Modern Web Development (pp. 377-426). Apress, Berkeley, CA.

Bovério, M. A., & da Silva, V. A. F. (2018). Blockchain: uma tecnologia além da
criptomoeda virtual. Revista Interface Tecnológica, 15(1), 109-121.

Fusco, F., Lunesu, M. I., Pani, F. E., & Pinna, A. (2018, September). Crypto-voting, a
Blockchain based e-Voting System. In KMIS (pp. 221-225).

Gonczol, P., Katsikouli, P., Herskind, L., & Dragoni, N. (2020). Blockchain implementations
and use cases for supply chains-a survey. Ieee Access, 8, 11856-11871.

Gürsoy, G., Brannon, C. M., & Gerstein, M. (2020). Using Ethereum blockchain to store and
query pharmacogenomics data via smart contracts. BMC medical genomics, 13, 1-11.

Khatoon, A. (2020). A blockchain-based smart contract system for healthcare management.
Electronics, 9(1), 94.

Michael, J., Cohn, A. L. A. N., & Butcher, J. R. (2018). Blockchain technology. The Journal,
1(7).

Miraz, M. H., & Ali, M. (2018). Applications of blockchain technology beyond
cryptocurrency. arXiv preprint arXiv:1801.03528.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, 21260.

Pop, D. P., & Altar, A. (2014). Designing an MVC model for rapid web application
development. Procedia Engineering, 69, 1172-1179.

Robertson, J. E. (2018). Developing a Decentralised Game Using Blockchain Technology.

Shah, H. (2017). Node. js challenges in implementation. Global Journal of Computer Science
and Technology.

Yano, I. H., CASTRO, A. D., CANÇADO, G. D. A., & da SILVA, F. C. (2020). Storing data
of sugarcane industry processes using blockchain technology. In Embrapa Informática
Agropecuária-Artigo em anais de congresso (ALICE). In: ENCONTRO NACIONAL DE
ENGENHARIA DE PRODUÇÃO, 40., 2020, Foz do Iguaçu. Contribuições da engenharia de
produção para a gestão de operações energéticas sustentáveis: anais. Rio de Janeiro:
ABEPRO, 2020.

6 Acknowledgments

The authors thank Embrapa/Coplacana/CNPq and Embrapa/Coplacana/FAPED to grant
scholarships for Renato Mota Ruiz and Julio Cezar Souza Vasconcelos respectively.

