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Poaceae, among the most abundant plant families, includes many economically important polyploid 
species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic 
complexities and limited genetic resources, hindering the application of marker-assisted selection 
strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is 
genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate 
models for incorporating genomic selection into breeding schemes are needed. This study aims to 
develop a machine learning method by using a joint learning approach to predict complex traits from 
genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa 
decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. 
High-quality markers were used to predict several traits in different cross-validation scenarios. By 
combining classification and regression strategies, we developed a predictive system with promising 
results. Compared with traditional genomic prediction methods, the proposed strategy achieved 
accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be 
implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.

Poaceae (Gramineae) is a very diverse family of flowering plants known as grasses with unquestionable economic 
importance, as they are sources of food, fuel and fodder. Among Poaceae crop species, sugarcane (Saccharum spp., 
SU) stands out as responsible for most of the global sugar  production1,2 and for its high energy  potential3, while 
tropical forage grasses (FGs), including Urochloa spp. and Megathyrsus maximus (syn. Panicum maximum), are 
the main food source for beef and dairy cattle in tropical and subtropical regions of the  world4,5. In addition to 
their agricultural relevance, SU and FGs have complex and large polyploid genomes, making the application of 
marker-assisted selection more challenging than in diploid grasses such as rice, maize and  sorghum6–8.

As with all crops, many traits of great agricultural importance are highly quantitative and controlled by many 
loci of very small effect and thus are easily affected by environmental  conditions9. However, in these polyploid 
species, the effect of individual loci tends to be even smaller, as it is distributed among several alleles with differ-
ent possible combinations, making the genotype-phenotype correspondence  uncertain10–12. This fact, combined 
with other characteristics, such as the large and heterozygous nature of their genomes, which have a high content 
of repetitive  regions7,13, explains the shortage of genomic resources for answering relevant biological questions 
and enabling the advance of the genetic improvement of these crops.
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With recent advances in high-throughput sequencing and phenotyping technologies, a compelling approach 
known as genomic selection (GS) has been used to accelerate selection cycles through the application of statisti-
cal methods to predict the breeding value of individuals by using molecular markers, mainly single nucleotide 
polymorphisms (SNPs)14. First proposed by  Bernardo15, this approach has shown great potential in studies on 
polyploid species of economic importance, as it provides relevant genetic gains considering complex traits con-
trolled by several genes of minor  effect16–20. However, there is still a gap in effectively applying GS in SU and FG 
breeding programs because no available strategy has shown enough improvement in accuracy to significantly 
increase yearly genetic  gains21–23.

Among other factors, the accuracies of predictive models vary depending on the statistical and computational 
methods  employed24. However, the several methods available for GS do not work satisfactorily for complex 
polyploids such as the species mentioned here, and as a consequence, the prediction of marker-trait associations 
is not accurate. Although representing a valuable alternative to improve predictive accuracy in GS, traditional 
machine learning (ML) methods have also been shown to be inefficient in increasing genetic gains and, thus, solv-
ing the existing limitations to incorporating GS into complex polyploid breeding  schemes25,26. Therefore, there 
is a need to incorporate different learning strategies and algorithms into GS to improve predictive performance 
for quantitative traits in genetically complex species such as SU and FGs.

In this context, this study is aimed at the development of a predictive system for genomic prediction (GP) 
of complex traits in polyploid grasses, especially species with incomplete reference genomes and scarce genetic 
resources. Considering the difficulty of capturing species’ genomic singularities through linear regression tech-
niques and creating predictive models with high accuracies, we incorporated different ML methodologies into 
an ensemble system composed of classification and regression models. The applicability and potential of this 
joint learning approach were assessed with several complex traits from three different biparental populations of 
SU and FGs (U. decumbens and M. maximus) and contrasted with those of traditional linear regression models 
for GS. Our study provides a novel methodology with strong potential to be implemented in polyploid grass 
breeding programs, assisting in reducing breeding cycles and increasing genetic gain.

Materials and methods
All the predictive models used in this study were applied to three different biparental populations ( F1 hybrids): 
(Pop1) 219 individuals generated from a cross between SU commercial varieties, (Pop2) 239 individuals from a 
cross between a commercial variety and a genotype of U. decumbens (2n = 4x = 36), and (Pop3) 136 individuals 
from a cross between a commercial variety and a genotype of M. maximus (2n = 4x = 32). The plant material 
employed in the present study are in compilance with institutional, national, and international guidelines and 
legislation. The same data analysis procedures were applied for all populations, with specific differences regarding 
the genotyping and bioinformatics procedures. Different traits were evaluated for these species, and therefore, 
specific mixed effect models were estimated for each scenario.

Grass populations. Pop1 hybrids were generated from a cross between the elite clone IACSP95-3018 
(female parent) and the commercial variety IACSP93-3046 (male parent). This population was developed by the 
Sugarcane Breeding Program of the Agronomic Institute of  Campinas27. This population was planted in three 
locations: (i) Ribeirão Preto, São Paulo, Brazil (21◦ 12 ′  0.6′′ S, 47◦ 52 ′  21.5′′ W, 546.8 m), in 2005; (ii) Sales de 
Oliveira, São Paulo, Brazil (20◦ 46 ′  19′′ S, 47◦ 50 ′  16′′ W, 730 m), in 2007; and (iii) Piracicaba, São Paulo, Brazil 
(22◦ 42 ′  36.6′′ S, 47◦ 37 ′  58.3′′ W, 554 m), in 2011. Experimental fields were established following an augmented 
block design with five blocks (44 individuals per block) and plots with 1-m rows and 1.5 m plant spacing. Each 
individual was evaluated for stalk diameter (SD) and stalk height (SH) in a sample with 10 stalks from individual 
 plots28. These evaluations were performed in 2008 (plant cane) and 2009 (ratoon cane) in location (ii) and (iii), 
and in 2012 (plant cane), 2013 (ratoon cane) and 2014 (ratoon cane) in location (i).

Pop2 and Pop3 were generated and evaluated by the Embrapa Beef Cattle (Brazilian Agricultural Research 
Corporation), located in Campo Grande, Mato Grosso do Sul, Brazil (20◦ 27 ′  S, 54◦ 37 ′  W, 530 m). Pop2 origi-
nated from a cross between U. decumbens D62 (cv. Basilisk) as the male apomictic parent and U. decumbens 
D24/27 as the female sexual parent obtained by tetraploidization with  colchicine29. Plants were evaluated for the 
following agronomic traits: regrowth capacity (RC), field green weight in kg/ha (FGW), total dry matter (TDM) 
in kg/ha, leaf dry matter (LDM) in kg/ha, leaf percentage (LP), and the leaf stem ratio (LSR), as described by 
Mateus et al.30. Briefly, the field experimental design followed a simple lattice of 18 x 18 meters with two replica-
tions, seven controls and five plants per plot. These traits were evaluated for seven harvests in 2012: two in the 
dry season and five in the rainy season.

Pop3 was obtained from a cross between M. maximus cv. Mombaça, the apomictic parent, and an obligate 
sexual parent, M. maximus S10. According to Deo et al.31, this population was evaluated in an augmented block 
design with 160 regular treatments distributed in eight blocks with two replicates. Each block was composed 
of 22 plots with 20 individuals and two controls. Genotypes were evaluated for several agronomic traits: green 
matter (GM), stem dry matter (SDM), percentage of leaf blade (PLB), TDM, LDM, and RC. Phenotyping was 
performed in six harvests (three in 2013 and three in 2014), with the exception of phenotyping of RC, which 
was performed for three harvests (one in 2013 and two in 2014).

Phenotypic data analyses. Raw phenotypic data were processed according to the mixed linear models 
described by Aono et al.27, Ferreira et al.32, and Deo et al.31 for Pop1, Pop2 and Pop3 respectively. Trait herit-
abilities were calculated based on model variances considering H2 = σ 2

g /σ
2
p  , where σ 2

g  and σ 2
p  are the genetic 

and phenotypic variances, respectively. Pop1 data were evaluated in R statistical  software33 using breedR v.0.1234 
and  bestNormalize35 for data normalization. We modeled each trait considering the following statistical model:
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where each trait measure Yijrkm of the rth replicate of the ith genotype was evaluated at the kth location of the 
jth block in the mth year. The trait mean is given by µ , and the contributions of the kth location ( Lk ), the mth 
harvest ( Hm ), the jth block at the kth location in the mth year ( Bj(km) ), and the interaction between the kth loca-
tion and mth harvest ( LHkm ) were modeled as fixed effects. The effects of the genotype Gi(km) and the residual 
error eijrkm were included as random effects.

Pop2 phenotypic evaluations were performed using ASReml-R  v336,37 and  ASRemlPlus38 software. The traits 
were modeled with the following model:

where each trait measure Yijmr of the ith genotype was evaluated in the jth block in the mth harvest considering 
the rth replicate. The trait mean is given by µ , and the contributions of the rth replicate ( Rr ) and the mth harvest 
( Hm ) were modeled as fixed effects. The contributions of the ith genotype ( Gi ), the jth block in the rth replicate 
( Bj(r) ), and the interaction between the ith genotype and the mth harvest ( GHim ) were included as random effects, 
as well as the residual error eijkm.

For Pop3, a longitudinal linear mixed model was fit using ASReml-R36, with Box-Cox  transformation39 for 
data normalization. The following model was employed:

where each trait measure Yijmr of the ith genotype was evaluated in the jth block in the mth harvest considering 
the rth replicate. The trait mean is given by µ , and the contributions of the mth harvest ( Hm ) and the rth replicate 
in the mth harvest ( Rr(m) ) were modeled as fixed effects. The contributions of the jth block in the mth harvest 
( Bj(m) ), the interaction of the rth replicate and jth block in the mth harvest ( RBrj(m) ), the ith genotype (or control) 
in the mth harvest ( Gi(m) ) and the environmental error ( eijmr ) were modeled as random effects.

The best linear unbiased predictors (BLUPs) (Pop1) and corrected phenotypes (Pop2 and Pop3) were esti-
mated, rescaled to a new range of values between 0 and 1 using min-max normalization and used for phenotypic 
predictions. For a set of values v, the transformed values f(v) are:

Visual inspections of phenotypic data distributions were performed using the ggplot2  package40 in R. Trait 
correlations were estimated with R Pearson correlation coefficients by using the PerformanceAnalytics  package41 
in R.

Genotyping procedures. As the genotyping approach, we employed a genotyping-by-sequencing (GBS) 
strategy. GBS libraries were prepared following the protocol of Elshire et al.42 for Pop1 and Pop2 and the pro-
tocol of Poland et al.43 for Pop3. DNA extraction from Pop1 was performed using a cetyltrimethylammonium 
bromide (CTAB)-based  protocol44, and two 96-plex GBS libraries were constructed using PstI, with two samples 
per parent. Five sequencing runs were performed with the Illumina GAIIx and Illumina NextSeq  systems27. 
Genomic DNA of Pop2 was extracted using the DNeasy Plant Kit (QIAGEN, Hilden, Germany). Two 96-plex 
GBS libraries were constructed using NsiI and five replicates per parent and sequenced on the NextSeq 500 
platform (Illumina, San Diego, CA, USA)32. DNA extraction from Pop3 was performed following a CTAB-based 
 method45 with slight modifications. Then, 96-plex GBS libraries were constructed using a combination of a 
rarely cutting enzyme (PstI) and a frequently cutting enzyme (MspI), with 12 replicates for each parent. Pop3 
libraries were also sequenced on the NextSeq 500  platform31.

SNP calling in SU was performed by coupling several bioinformatics pipelines and selecting the intersecting 
markers by the TASSEL-GBS v.4  pipeline46 modified for  polyploids47 and at least one other SNP caller, including 
SAMtools version 1.648, Stacks version 2.349, Genome Analysis Toolkit (GATK) version 3.7 with the Haplotype 
Caller  algorithm50, and FreeBayes version 1.1.0-351. GBS reads were filtered and preprocessed using FastX-Toolkit 
 scripts52, and comparative alignments were performed against the PhiX genome using  BLASTn53, as described by 
Aono et al.27. Read alignment was performed with BWA-MEM version 0.7.1254 and the methyl-filtered genome of 
the sugarcane cultivar SP70-114355, retaining only uniquely mapped reads. For GATK, SAMtools and FreeBayes, 
a common pipeline was established.

For Pop2 and Pop3, SNP calling was performed using TASSEL-4-POLY. Because this pipeline requires a 
reference genome for SNP calling, we used the Setaria viridis v1.0 and Panicum virgatum v1.0 genomes as 
references to align the GBS reads of Pop2 and Pop3, respectively, in Bowtie2 v.2.3.156. Both reference genomes 
were produced by the US Department of Energy Joint Genome Institute and are available from the Phytozome 
database (http:// phyto zome. jgi. doe. gov/)57. In this step, the following settings were used for both populations: 
very-sensitive-location, a limit of 20 dynamic programming problems and a maximum of 4 times to align a read.

After selecting the SNP sets for each population, we kept only biallelic variants with a minimum depth of 50 
reads per individual and a maximum of 25% missing data. These markers were represented as allele proportions 
by calculating the ratio between the number of reads for the reference allele and the total number of  reads27. 
Missing data were imputed as means.

Multivariate analyses. To evaluate genotypic and phenotypic data profiles across populations, we per-
formed principal component analyses (PCAs), t-distributed stochastic neighbor embedding (t-SNE)  analyses58, 

(1)Yijrkm = µ+ Lk +Hm + LHkm + Bj(km) + Gi(km) + eijrkm,

(2)Yijmr = µ+ Rr +Hm + Bj(r) + Gi + GHim + eijkm,

(3)Yijmr = µ+Hm + Rr(m) + Bj(m) + RBrj(m) + Gi(m) + eijmr ,

(4)f (v) =
v −min(v)

max(v)−min(v)
.

http://phytozome.jgi.doe.gov/
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and redundancy analyses (RDAs)59. Scatter plots were constructed using the ggplot2 R package. We evaluated 
phenotypic data using PCA and genotypic data with t-SNE in the Rtsne R  package60, considering a perplexity of 
30. We combined both datasets with RDA, which was implemented in the vegan R  package61. RDA constrained 
axes were evaluated with the analysis of variance (ANOVA) F-statistic, and to identify SNPs putatively under 
association with the phenotypes, we used a three-standard deviation cut-off (p-value of 0.0027).

Additionally, we performed a set of clustering analyses for each trait, considering hierarchical (Ward’s min-
imum variance with and without squared dissimilarities, herein referred to as WardWSD and WardWoSD, 
respectively), single, complete, unweighted pair-group method with arithmetic averaging (UPGMA), weighted 
pair-group method with arithmetic averaging (WPGMA), weighted pair-group method with centroid averaging 
(WPGMC), unweighted pair group method with centroid averaging (UPGMC) and nonhierarchical (K-means) 
strategies together with pairwise Euclidean distances. For each of the clustering methods and traits, we calculated 
the clustering index by using the NbClust R  package62, defining the best clustering scheme as that most indi-
cated by the indexes in a cluster number range of 2 to 10. Cluster visualization was performed with the ggtree R 
 package63 and used to create intervals for each phenotype. The best method was defined through visual inspec-
tions considering the trait distribution and the cluster configurations on the heatmaps created.

Single regression genomic prediction. We evaluated the prediction accuracies of traditional models for 
GP and ML-based approaches. As traditional approaches, we selected (a) Bayesian ridge regression (BRR)64; (b) 
Bayesian reproducing kernel Hilbert spaces regression with kernel averaging (RKHS-KA)65, considering differ-
ent kernels with bandwidth parameters of 15M, 5M, and 1M, where M represents the median squared Euclidean 
distance across genotypes; and (c) a single-environment, main genotypic effect model with a Gaussian kernel 
(SM-GK)66. BRR and RKHS-KA models were implemented in the BGLR R  package67, and the SM-GK model 
was implemented in the BGGE R  package66. Given a genotype matrix (SNP data), codified using allele propor-
tions, with p loci and n individuals, the BRR models were estimated considering the following equation:

where y represents the response measures, µ the overall population mean, e the residuals ( e ∼ MVN(0n, Iσ
2
e ) ), 

Z the genotype matrix, and γ the vector of SNP effects with the same normal prior distribution for all loci 
( γi|σ 2

γ ∼ N(0, σ 2
γ ) ) and the hyperparameter following a scaled inverse chi-squared hyperprior distribu-

tion ( σ 2
γ |d.f .γ , Sγ ∼ χ−2(d.f .γ , Sγ ) , where σ 2

γ  is the genetic variance, d.f. the degrees of freedom and Sγ 
the scale parameter). In SM-GK, considering the same equation, Z is the incidence matrix for random 
genetic effects, and γ  the genetic effects considering γj|σ 2

γ ∼ N(0, σ 2
γK) , where the matrix K is computed 

through a Gaussian kernel (GK) function. For pairwise K calculations between two genotypes xi and xi′ , 
GK(xi , xi′) = exp {−h

p

∑p
j=1 (xi,k − xi′ ,k)

2} , where h is the bandwidth parameter (herein considered 1 for SM-GK). 
In RKHS-KA, a multikernel model is fitted with the same GK but considering separate random effects for three 
established kernels. The posterior distribution of the models was assessed with the Gibbs sampler, using 20,000 
interactions and discarding 2000 cycles (burn-in).

For ML-based approaches, we selected regression methods based on the following algorithms: (i) k-nearest 
neighbors (KNN)68, (ii) support vector machine (SVM)69, (iii) random forest (RF)70, and (iv)  AdaBoost71. All of 
these algorithms were implemented with the scikit-learn Python v.3  module72. For KNN ( k = 5 ), pairwise Euclid-
ean distances with uniform weights were considered. In SVM regression, a radial basis function kernel ( KSVM ) 
was used. Considering two genotypes xi and xi′ , KSVM(xi , xi′) = exp

(

−θ ||x − x′||2
)

 , with the free parameter 
θ defined as 1/(p× σ 2

Z) , where p represents the number of loci and σ 2
Z the variance of the genotype matrix Z . 

The RF meta-estimator was built considering 100 decision trees for random data splits evaluated through mean 
squared errors (MSEs) calculated as MSE = 1

n

∑n
i=1 (yi − ŷi)

2 , where yi and ŷi are the real and the predicted 
values, respectively, across n individuals in data split k (from 1 to 100). Tree induction was performed considering 
a maximum tree height of p (the number of loci). For AdaBoost, the base estimator was a decision tree regressor 
with a linear loss function for weighting boosting interactions.

All these models were evaluated under a cross-validation (CV) scenario with 50 10-fold repeats and the leave-
one-out (LOO) approach. For each trait, predictive accuracies were estimated as MSEs and R Pearson correlations 
and visualized with the ggplot2 R package. The models’ performances were compared with ANOVA followed by 
Tukey’s multiple comparisons test (p-value of 0.05), implemented in the agricolae R  package73.

Phenotypic interval prediction. In addition to single regression genomic prediction, we evaluated the 
performance of classification models for predicting phenotypic intervals. The predictive capabilities were esti-
mated using 10-fold CV repeated 50 times with stratification based on the intervals. The following ML algo-
rithms were used: (i)  SVM69, (ii)  RF70, (iii) multilayer perceptron (MLP) neural  network74, and (iv) Gaussian 
naive Bayes (GNB)75. All these models were estimated using the scikit-learn Python v.3  module72 with the 
default parameters to provide a baseline score.

Feature selection. In this work, we used feature selection (FS) techniques to extract loci with putative 
phenotypic associations considering higher predictive accuracies. For this task, we tested the performance of 
the ML-based regression and classification models described in previous sections for predicting the phenotypes 
and their interval values considering scenarios with and without (the whole marker dataset) FS in a 10-fold CV 
repeated 50 times.

For classification FS, we employed the approach described by Aono et al.27. As an FS system, we combined the 
results of (i) L1-based FS with a linear support vector classification  system69, (ii) ANOVA-based univariate FS 
(p-value of 0.05), and (iii) gradient tree boosting (GTB)76. In this approach, a locus is retrieved by the system if 

(5)y = 1µ+ Zγ + e,
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identified as relevant for classification in at least two out of the three FS techniques employed. This methodology 
was extended for regression FS, considering models adapted for a continuous response variable. Techniques (i) 
and (iii) were changed, considering SVM and GTB for regression, and approach (ii) was replaced with Pearson 
correlation (p-value cut-off of 0.05).

Marker annotation. For each phenotype, we retrieved the selected markers and obtained a genomic win-
dow of 1000 base pairs upstream and downstream in the reference genome. With these sequences, we per-
formed comparative alignments against coding DNA sequences (CDSs) of fourteen different species from the 
Poaceae family (Brachypodium distachyon, B. hybridum, B. silvatium, Hordeum vulgare, Oryza sativa, Oropetium 
thomaeum, Panicum hallii, P. virgatum, Sorghum bicolor, Setaria italica, S. viridis, Triticum aestivum, Thinopyrum 
intermedium and Zea mays) and Arabidopsis thaliana extracted from the Phytozome v.13  database57. All the cor-
respondences were used to summarize related Gene Ontology (GO) terms using the Revigo  tool77 and Cytoscape 
 software78.

Joint learning. With the selected traits, we contrasted the GP methods using traditional statistical meth-
odologies (BRR, RKHS-KA, and SM-GK) and the entire SNP dataset, with the construction of SM-GK models 
based on the SNPs selected from the FS approaches. We examined FS-selected SNPs considering the established 
classification (C) and regression (R) techniques, and used the SNPs identified in the intersection of at least two 
(C2 or R2) or three (C3 or R3) FS methodologies. The tested combinations were SM-GK models estimated based 
on (i) SNPs selected through the intersection of at least two classification FS techniques (C2); (ii) SNPs selected 
through the intersection of three classification FS techniques (C3); (iii) SNPs selected through the intersection 
of at least two regression FS techniques (R2); (iv) SNPs selected through the intersection of three regression FS 
techniques (R3); (v) the intersection of SNPs selected through C2 and R2 (ICR2); (vi) the union of SNPs selected 
through C2 and R2 (CR2); (vii) the union of SNPs selected through C3 and R3 (CR3); (viii) the entire set of 
markers including C3 as fixed effects (C3F); and (ix) the entire set of markers including R3 as fixed effects (R3F).

The inclusion of markers as fixed effects in SM-GK  models79,80 was performed with the equation:

where y represents the response measures, µ the overall population mean, X the genotype matrix with the FS-
associated markers, Z the incidence matrix for random genetic effects (estimated without the inclusion of X), 
and e the residuals. The marker effects in the FS set are represented by α , and the genetic effects of γ follow the 
distribution described above.

To compare predictive performance between the developed models and the other techniques, we employed 
the same CV scenarios described above (LOO and 10-fold), retrieving the MSE measures and the Pearson cor-
relation coefficients. Correlation plots were constructed with the ggplot2 R package.

Simulation approaches. To evaluate the proposed approach in larger populations in a controlled scenario, 
we performed simulations using AlphaSimR  software81. We selected an entire wheat breeding  program82,83 for 
creating genotypic (21 chromosomes with 1000 SNPs each and coded as 0 (ancestral homozygote), 1 (heterozy-
gote) and 2 (derived homozygote)) and phenotypic data (yield). For simulation scenarios, we considered dif-
ferent quantities of QTLs per chromosome (2, 10, 100 and 1000) with additive effects on yield sampled from a 
normal distribution (mean of 4 and variance of 0.1). Using such a configuration, 70 inbred lines were created 
and used for 20 years of phenotypic selection, with the first 10 years discarded as burn-in. The environmental 
variance was set to 0.4 and the genotype-environment interaction variance was set to 0.2.

The inbred lines were used to create 100 biparental populations with 100 individuals each, for a total of 10,000 
genotypes. These were selected using (i) a preliminary yield trial (PYT), (ii) an advanced yield trial (AYT), and 
(iii) an elite yield trial (EYT). To advance a genotype to the PYT, we created double haploids of the 10,000 lines, 
visually evaluated in a head row nursery (heritability of 0.1) to select the best 1000 genotypes (10 per family). 
The best 100 lines in the PYT were selected for the AYT considering an unreplicated trial (heritability of 0.2), 
and the best 10 in the AYT were advanced to the EYT using a small multilocation replicated trial (heritability of 
0.5). From the 10 lines in the EYT, the released variety was selected using a large multilocation replicated trial 
in 2 consecutive years (heritability of 0.67).

From the last 10 years of phenotypic selection, we selected the genotypic data of the PYT with the corre-
sponding phenotypes simulated to create datasets for evaluating the proposed approach. From a total of 10,000 
lines, we sampled different numbers of individuals (100, 250, 500, 1000, 2000, 5000 and 10,000) and performed 
10-fold CV evaluations for GP.

Results
Phenotypic and genotypic data analyses. From the defined mixed models, we could estimate, for each 
trait and population, the corresponding BLUPs and corrected phenotypes (Supplementary Figs. S1–S3), which 
were used for GP. Although there were some evident correlations between traits (Supplementary Figs. S4–S6), 
most of the evaluated phenotypes clearly represented a different prediction task for the development of models. 
There was a variable range of heritabilities associated with each trait, ranging from 0.49 to 0.51 in Pop1, from 
0.52 to 0.81 in Pop2, and from 0.19 to 0.64 in Pop3 (Table 1).

A total of 182 (out of 219), 219 (out of 239) and 138 (out of 138) individuals were genotyped for Pop1, Pop2, 
and Pop3, respectively. For each population, we generated the following number of filtered biallelic SNP mark-
ers: (i) 14,540 in Pop1 (from a total of 137,757 raw SNPs), (ii) 4548 in Pop2 (from 9354), and (iii) 5137 in Pop3 

(6)y = 1µ+ Xα + Zγ + e,
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(from 23,637). For all these SNP sets, we observed a significant loss in the number of filtered markers (90% for 
Pop1, 51% for Pop2, and 78% for Pop3), which was expected due to the large quantity of missing data in GBS 
experiments and the pseudoreference genomes employed in the SNP calling step.

For each of the traits evaluated, we used nine different clustering methods and considered the group configu-
ration as that most indicated by clustering indexes calculated with the NbClust package (with the cluster number 
ranging between 2 and 10). All nine clustering schemes identified for each trait were compared through visual 
inspections using dendrograms and heatmaps (Supplementary Figs. S7–S9). The most suitable group configu-
ration for separating the phenotypic values was assigned for each trait, resulting in different cluster quantities 
(Table 1). In Pop1, the WardWoSD method was the best clustering strategy. For Pop2, the WardWoSD method 
was also most appropriate for most of the traits, except for LSR and TDM, which were evaluated using hierarchi-
cal complete clustering and the WardWSD approach, respectively. For Pop3, all the traits were evaluated with 
the WardWSD approach.

To provide an overview of the genotypic and phenotypic data, we performed different multivariate analyses. 
For FG populations, contaminating individuals might be introduced during crosses, which could be detected 
by such  analyses84. As expected, we found putative contaminants in Pop2 though t-SNE analysis performed on 
genotypic data (Supplementary Fig. S10). The individuals with distinct profiles across the Cartesian plane were 
excluded from the dataset and not considered in further analyses (18 genotypes located apart from most of the 
population in the t-SNE biplot were discarded).

With the final phenotypic datasets, we performed PCAs (Fig. 1), which were used to color and size the t-SNE 
results from genotypic data. These plots demonstrate the lack of correspondence between the genotypic and 
phenotypic datasets, corroborating the difficulty of developing predictive models for such associations in the 
populations under analysis. By considering linear dependency across SNPs and traits, RDAs were performed, 
allowing the identification of a small number of putative linear associations (233 in Pop1, 37 in Pop2, and 21 
in Pop3), evidencing the need for alternative approaches for categorizing the genomic regions linked to the 
phenotypes analyzed.

Single regression genomic prediction. The predictive performance for each trait was evaluated with 
seven different approaches for the regression task: BRR, RKHS-KA, SM-GK, AdaBoost, KNN, RF, and SVM. By 
employing 10-fold CV 50 times, we observed superior results for BRR, RKHS-KA, SM-GK and SVM (Supple-
mentary Figs. S11–S13, Supplementary Table S1). Although not all four methods ranked best in terms of predic-
tive performance for SH (Pop1), RC (Pop2), and PLB (Pop3), there were no pronounced differences between 
their accuracies and those of the highest ranking models for these traits.

For BRR, RKHS-KA, SM-GK and SVM, we also performed LOO evaluations (Table 2). The predictive per-
formances were small even in a CV scenario with a larger training dataset. The highest observed R values were 
0.38, 0.32 and 0.21 for SH in Pop1 (SM-GK and SVM), LDM in Pop2 (SVM), and SDM in Pop3 (SVM), respec-
tively. Additionally, we did not observe clearly superior performance for any model, which would have allowed 
us to select a specific approach for fitting the regression model. For each trait, one of the four selected methods 
presented a slightly superior accuracy compared to that of the other three, as already observed in the 10-fold CV 
evaluations (Supplementary Figs. S11–S13). Even with the best accuracy values observed, SH in Pop1, LDM in 
Pop2 and SDM in Pop3 could not be efficiently predicted, once again demonstrating the need for the develop-
ment of suitable regression methods for complex polyploid grasses.

Table 1.  Heritability and cluster configuration of each trait across the different traits separated according to 
the populations: (Pop1) cross between sugarcane commercial varieties, (Pop2) cross between a commercial 
variety and a genotype of Urochloa decumbens, and (Pop3) cross between a commercial variety and a genotype 
of Megathyrsus maximus.

Trait Heritability Clusters

Pop1
Stem height (SH) 0.51 3

Stem diameter (SD) 0.49 4

Pop2

Regrowth capacity (RC) 0.79 3

Field green weight (FGW) 0.76 3

Total dry matter (TDM) 0.81 3

Leaf dry matter (LDM) 0.71 3

Leaf percentage (LP) 0.63 3

Leaf stem ratio (LSR) 0.52 3

Pop3

Green matter (GM) 0.64 2

TDM 0.57 3

LDM 0.58 3

RC 0.36 4

Stem dry matter (SDM) 0.35 2

Percentage of leaf blade (PLB) 0.19 3
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Feature selection. To improve predictive accuracies, we combined different FS methods for both clas-
sification (C) and regression (R) techniques. The regression problem was configured considering trait value 
prediction, and classification, considering the prediction of the clusters defined for each trait. To supply a more 
restricted group of markers, we used two different approaches to marker selection: the intersection between the 
three FS techniques used in classification (C3) or regression (R3) and the intersection of at least two out of the 
three FS methods (C2 and R2). Each approach generated a different quantity of markers when considering the 
regression and classification problems separately (Supplementary Table S2).

Figure 1.  Multivariate analyses performed on both genotypic and phenotypic data for the populations of (A) 
sugarcane (stalk diameter (SD) and stalk height (SH)), (B) Urochloa decumbens (field green weight (FGW), leaf 
dry matter (LDM), leaf percentage (LP), leaf stem ratio (LSR), regrowth capacity (RC), and total dry matter 
(TDM)), and (C) Megathyrsus maximus (green matter (GM), LDM, percentage of leaf blade (PLB), RC, stem 
dry matter (SDM), and TDM). Principal component analyses (PCAs) were performed with phenotypic data; 
t-distributed stochastic neighbor embedding (t-SNE), with genotypic data; and redundancy analyses (RDAs), 
with both datasets.
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Regression-based FS generated larger quantities of markers, ranging from 898 to 980 in Pop1, from 242 to 
367 in Pop2, and from 266 to 373 in Pop3. Classification-based FS, on the other hand, enabled the identifica-
tion of more restricted marker subsets (from 208 to 211 in Pop1, from 86 to 117 in Pop2, and from 58 to 133 in 
Pop3). Interestingly, approximately half of the markers found for classification were also found for regression, 
showing the compatibility of these approaches. As expected, such FS methods enabled higher accuracies for ML 
prediction and the categorization of phenotype-associated genomic regions with diverse biological functions 
(Supplementary Figs. S14–S41).

Even though the ML models for predicting the different traits differed in suitability, more pronounced dif-
ferences were observed when changing the marker dataset and not the ML algorithm. For some trait-model 
combinations, the more effective strategy was employing C2/R2, and for others, C3/R3. Regarding the biological 
process GO terms associated with the genes found in these marker regions, there was a clear core set of common 
interactions for each trait when analyzing the regression- and classification-based approaches, with differences 
regarding the inclusion of novel connections and categories.

Joint learning. For each trait, we compared the predictive performances of the BRR, RKHS-KA and SM-GK 
models using the entire set of markers with the performances of SM-GK coupled with the FS approaches con-
sidering classification (C) and regression (R) algorithms. In addition to testing the intersection of the three FS 
techniques tested for both C and R (C3/R3) and the intersection of at least two techniques out of the three (C2/
R2), we also evaluated (i) the union of C2 and R2 (CR2), (ii) the union of C3 and R3 (CR3), and (iii) the intersec-
tion of C2 and R2 (ICR2). Finally, we tested the addition of C3 and R3 as fixed effects (C3F and R3F) with the 
maintenance of the remaining markers for estimating the relationship matrix K. All these models were evaluated 
using R Pearson correlation coefficients together with MSE measures in the 10-fold CV scenario established; 
these measures were contrasted with Tukey’s multiple comparisons test (Supplementary Figs. S42–S55).

The correlation values calculated when subsetting the marker datasets clearly increased due to decreases in 
MSE values. The addition of markers as fixed effects, on the other hand, increased the R Pearson coefficients 
together with the MSEs; this indicates that such an increase in the correlation is derived from higher variability 
in the dataset rather than from better predictive performance. By selecting the best results according to Tukey’s 
test for both evaluated metrics (Supplementary Table S3), we could establish the best models as SM-GK/R2 
and SM-GK/CR2 for Pop1, SM-GK/R2, SM-GK/R3, and SM-GK/CR3 for Pop2, and SM-GK/R2, SM-GK/R3, 
SM-GK/CR2, and SM-GK/CR3 for Pop3.

Interestingly, we did not observe differences when applying SM-GK with R2 or CR2 and with R3 or CR3. 
In fact, although presenting intersections with R2 and R3 markers, C2 and C3 markers by themselves did not 
perform well in regression model estimation (Supplementary Figs. S42–S55). To further analyze these results, 
we employed LOO CV with the SM-GK regression model and the GNB classification algorithm for marker data-
sets R2, R3, CR2 and CR3 (Supplementary Table S4). We selected the GNB model due to the promising results 
observed in previous analyses (Supplementary Figs. S14–S41).

Similar to the results observed for the regression techniques, the classification algorithms performed better 
with the inclusion of markers selected for classification. However, as previously pointed out, the use of both 

Table 2.  Accuracies for Bayesian ridge regression (BRR), the reproducing kernel Hilbert space with kernel 
averaging (RKHS-KA) model, the single-environment, main genotypic effect model with a Gaussian kernel 
(SM-GK), and support vector machine (SVM)-based regression across the different traits separated according 
to the populations: (Pop1) cross between sugarcane commercial varieties, (Pop2) cross between a commercial 
variety and a genotype of Urochloa decumbens, and (Pop3) cross between a commercial variety and a genotype 
of Megathyrsus maximus. The accuracies are estimated through mean squared errors (MSE) and Pearson 
correlation coefficients (R). The values in bold represent the top 5 accuracies observed.

Trait

BRR RKHS-KA SM-GK SVM

MSE R MSE R MSE R MSE R

Pop1
Stem height (SH) 0.04 0.28 0.04 0.29 0.04 0.38 0.04 0.38

Stem diameter (SD) 0.03 0.05 0.03 0.13 0.03 0.04 0.03 0.12

Pop2

Regrowth capacity (RC) 0.02 0.21 0.02 0.15 0.02 0.19 0.02 0.14

Field green weight (FGW) 0.04 0.20 0.04 0.21 0.04 0.19 0.04 0.2

Total dry matter (TDM) 0.04 0.15 0.04 0.15 0.04 0.14 0.04 0.19

Leaf dry matter (LDM) 0.03 0.30 0.03 0.30 0.03 0.19 0.03 0.32

Leaf percentage (LP) 0.03 0.25 0.03 0.15 0.03 0.27 0.03 0.25

Leaf stem ratio (LSR) 0.03 0.12 0.02 0.07 0.03 0.11 0.03 0.11

Pop3

Green matter (GM) 0.03 0.18 0.03 0.18 0.03 0.18 0.03 0.19

TDM 0.03 0.17 0.03 0.15 0.03 0.18 0.03 0.21

LDM 0.04 0.18 0.04 0.17 0.04 0.20 0.04 0.2

RC 0.06 0.12 0.06 0.09 0.06 0.13 0.06 0.13

Stem dry matter (SDM) 0.03 0.15 0.03 0.17 0.03 0.15 0.03 0.21

Percentage of leaf blade (PLB) 0.04 − 0.04 0.03 − 0.01 0.04 − 0.04 0.04 − 0.06
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strategies combined (CR2 and CR3) produced satisfactory results for both classification and regression, supply-
ing a powerful set of markers to be considered for prediction (Fig. 2).

As the final approach suggested for constructing these GP models for complex polyploids, we highlight the 
approach of subsetting the marker dataset using the combined FS technique CR3, mainly because of (i) the high 
predictive accuracies observed for all traits, (ii) its ability to accommodate both classification and regression 
models, and (iii) the small number of markers compared to that in the CR2 dataset (for all traits, the number 
of markers selected for CR3 was approximately 10% of the number of markers selected for CR2). Although in 
some scenarios the prediction accuracies were higher for CR2, even when using CR3, they were significantly 
better than those observed with the traditional approaches.

Finally, by combining such an FS system based on the joint use of classification and regression ML strate-
gies (CR3) with a popular statistical model for GP (SM-GK), we were able to suggest an ensemble method for 
predicting quantitative phenotypes in highly complex polyploid species. The increases in accuracy are remark-
able (Fig. 3), and such a strategy also enables the construction of classification models for assisting in breeding 
selection strategies.

Simulation approaches. To evaluate the feasibility of using the proposed approach for wider datasets, we 
performed simulations of a wheat breeding program and selected lines from the PYT for use in CV strategies. 
Using ten years of phenotypic selection, we were able to create 4 different datasets of 10,000 rows corresponding 
to genotypic data created based on 2, 10, 100 and 1,000 quantitative trait loci (QTLs). From these sets, different 
quantities of rows were sampled for independent evaluations (100, 250, 500, 1000, 2000, 5000, and 10,000). We 
contrasted the performance of the SM-GK using the entire marker dataset with the performance considering 
marker selection with CR3 (Fig. 4). For all the configurations tested, the prediction accuracies of SM-GK/CR3 
were better than those of SM-GK, with differences in the percentage of increase depending on the configuration 
established.

Even though we observed slight differences in model performance when using different QTL quantities for 
the creation of genotypic datasets, the most pronounced increases in performance for SM-GK/CR3 compared 
with SM-GK were based on the quantity of individuals sampled from the data simulated and used for CV. In 
the smallest datasets (100 individuals), the accuracy for SM-GK/CR3 was approximately three times that of 
SM-GK, with a marker reduction exceeding 99%. The same increases in accuracy and decreases in marker data 
were also observed for 250 individuals. For 500 individuals, the increase was approximately 2 times, and the 
marker reduction was 98%. For more than 1000 individuals, the reductions in the marker dataset were also large 
(approximately 95%, 95%, 94%, and 90% for 1000, 2000, 5000, and 10,000 individuals, respectively); however, 
the increases in accuracy were more modest, being approximately 50%, 20%, 10%, and 5% for 1000, 2000, 5000, 
and 10,000 individuals, respectively.

Discussion
SU and FGs have considerable global economic importance, and their production demand is constantly  rising1,2. 
In the current scenario of climate change and food insecurity, the development of novel and more productive cul-
tivars by breeding programs represents the most effective and sustainable strategy for increasing  production85,86. 
Although genomic approaches have revolutionized plant breeding with large associated genetic  gains87, the 
inclusion of such techniques for the species employed in this work is still in its  infancy88,89. The genomic com-
plexity of these crops has hindered the development and acquisition of breeding genomic resources for many 
 years7,8. In such a scenario, different molecular strategies have been tested for reducing such genomic complexity 
through methylation-sensitivity enzymes and facilitating the genotyping process while reducing associated costs, 
including  GBS43,90. In this work, different populations genotyped with the GBS strategy were used to evaluate 
the estimation performance of GP models.

Even though GBS has been suitable for several studies of QTL mapping in these  species31,32,91, developed 
GP strategies have presented low prediction  accuracies20,22,92,93. Therefore, for practical incorporation of such 
techniques into breeding programs through GS, improved GP strategies are required, especially for most traits of 
interest, which are quantitative and highly polygenic and show phenotypic effects spread across unknown QTLs 
organized in a very complex genetic  architecture94. Motivated by these facts, we suggested the incorporation of 
FS into GP as a means of circumventing the difficulty of estimating genotype and phenotype interactions and 
improving the low accuracies observed.

The traditional approaches employed for GP are based on the creation of regression  models25, which estimate 
marker or genotype effects for the phenotype of interest, providing a means of predicting plant performances in 
the  field25. In recent years, many studies have evaluated different types of statistical paradigms for such model 
estimation; however, most of the results show little/no changes in  accuracy95–97. In contrast to the model efficiency 
observed for species with well-established genomic  resources98,99, these strategies do not work properly in our 
scenario, inaccurately estimating the genetic effects of a specific trait and causing a significant loss of accuracy. 
We hypothesize that this deficiency is mainly caused by the difficulty of properly genotyping the individuals, 
which is due to several factors, including a lack of appropriate genomic references, the frequent occurrence of 
duplicated  regions7,13, aneuploidy at different  loci100, the difficulty of estimating correct allele  dosages101, and 
the large amount of missing  data102. Our first attempt to circumvent some of these limitations involved employ-
ing allele proportions instead of dosages, expanding the marker dataset and removing statistical assumptions 
regarding dosage  attributions27.

The inclusion of ML approaches in GP has been controversial, being described as  beneficial97,103–105 or not 
 advantageous18,106,107. In the first scenarios that we evaluated in our work, we did not observe large increases when 
incorporating ML into prediction. Most of the ML algorithms performed worse than the traditional modeling 
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Figure 2.  Genomic prediction models’ performances for the populations of (Pop1) sugarcane (stalk diameter 
(SD) and stalk height (SH)); (Pop2) Urochloa decumbens (field green weight (FGW), leaf dry matter (LDM), 
leaf percentage (LP), leaf stem ratio (LSR), regrowth capacity (RC), and total dry matter (TDM)); and (Pop3) 
Megathyrsus maximus (green matter (GM), LDM, percentage of leaf blade (PLB), RC, stem dry matter (SDM), 
and TDM). The Bayesian ridge regression (BRR) and single-environment main genotypic effect model with a 
Gaussian kernel (SM-GK) approaches with the inclusion of different feature selection methods (CR2 and CR3) 
were evaluated.
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Figure 3.  Correlation plots for the predicted and real values in the populations: (Pop1) sugarcane (stalk 
diameter (SD) and stalk height (SH)); (Pop2) Urochloa decumbens (field green weight (FGW), leaf dry matter 
(LDM), leaf percentage (LP), leaf stem ratio (LSR), regrowth capacity (RC), and total dry matter (TDM)); and 
(Pop3) Megathyrsus maximus (green matter (GM), LDM, percentage of leaf blade (PLB), RC, stem dry matter 
(SDM), and TDM). The approaches evaluated were Bayesian ridge regression (BRR), colored green, and the 
single-environment main genotypic effect model with a Gaussian kernel (SM-GK) with the inclusion of the 
established feature selection machinery, colored black.
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Figure 4.  Accuracies of simulation scenarios created using a wheat breeding program and different quantities 
of QTLs per chromosome (2, 10, 100, and 1000). From 20 years of phenotypic selection (10 years of burn-in), 
preliminary yield trials (1000 lines) were selected by year, forming a dataset of 10,000 genotypes, which was 
sampled for different quantities of individuals (100, 250, 500, 1000, 2000, 5000, and 10,000) to perform 10-fold 
cross-validation using a single-environment main genotypic effect model with a Gaussian kernel (SM-GK) 
with and without the inclusion of the established feature selection approach (SM-GK/C3R3). The values in the 
boxplot labels represent the mean accuracy, and in the gray boxes the quantity of markers used to create the 
predictive model.
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approaches. Although we observed reasonable accuracies for some specific k-fold configurations (Supplementary 
Figs. S11–S13), this was not uniform across the CV scenarios established, which corroborates the strong impact 
of genotyping results on model creation. Beneficial k-fold splits for prediction represent similar training and 
test datasets (i.e., individuals with similar polymorphic profiles), and in such cases, GP models work accurately. 
Therefore, we consider that, in addition to our hypothesis that the marker datasets employed were not accurate 
enough for creating such models, the lack of satisfactory accuracies might be related to an absence of mark-
ers linked to several trait-associated QTLs, probably due to the GBS protocol and bioinformatics procedures 
employed. To evaluate these factors, we decided to check whether the exclusion of nonbeneficial markers for 
prediction through FS could improve model performance based on (i) possible incorrect marker estimation, (ii) 
the principle that not all SNPs influence the  phenotype108, and (iii) our observation that the models were not able 
to automatically separate the markers most important for prediction from the rest of the SNPs.

This strategy of FS has already demonstrated promising results across the  literature27,109–112. Subsetting datasets 
through principles of FS is a common strategy in data science for datasets with a large number of  variables113. 
Considering the principle underlying GS that all markers can be used in model construction with different effects 
estimated for the traits of  interest114, FS methods have not been required in the construction of these predictive 
models. However, this is not the scenario for several complex datasets, including those used in this work. An FS 
system in ML aims at removing redundant, incorrect and irrelevant data from the dataset prior to  prediction115, 
and for a GP problem, this strategy supplies a means of selecting the most promising set of markers for predic-
tion, which might also be indicative of QTL  associations116.

The reduction of markers through the different FS strategies employed was effective, dramatically reducing the 
datasets and increasing the prediction accuracies. For the final strategy considered, the intersection of the three 
FS methods selected enabled the establishment of a very restricted dataset with insights into biological functions 
potentially associated with different trait configurations. Interestingly, all of the traits were associated with genes 
having biological functions related to regulatory mechanisms (e.g., regulation of transcription, translation, and 
DNA duplication), which is in accordance with the control mechanism impacting protein-DNA interactions 
expected for  QTLs117. Additionally, important categories could be retrieved for the evaluated agronomic traits, 
such as carbohydrate metabolism, defense response, cellulose biosynthetic process, and response to stress. All 
of these GO terms have been previously associated with important biological processes regulating plant growth 
 performance31,118,119. Although a detailed analysis should be performed to provide in-depth inferences about 
these mechanisms underlying the trait configurations, this preliminary investigation highlights the potential of 
the methodology to reveal such important biological features associated with target traits for breeding programs.

Considering that the final purpose of breeding programs is selecting the most promising genotypes for 
advancing breeding cycles and producing novel cultivars, we also considered for each individual a related pheno-
typic group, supplying an indicator of its overall performance. Through the initial phenotypic clustering analyses 
performed (Supplementary Figs. S7–S9), it was possible to observe distinct groups of individuals with similar 
phenotypic values, which were considered classes in an ML-based classification scenario. Such interval predic-
tion can be considered a complementary strategy for selecting the best potential candidates for a specific trait 
because of its capability of excluding a large number of candidates that have fewer chances to be among the top 
genotypes in terms of performance. Such interval prediction follows the same principle of ranking approaches, 
which have already been demonstrated as a potential tool in selective  breeding120. Different from traditional GP 
models based on regression, this classification task can take advantage of a vast set of ML algorithms. Together 
with the marker dataset selected through FS methods applied to the quantitative traits, we coupled an FS system 
based on classification, selecting the markers related to these defined intervals and forming a joint strategy for 
prediction. Therefore, in addition to creating a prediction model for GP of quantitative traits, the same marker 
dataset can be applied to an independent system estimated for interval prediction.

Regarding the performance comparison of the best models (BRR, RKHS-KA, SM-GK, and SVM), we did 
not observe significant differences between the accuracy results. For this reason, we selected only one of them, 
SM-GK, for combination with the FS system. In addition to clear improvements in accuracy by such SNP sub-
setting, we also evaluated whether such selection could serve as a means of defining fixed effects in GP models. 
Although we also observed increases in the measurements of accuracy through Pearson correlation coefficients, 
the same beneficial aspect was not observed when evaluating the models’ performance through MSEs. Instead, 
we observed higher predictive variability with stronger correlations and larger associated errors. Such a conclu-
sion was previously reached when using peaks from a genome-wide association study (GWAS) as fixed effects 
in  GP121. For this reason, we considered the subsetting strategy as the most promising method for boosting 
accuracies in our scenarios.

On the basis of the improvements observed (Fig. 3), we concluded that such an FS system was essential for 
showing the inefficiency of the models tested in terms of capturing real marker effects. Including a larger number 
of SNPs in GP may introduce background  noise110, and in our scenario, such noise is expected to be found due 
to the elevated genomic complexity of these species. Interestingly, the GP models for SU presented better results 
than those for FGs. For SU SNP data, an SU pseudoreference genome was used for SNP  calling55, different from 
the approach applied to FGs, where SNPs were estimated using genomic references from closely related species. 
Using Sorghum bicolor as a genomic reference for SU, a close relative, also decreases the quantity of reliable 
 markers27,112 and, consecutively, the chances of finding SNPs surrounding QTL regions. For this reason, we 
believe that the increases in accuracy in FG results were more modest than those in SU.

As the last evaluations performed, we created simulated populations using a wheat breeding program to 
check the feasibility of the approach in scenarios with a broader set of individuals and not only single biparental 
populations. One of the main limitations that we found was related to the number of individuals used for per-
forming k-fold validation. Increases in the predictive accuracies were modest when very large populations were 
analysed, but even in these cases our approach still represents an important strategy to reduce marker datasets 
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needed for prediction. This might contribute with cutting down genotyping costs—a constraint that remains 
highly relevant in breeding programs of the species under study. Increasing the number of observations in the 
dataset and using the same quantity of folds for CV introduce a larger number of samples to be predicted, which 
may correspond to a more difficult prediction task if the individuals in the training and test sets are more dis-
tantly genetically  related122. This fact corroborates the need to develop appropriate populations for the proper 
application of GS  models123. Additionally, using a small number of individuals leads to a restricted set of markers 
linked to the phenotypic variation being examined, which is not expected for a larger number of  genotypes124. 
As expected, the methodology worked efficiently for a broad number of QTLs, showing its appropriateness for 
different quantitative traits, as already demonstrated in this study.

In the present study, we provided a method for GP using different datasets of polyploid grasses. Combining 
an FS engineering system capable of retrieving markers important for classification and regression, our meth-
odology also shows great potential for investigating marker-trait associations. Additionally, our results highlight 
the benefit of incorporating methodologies for marker selection into prediction, which may also be seen as a 
promising approach for developing targeted sequencing methodologies that can be applied to create models for 
GS. With a small number of markers, we could achieve high associated accuracies for quantitative traits and for 
predicting putative performance intervals through classification, which can be seen as a complementary breed-
ing tool. This strategy has the potential to aid in the development of models for species with elevated genomic 
complexity, surpassing the limitations of available genomic resources and supplying a means of incorporating 
GS into their breeding programs.

Data availability
Accession codes of sequencing data are available through the Sequence Read Archive (SRA) database with the 
accession numbers PRJNA478025, PRJNA472576 and PRJNA563938.
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